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Abstract: Limited availability of hydrometeorological data and lack of data sharing practices have
added to the challenge of hydrological modelling of large and transboundary catchments. This
research evaluates the suitability of latest near real-time global precipitation measurement (GPM)-era
satellite precipitation products (SPPs), IMERG-Early, IMERG-Late and GSMaP-NRT, for hydrological
and hydrodynamic modelling of the Brahmaputra Basin. The HEC-HMS modelling system was
used for the hydrological modelling of the Brahmaputra Basin, using IMERG-Early, IMERG-Late,
and GSMaP-NRT. The findings showed good results using GPM SPPs for hydrological modelling
of large basins like Brahmaputra, with Nash–Sutcliffe efficiency (NSE) and R2 values in the range
of 0.75–0.85, and root mean square error (RMSE) between 7000 and 9000 m3 s−1, and the average
discharge was 20611 m3 s−1. Output of the GPM-based hydrological models was then used as input
to a 1D hydrodynamic model to assess suitability for flood inundation mapping of the Brahmaputra
River. Simulated flood extents were compared with Landsat satellite-captured images of flood
extents. In critical areas along the river, the probability of detection (POD) and critical success index
(CSI) values were above 0.70 with all the SPPs used in this study. The accuracy of the models was
found to increase when simulated using SPPs corrected with ground-based precipitation datasets.
It was also found that IMERG-Late performed better than the other two precipitation products as
far as hydrological modelling was concerned. However, for flood inundation mapping, all of the
three selected products showed equally good results. The conclusion is reached that for sparsely
gauged large basins, particularly for trans-boundary ones, GPM-era SPPs can be used for discharge
simulation and flood inundation mapping.

Keywords: hydrological modelling; flood mapping; global precipitation measurements; large
ungauged basins; IMERG

1. Introduction

The availability of satellite precipitation products (SPPs) has provided opportunities
for hydrological modelling and improved decision making in catchments, especially where
data availability is a problem [1]. Catchments around the world have benefitted from
SPPs of different spatial and temporal resolutions. With the advances in remote sensing
techniques, different agencies around the world have developed precipitation datasets.
Among those projects, the Tropical Rainfall Measuring Mission (TRMM) was a very suc-
cessful precipitation data project by the National Aeronautics and Space Administration
(NASA) and Japan Aerospace Exploration Agency (JAXA). One of the TRMM-based prod-
ucts, TRMM Multi-satellite Precipitation Analysis (TMPA) 3B42V6, has been extensively
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used in hydrological applications as a good alternative to in situ data when corrected with
ground-based data [2]. Data from 1998 to 2015 are available. Li et al. [3] used TRMM
datasets for the hydrological modelling of the Xinjiang catchment of the Yangtze River
in China. They found that TRMM rainfall data was effective for detecting rainfall occur-
rence and averages at daily time steps, rather than determining extreme rainfall events.
Ochoa et al. [4] also found that TRMM (TMPA-3B42V6) performed better in the case of
light precipitation than in the case of extreme precipitation events in Ecuador and Peru.
Meng et al. [5] undertook a quantitative assessment of the TMPA product (3B42V6) against
gauge precipitation data in the high-altitude catchment of the Yellow River, and found
that monthly TMPA rainfall data gave better results than at the daily temporal scale in
comparison with gauge data. Bhattacharya et al. [6], in their research on the development
of a hydrological model of the Brahmaputra Basin using TRMM (TMPA-3B42V6), found
that SPPs can be used effectively in the development of hydrological modelling of large,
sparsely gauged, and trans-boundary basins like Brahmaputra, provided the spatial and
temporal resolution of the dataset is high enough. However, it was concluded in their
research that TRMM could not accurately predict discharge values for the low flows during
the months of February and March.

Although TMPA-3B42V6 has been the most widely used SPP, other useful gridded
global SPPs include Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Networks (PERSIANN) by the University of California, Irvine and the
Climate Prediction Center morphing method (CMORPH) by the National Oceanic and At-
mospheric Administration (NOAA). Thiemig et al. [7], and Bitew et al. [8] used PERSIANN,
CMORPH, and TRMM datasets to assess rainfall forcing in distributed hydrological models
of various catchments and demonstrated the usefulness of these datasets in hydrological
modelling. However, the accuracy and suitability of TRMM and similar, single-satellite
SPPs depended upon the location of the catchment and its topography (e.g., TRMM did
not have global coverage), and they were observed to be more accurate for flat terrains,
while more uncertain for complex terrains [9].

Following the success of TRMM, another project named the Global Precipitation Mea-
surement (GPM) mission, which was launched in 2014, has provided precipitation dataset
products since 2015 that provide precipitation at half-hourly temporal and 0.1◦ × 0.1◦ spa-
tial resolution [10]. Although the GPM core observatory design is an extension of TRMM,
the main advancement of GPM over TRMM is in its capacity to measure light rainfall of
intensity of about 0.5 mm h−1, solid precipitation measurement (e.g., snow and hail), and
microphysical properties of precipitating particles (https://gpm.nasa.gov/missions/GPM,
accessed on 15 December 2020). Two common GPM-era products are Integrated Multi-
satellite Retrieval for GPM (IMERG) and Global Satellite Mapping of Precipitation (GSMaP),
both of which are widely used for hydrological applications [11]. IMERG, a product of
NASA and JAXA, is further divided into IMERG-Early, IMERG-Late, and IMERG-Final.
Early and late runs of IMERG provide near real-time (NRT) datasets and IMERG-Final is
post-real-time data for research, which is also gauge-corrected. The latency times of the
early, late, and final runs are 6 h, 18 h, and 3.5 months, respectively. GSMaP-NRT is an SPP
by JAXA which has a temporal resolution of 1 h and the same spatial resolution as IMERG,
with latency period of 4 h. Due to their high spatiotemporal resolution and nearly global
availability, these remotely sensed SPPs are being explored in many areas of research for
different purposes.

To check the accuracy of IMERG precipitation estimates, [12] used IMERG FINAL in
the Netherlands and found that compared with the in situ data, IMERG-Final underesti-
mated rainfall values. Similarly, Kim et al. [13] compared IMERG-Late with the TRMM
dataset product TMPA 3B42 for different seasons in northeast Asia and concluded that
IMERG-Late gave better results even for low intensity rainfall. Tang et al. [14] evaluated the
performance of IMERG-Late for China in comparison to TMPA 3B42 and found it highly
accurate for low temporal scales. Peng et al. [15] used IMERG-Final for the hydrological
modelling of Bosten Lake Basin and found that GPM SPPs have the potential to provide
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valuable results in simulated hydrological model. Similarly, Ahmed et al. [16] checked the
performance of GPM-based precipitation products in the development of a hydrological
model for Chenab River (which is also a transboundary catchment shared between India
and Pakistan) and concluded that IMERG products can be used in hydrological modelling
with good results.

Recent studies carried out using remotely sensed data in the development of dis-
tributed hydrological models have shown that these can also be used in forecasting floods
and for the inundation mapping of medium to large catchments around the world, via
coupling the hydrological and hydraulic models. In this context, Abdessamed and Abder-
rraza [17] worked on various catchments in the world and achieved useful results using
remotely sensed data in inundation mapping.

Despite the success with GPM-era SPPs for research, the suitability of the near real-
time GPM precipitation products for operational hydrological modelling and decision
making, has, to our knowledge, not yet been extensively reported for large, transboundary,
and sparsely gauged basins. This research, therefore, aims to check the suitability of the
latest near real-time SPPs (IMERG-Early, IMERG-Late, and GSMaP-NRT) for hydrological
and hydrodynamic modelling of the Brahmaputra Basin for discharge simulation and flood
inundation mapping. Gridded gauge data from the Indian Meteorological Department
(IMD) were used for correction of SPPs in the spatial extent of IMD. Additionally, IMD data
were also used directly coupled with SPPs to check how this impacted the performance
of hydrological and hydraulic models. Moreover, the benefits of using near real-time
high-resolution precipitation products in coupled hydrological-hydraulic modelling of
large transboundary and data-scarce basins, especially stream flow and flood inundation
mapping, was explored. For hydrological modelling, the hydrological modelling system
(HMS) by the Hydrologic Engineering Centre (HEC) of US Army Corps of Engineers
version 4.8 was used and for hydraulic modelling, the river analysis system (RAS) by HEC,
jointly called HEC-RAS, was used.

2. Case Study

The Brahmaputra River catchment is a large trans-boundary catchment shared be-
tween China, Bhutan, India, and Bangladesh, with a total area of about 580,000 km2. The
Brahmaputra River originates in Tsangpo, China (elevation 5150 m), flows through the
Assam valley of India, and subsequently through Bangladesh. The Brahmaputra River is a
very wide river with a width varying between 6 and 18 km (carrying multiple braided river
streams), except for some narrow reaches such as in Tezpur and Guwahati where the widths
are about 3.6 km and 1.2 km, respectively. Near to its origin at Tsangpo, the riverbed slope
is very steep (about 16.8 m km−1), transitioning gradually into a moderate slope as it passes
through India and later to a very mild slope in Bangladesh (about 0.079 m km−1) [18].

The basin can be sub-categorized further, including the cold, dry Tibetan Plateau, then
the slopes of Himalaya which receive a major part of the rainfall, and the alluvial plains in
the surroundings of Assam. The land cover of the catchment of Brahmaputra is divided
into different types including grasslands, forest, agricultural lands, urban lands, natural
vegetation, barren lands, water bodies, permanent wetlands, and snow/ice-covered areas,
with a distribution of 44%, 14.5%, 14%, 12.8%, 2.5%, 1.8%, 0.05%, and 11%, respectively.
Based on the topography, climate, land use, and other characteristics, it has many different
kinds of tributaries. The flow in the river is usually very high in summer, which is due
to high rainfall in the monsoon season and snow melt in spring. For this research, the
catchment outlet at the location of Bahadurabad was considered, as shown in Figure 1. The
choice of the outlet was based on the availability of discharge gauge data at the location. The
flow characteristics at Bahadurabad are an annual average discharge of 21,993 m3 s−1 with a
minimum recorded discharge value of 3280 m3 s−1 and a maximum of 102,534 m3 s−1 [19].
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3.1. Data Collection and Pre-Processing

In the first step, all the requisite data to be used in the research were collected from
all the sources and were pre-processed. For the digital elevation model (DEM), Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) elevation data from
NASA and Japanese Space Agency JAXA were used. Tavares et al. [20] carried out research
to check the performance of different kinds of freely available DEMs by comparing them
with light detection and ranging (LiDAR) data and found that ASTER gave similar eleva-
tions to LiDAR. DEM tiles for the expected extent of the basin were downloaded with the
coordinates of the southwest vertex of the bounding rectangle as 81◦E, 22◦N and those
of the northeast as 100◦E, 33◦N. The ASTER tiles were processed in the GIS environment
using ArcGIS, based on catchment delineation and using Bahadurabad as the outlet. The
whole catchment was divided into 27 sub-basins during the delineation process that was
used to develop the semi-distributed hydrological model of the basin.

Monthly average air temperature data from 2 m above ground (NLDAS_FORA0125_M)
were required for snowmelt processing in the hydrological model, and were collected from
the NASA GIOVANNI website (http://giovanni.sci.gsfc.nasa.gov/giovanni, accessed on
15 December 2020). Monthly average data of evapotranspiration with spatial resolution of
5 arc minutes were acquired from the FAO portal (http://geonetwork.fao.org, accessed
on 15 December 2020) for all twelve months. Area average values for all the sub-basins
were generated and used. Soil type data were acquired from the Harmonized World Soil
Database (HWSD v1.2), which contains indices for every soil type in the named soil map-
ping unit (SMU), corresponding to which data related to that particular soil were retrieved
from HWSD v1.2. To obtain the SMU for every sub-basin, 1 × 1 km raster data were
downloaded from the FAO server (http://www.fao.org/soils-portal/data-hub/soil-maps-
anddatabases/, accessed on 15 December 2020) and was processed in ArcMap. The zonal
statistics tool in ArcGIS was used to assign SMU to each sub-basin through selecting the
statistics category as the majority. European Space Agency (ESA) land use/land cover data
from Globecover 2009 V2.3 were used in this research; the Globecover map contains the
land cover data of the entire earth with a spatial resolution of 300 × 300 m. Lithographic
or lithology data were also used in this research, dealing with the underground soil/rock
layers and their physical research. These data were used mainly because groundwater
movement and storage depend on the hydrogeology (porosity and permeability) of the
underground strata [21]. The dataset was acquired from a free data source named Global
Lithological Map (GLIM), from the University of Hamburg, Germany [22]. All the datasets
used for this research and their respective resolutions are summarized in Table 1.

Table 1. Summary of datasets used in this research.

Sr. No. Data Type Source Availability Spatial
Resolution/Location

1 Gauge rainfall Indian Met Department 1900–31 December 2019 0.25◦ × 0.25◦

2 Temperature NASA 2002–Present 0.25◦ × 0.25◦

3 Land use European Space Agency 2009 300 m × 300 m

4 Soil Harmonized World Soil database, FAO 2008 1 km × 1 km

5 Lithology Global Lithological Map (GLIM), V1.0 2012 0.5◦ × 0.5◦

6 Evapotranspiration Food and Agriculture Organization
(FAO) 1961–1990 5 km × 5 km

7 ASTER DEM NASA 2019 30 m × 30 m

8 Discharge data Bangladesh Water Development Board 2013–2019 Bahadurabad Station

9 Water level Altimetry data from Jason2 2017 Bahadurabad and Tezpur

10 Flood extent Dartmouth Flood Observatory of
Colorado University 2017 and 2019 Vector Data

http://giovanni.sci.gsfc.nasa.gov/giovanni
http://geonetwork.fao.org
http://www.fao.org/soils-portal/data-hub/soil-maps-anddatabases/
http://www.fao.org/soils-portal/data-hub/soil-maps-anddatabases/
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For precipitation data, IMERG Early, IMERG Late, and GSMaP-NRT were selected due
to their high spatial resolution of 0.1◦ × 0.1◦ and relatively short latency period. Resolution
and coverage of all three selected SPPs are described in Table 2.

Table 2. SPPs with their characteristics.

SPP Name Product Source of
Data

Latency
Time

Spatial
Resolution

Temporal
Resolution

Spatial
Coverage

Temporal
Coverage

IMERG
IMERG-Early

Satellite

6 h

0.1◦ × 0.1◦ half-hour 60◦N to 60◦S
2015 to present

IMERG-Late 18 h

GSMaP GSMaP-NRT 4 h 2015 to present

Half-hourly data was downloaded and then aggregated to daily data and averaged
for each sub-basin for use in HEC-HMS. In order to use the precipitation data in the hydro-
logical model simulation it was necessary to correct the GPM-based precipitation data for
all three selected products, and these were corrected with IMD data (https://mausam.imd.
gov.in/responsive/rainfallinformation_swd.php, accessed on 15 December 2020). About
37% of total basin area of Brahmaputra lies in India, for which IMD data were available
and were used for data correction, known as bias correction. There are various methods
for bias correction of rainfall data, but ratio bias correction (RBC) and quantile mapping
(QM) are two potential methods which are more frequently used [23]. In this research, the
RBC method was used to find monthly correction factors (four-yearly average, 2013–2016)
for all calendar months and for all three selected GPM SPPs, using the RBC equation
(Equation (1)):

CFj,k =
∑n

i=1 GPj,k

∑n
i=1 SPPj,k

(1)

where CF is the correction factor, GP is gauge precipitation, SPP is satellite precipitation
product data, n is number of days in the respective month, k is month number, i is day
number (1, 2, 3, . . . n), and j is sub-basin number (1, 2, . . . 27). Monthly average ratios for
each catchment for each SPP were calculated using RBC for the period of calibration. Once
calculated, these ratios were kept fixed and were used for each catchment for a particular
SPP (Appendix A). Similarly, the performance of precipitation products was evaluated
using the statistical performance indicators mentioned in Table 3. When all three SPPs were
compared, based on Table 3, it was found that IMERG-Late outperformed its other two
counterparts. GSMaP was found to be the least accurate.

Table 3. Performance indicators for GPM SPPs.

Sr. No. Performance Indicator Equation Remarks

1 Root mean square error (RMSE) RMSE =
√

1
n ∑n

i=1(SPPi − GPi)
2

SPPi= Satellite precipitation dataset;
GPi = Gauge precipitation dataset;
n = Number of observations in the

dataset.

2 Mean absolute error (MEA) MAE = 1
n ∑n

i=1 abs(SPPi − GPi)

3 Coefficient of determination (R2) R2 = {∑n
i=1 (GPi−GPi)(SPPi−SPPi)}

2

∑n
i=1(GPi−GPi)

2
∑n

i=1(SPPi−SPPi)
2

Considering all three GPM SPPs after correction with IMD data, six sets of precipitation
data (Table 4) were prepared and used in the hydrological model.

https://mausam.imd.gov.in/responsive/rainfallinformation_swd.php
https://mausam.imd.gov.in/responsive/rainfallinformation_swd.php
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Table 4. Different combinations of precipitation datasets.

Dataset No. Dataset Name Explanation

1 IMERG-Early
IMERG-Early data corrected with IMD rainfall data for the sub-basins
located in India and uncorrected IMERG-Early data for the sub-basins
in China.

2 IMERG-Late
IMERG-Late data corrected with IMD rainfall data for the sub-basins
located in India and uncorrected IMERG-Late data for the sub-basins
in China.

3 GSMaP GSMaP data corrected with IMD rainfall data for the sub-basins located in
India and uncorrected GSMaP data for the sub-basins in China.

4 IMD & IMERG-Early IMD data for sub-basins inside India and uncorrected IMERG-Early data
for sub-basins in China.

5 IMD & IMERG-Late IMD data for sub-basins inside India and uncorrected IMERG-Late data for
sub-basins in China.

6 IMD & GSMaP IMD data for sub-basins inside India and uncorrected GSMaP data for
sub-basins in China.

3.2. Hydrological Model Development

Hydrological modelling of the Brahmaputra Basin was very challenging due to its
catchment size and high variability in topography, land use, land cover, altitude, and
other hydrometeorology parameters. In this research, a semi-distributed hydrological
model of the basin was developed using HEC-HMS modelling software version 4.8 (http:
//www.hec.usace.army.mil/software/hec-hms/, accessed on 15 December 2020). Pre-
processing was carried out in the GIS environment and was exported to the HEC-HMS
modelling environment for model development. Specific methods used in this research to
model the hydrological processes in the catchment are listed in Table 5.

Table 5. Summary of methods used for hydrological model components.

Model Component Method

Canopy Simply canopy
Surface Simply surface

Loss Soil moisture accounting (SMA)
Transform Clark unit hydrograph
Base flow Linear reservoir
Routing Muskingum–Cunge

The model was provided with the initial values for its different components. For the
canopy component, maximum storage capacity of all sub-basins varied from 1 to 7 mm
based on the vegetation/forest cover percentage. A value of 1mm was chosen for barren
basins, which are mostly in the upstream parts of the basin. The initial values for canopy
storage were set to 0 mm as initial values do not affect model results after simulation over
a few months [6]. For surface storage in depressions, upper threshold values were set
between 6 and 10 mm based on the topography of sub-basins, whereas initial values were
set as zero. To model direct runoff in the form of excess rainfall, Clark unit hydrography
(CUH) was used, which required certain inputs. The lag time was calculated based on the
longest flow path, based on which the time of concentration was computed, which ranged
between 50 and 131 h. The other input was storage coefficient, which was set between 5
and 12 h based on the size of each sub-basin. Meteorological input methods selected for
evapotranspiration and snowmelt for the HMS model development were monthly average
evapotranspiration (ET) and temperature index method, respectively. The monthly average
ET values were acquired from FAO and the daily average temperature data was taken from
NASA (http://giovanni.sci.gsfc.nasa.gov/giovanni, accessed on 15 December 2020). After

http://www.hec.usace.army.mil/software/hec-hms/
http://www.hec.usace.army.mil/software/hec-hms/
http://giovanni.sci.gsfc.nasa.gov/giovanni
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the initial setting up of the model, it was necessary to divide the total modelling timeline
into two parts for calibration of model parameters and then for validation of the model
output, which is described in Table 6.

Table 6. Hydrological model calibration and validation periods.

Simulation Type Starting Time and Date Ending Time and Date No. of In Situ Flow Sites

Calibration 00:00, 1 June 2014 24:00 30 December 2016
01 (Bahadurabad)

Validation 00:00, 1 January 2017 24:00 20 September 2020

The method used for calibration was the univariate gradient search algorithm, which
is an automatic calibration method available in HEC-HMS. As there were six different
SPPs, the model was calibrated six times considering a different SPP each time. This
resulted in six sets of calibrated parameter values. The parameters that were considered
in the optimization process were storage coefficient and time of concentration from CUH,
groundwater storage coefficients GW1 and GW2 for the linear reservoir baseflow model,
and soil storage, soil percolation rate, and groundwater storage coefficient GW1 for the
soil moisture accounting (SMA) loss model. Note that HMS allows consideration of two
layers of groundwater. For the maximum infiltration rate, which is also a parameter of
SMA, a scale factor for all the sub-basins ranging between 1 and 100 was considered.
This was carried out to minimize the number of parameters to be determined during the
optimization. The obtained scale factor was used to multiply the initially estimated values
of maximum infiltration rate to determine the optimized values of maximum infiltration
rate for all the sub-basins. Therefore, all the above-mentioned parameters were optimized
and used for further simulations, with the simulation time step of 1 day. The performance of
the model-generated results was evaluated during calibration and validation by calculating
the statistical parameters listed in Table 3.

3.3. Hydraulic Model Development

The hydraulic model was developed for the last 500 km of the Brahmaputra River
and was used to evaluate the performance of the SPPs in flood inundation mapping.
The hydraulic model used the discharge values simulated by the hydrological model.
The floodplain areas adjacent to the selected river reach were more prone to flooding.
The observed flow data were available from Bahadurabad station, and were used for the
calibration of the model. Pre-processing of the model was carried out in ArcGIS where
cross-sections, bank lines, river stream lines, and flow direction were defined. Elevation val-
ues were extracted from ASTER DEM for all the cross-sections because actual bathymetry
data of the riverbed and in situ elevation data of the flood plain were missing. Bhattacharya
et al. [6] used Shuttle Radar Topography Mission (SRTM) elevation data for flood inunda-
tion mapping of the Brahmaputra Basin and found this approach useful in developing a
hydraulic model and for flood extent mapping. The geographical information in ArcGIS
was exported to HEC-RAS where final processing regarding model development was
carried out. The upstream boundary condition for the hydraulic model was the discharge
data simulated using HEC-HMS and the downstream boundary condition was taken as the
normal depth of the selected river channel. The model was calibrated using the gauge data
from Bahadurabad station from 1 January 2015 to 31 December 2015. Validation was carried
out for the year 2017 via comparing the simulated river stage values with the measured
stage values at Bahadurabad and Tezpur. The hydraulic model was further simulated for
the year 2019 and the flood inundation maps were prepared for the seven areas shown in
Figure 3.

In the absence of measured discharge data inside the model domain, validation of
the hydraulic model was an issue. Satellite altimetry data from different sources such
as CryoSat-2, ENVISAT, and Jason2 (now Jason3) can provide estimates of water level
data. In this regard, various researchers have used altimetry data to predict discharge. For
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example, Papa et al. [24] used satellite altimetry data from ERS-2, TOPEX-Poseidon, and
ENVISAT for predicting monthly flow for Ganges–Brahmaputra with an accuracy of about
15–20%. Similarly, Schneider et al. [25] used CryoSat-2 altimetry data for the calibration of
cross-sectional data of the Brahmaputra River and found good results.
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Figure 3. Location of areas for flood extent validation of the hydraulic model.

In this research, Jason2 altimetry data (from NASA) were used, which were available
from Hydroweb of Thiea Land Data Services for the virtual gauging stations at Tezpur
and Bahadurabad. Similarly, for flood extent validation, digitized images of two selected
flooding events (14 August 2017 and 16 July 2019) were acquired from Dartmouth Flood
Observatory (DFO) of Colorado University, USA (https://floodobservatory.colorado.edu/
FloodMapIndex.htm, accessed on 15 December 2020), which has the largest digitized
database of floods in the world since 2011. The data were available in binary raster form
and were processed in ArcMap for further computation.

Each of the flood inundation maps simulated via the hydraulic model for the two
above-mentioned flood events were converted to binary maps so that any pixel (30 × 30 m)
having a flood depth greater than a threshold was considered as 2 (wet pixel) or 1 (dry pixel)
otherwise. The DFO rasters for the corresponding two flood events were also converted
to binary rasters: 2 (wet pixel) and 1 (dry pixel). Note that there was no information
about flood depth in the DFO raster (or any satellite-observed flood inundation map). In
satellite-observed flood images, identifying wet pixels for very low flood depths is an
issue [6]. In order to minimize this problem, a threshold of 0.1 m was used in converting
the simulated inundation map to the binary raster. This means that if the simulated depth
for a pixel was >0.1 m, then that pixel was assigned a value of 2 or otherwise, 1. For each
flood event, the binary map from the simulated inundation map and the DFO raster were
added and subtracted from each other one by one. The two resultant rasters for each of the
flooding events had one of four possible values for each pixel (Table 7).

https://floodobservatory.colorado.edu/FloodMapIndex.htm
https://floodobservatory.colorado.edu/FloodMapIndex.htm
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Table 7. Classification of pixel values.

Raster Category Pixel Value DFO Raster Simulated Raster Output Type

Added

2 Dry Dry Positive rejection

3 Dry Wet False alarm

3 Wet Dry Missed alarm

4 Wet Wet Correct alarm

Subtracted

−1 Dry Wet False alarm

0 Dry Dry Positive rejection

0 Wet Wet Correct alarm

1 Wet Dry Missed alarm

Correct alarms and positive rejections were extracted from the added rasters, while
false and missed alarms were extracted from the subtraction of rasters. In the last step,
unified maps were generated that contained all four types of output combinations. The
unified maps (new_raster) were generated using the raster calculator in ArcGIS, applying
the following conditional:

If subtracted_raster_value = 0:
New_raster_value = added_raster_value
Else:
New_raster_value = subtracted_raster_value
The above expression merged all the four types of pixel values into one new raster

which contains all the four classes. Model performance in the selected administrative and
regional areas was evaluated using the following indices: probability of detection (POD),
false alarm ratio (FAR), success ratio (1-FAR), and critical success index (CSI).

POD =
C

C + M
(2)

FAR =
F

F + C
(3)

CSI =
1

1
1−FAR + 1

POD − 1
(4)

where C = correct alarms (correct alarms and positive rejections), F = false alarms, and M =
missed alarms.

4. Results and Discussion
4.1. Hydrological Model Results

The results from different model runs are shown in Figure 4.
All the simulation runs indicated that the simulated discharge followed the trend of the

observed discharge. However, low flows were overpredicted by the model, especially when
GPM data was used for the Indian part; however, this model trend improved somewhat
with the introduction of IMD data for the Indian part of the catchment. The statistical
performance of the model is shown in Table 8. It can be observed that all the model runs
gave good values of NSE and R2. Moreover, for the first three datasets (1, 2, 3), NSE and
R2 values were in the range of 0.70 to 0.80, which increased for the last three datasets
when IMD data were used for the Indian part of the basin. IMERG-Late performed better
than IMERG-Early and GSMaP and showed higher values of NSE and R2. Therefore, the
performance of the model was improved for IMERG-Late when the IMD data was used for
the Indian part of the basin (Dataset 5), thereby increasing the NSE from 0.773 to 0.844 and
reducing RMSE from 7711 m3 s−1 to 7125 m3 s−1, whereas the average observed flow for
the validation period was 20,611 m3 s−1. It is pertinent to mention that although the results
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improved when IMD data were used for the Indian part of the basin, the datasets without
IMD data still performed very well in hydrological modelling, with high model indicators
as shown in Table 8.
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Figure 4. Validation hydrograph generated with (a) dataset 1, showing that low flows were not
predicted well, but high flows showed a good match with observed flows; (b) 2, performed very
similarly, a with a small improvement in low flows; (c) 3, both high and low flows visually performed
close to observed flows; (d) 4, with addition of IMD data, the low flow overestimation problem of
case a was resolved considerably; (e) 5, performed very similarly to case d with a small improvement;
and (f) 6, both high and low flows were predicted well by the model.

The same was the case for all the other datasets because their performance also
improved when IMD precipitation data were used for the Indian part of the basin. The
performance of different precipitation datasets in hydrological modelling can also be
represented using Taylor’s diagram (Figure 5), which is a mathematical diagram used to
show which model results perform better in comparison with others.

The figure shows standard deviation, RMSE, and coefficient of correlation (CC) in
one plot, from which is convenient to understand which model outputs were better than
others. It can be observed that out of all six datasets, IMD-Late outperformed all of its
counterpart SPPs tested in this research, having minimum RMSE and the highest CC.
The point represented as observed is the reference point which shows the statistics of
the observed flow. The simulation result that was closest to the reference point was
regarded as the best model result, which in this case was IMD-Late. Similarly, all the model
runs had RMSE between 5000 and 10,000 m3 s−1 with CC values ranging between 0.85
and 0.95. The same was the case with all the other datasets, because their performance
also improved when IMD precipitation data were used for the Indian part of the basin.
Bhattacharya et al. [6] tested TMPA 3B42 for the Brahmaputra Basin and found that it
was useful in hydrological modelling with NSE in the range of 0.7 and 0.75 for corrected
precipitation datasets. Uncertainty in boundary flow data by Ahmed et al. [16] using TMPA
and GPM over a medium size basin in South Asia. Peng et al. [15] used IMERG and GSMaP
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for a small basin in Central Asia and confirmed the useability of remotely sensed datasets
for data-scarce basins. However, the results of this study highlight its usability for large
and trans-boundary basins and further strengthen the argument that with use of GPM
products, performance in hydrological modelling can be improved.

Table 8. Hydrological model performance indicators in validation.

Dataset No. Period Duration NSE R2 RMSE (m3 s−1)

1

Calibration
1 June 2014

to
31 December 2016

0.79 0.81 8468

2 0.80 0.81 8334

3 0.75 0.78 9120

4 0.80 0.82 8110

5 0.80 0.82 8090

6 0.78 0.82 8560

1

Validation

1 January 2017
to

20 September 2020

0.76 0.83 8143

2 0.77 0.85 7711

3 0.75 0.83 7849

4 1 January 2017
to

31 December 2019

0.84 0.85 7126

5 0.84 0.86 7125

6 0.83 0.84 7181
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4.2. Hydraulic Model Results

The 1D hydraulic model (discussed in Section 3.3) was simulated using the discharge
values generated by the hydrological model using all six precipitation datasets. The simu-
lated water levels at Bahadurabad station were plotted along with Jason2 satellite altimetry
water levels for the same period. The comparison is shown here with six chosen precipita-
tion datasets (Figure 6).

The difference between simulated and observed values was larger when the water
level was increasing (due to increasing flows) compared with when the water in the river
was receding. The statistical model performance is illustrated in Table 9. Water extent
rasters were generated from the hydraulic model, based on different SPPs. Raster maps
containing four cell types including correct alarms (hits), missed alarms (misses), false
alarms, and positive rejections, as explained in Section 3.3, were developed for both the
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flooding events (14 August 2017 and 16 July 2019). Hits, misses, and false alarms with
IMREG-Late for both the flooding events are shown in Figure 7.
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Table 9. Hydraulic model performance in validation of water level.

Dataset No. Location Validation Period R2 RMSE (m)

1

Bahadurabad
1 March 2017 to 31

December 2017

0.434 1.59

2 0.435 1.59

3 0.562 1.40

4 0.609 1.33

5 0.609 1.33

6 0.623 1.30

1

Tezpur 1 January 2017 to 31
December 2017

0.612 1.75

2 0.629 1.72

3 0.640 1.69

4 0.747 1.44

5 0.748 1.44

6 0.756 1.44

It can be observed in Figure 7 that there seems to be a good agreement between the
simulated and observed flood extent, particularly in the lower part of the hydraulic model
domain (downstream of Barpeta). At the upstream section, the model showed over-prediction
(a large number of false alarms). False alarms may be generated if the digital elevation model
used does not include any existing embankment or other protection measures. This may have
originated from the coarser resolution of the ASTER GDEM digital elevation data. Similarly,
linear interpolation of the cross section in HEC-RAS could be another reason for error in the
results predicted by the model. Other sources of errors could be in the DFO flood rasters.
Satellite imageries, such as from Landsat, were used in a binary classification algorithm to
determine class of each pixel as land or water. These classification algorithms tend to be
erroneous for low water depths and for water areas bordering land [26]. Uncertainty in
boundary flow data could also be another major error source. However, POD, SR, and CSI
values were computed for all the selected areas for validation of flood extent to check the
performance of SPPs in hydraulic modelling for flood inundation mapping. It was noticed
that for all the SPPs, CSI, POD, and SR values were more than ~0.7, which represents a good
model result. Figure 8 shows the POD, SR, and CSI of different outputs of the hydraulic model
for the flooding events of 14 August 2017 and 16 July 2019.

Despite good results in hydrological and hydraulic modelling, there are certain limitations
associated with this study. Calibration of the hydrological model was carried out for only
2.5 years, and calibration was conducted only using one location (catchment outlet) because
of the limited data availability. Similarly, uncertainties in the datasets used were another
source of uncertainty in the results. Also, there are limitations regarding channel bed elevation
estimation for hydraulic modelling and there is a need for further investigations.
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5. Conclusions

Based on the results of this study, the following conclusions are drawn:

(i) All three near real-time SPPs (IMERG-Early, IMERG-Late, and GSMaP) performed very
well in the development of the hydrological model of the sparsely gauged Brahmaputra
Basin. The general trend of the observed flow hydrograph at the catchment outlet was
followed very well by the simulated hydrographs for all three SPPs, particularly for
high flows. Low flows were not predicted well by the model; however, the trend of the
simulated hydrograph was comparable to the observed one. Performance indicators
for the hydrological model simulation in calibration and validation showed adequately
good values for NSE (above 0.73), R2 (above 0.77) for all the SPPs, and maximum RMSE
of 9120 m3 s−1 (where the average observed flow was 20,611 m3 s−1).

(ii) Although all the near real-time GPM-era SPPs performed well when used for the de-
velopment of the hydrological model of a sparsely gauged large catchment, there were
some performance differences. IMERG-Early and IMERG-Late performed very similarly
to each other as the difference between these two products is mainly in the retrieving
algorithm, but still, the performance of IMERG-Late was slightly better than IMERG-Early.
Both IMERG products outperformed GSMaP, because hydrological simulations with
GSMaP as input over-estimated medium and small peak flows. Based on the performance
indicators, it can be concluded that IMERG-Late performed better than IMERG-Early and
GSMaP and hence should be prioritized when selecting GPM-era SPPs.

(iii) The performance of the hydrological model was improved when IMD station precipi-
tation data were used (37% of the basin area). Flow hydrograph trends were improved,
even in cases of low flows. Similarly, performance indicators also improved, with
NSE values increasing to 0.844 when IMD-Late (dataset 5, Table 4) was used, which
was 0.773 when IMERG-Late (dataset 2, Table 4) was used. Moreover, RMSE reduced
to 7125 m3 s−1 from 7711 m3 s−1 (where the average observed flow was 2061 m3 s−1).
The performance indicators of the model were found to be better than those for the
TMPA 3B42 precipitation-based hydrological model of Brahmaputra reported by
Bhattacharya et al. [6], although they were tested for a different time period. This
gives an indication that near real-time GPM precipitation datasets perform better than
TRMM based datasets in hydrological modelling of large catchments. For the case of
the Brahmaputra Basin, it can be concluded that although the results improved when
IMD observed data were used for the Indian part of the basin, the datasets without
IMD data still performed very well in hydrological modelling, with high performance
indicator scores as shown in Table 8.

(iv) For the 1D hydraulic model simulation results, it was found that with all the GPM-
based upstream boundary flow datasets, R2 values for the simulated water level at
Bahadurabad gauging station, compared with Jason2 altimetry data, were above 0.6,
and at Tezpur, the R2 values were above 0.43. The general trend of Jason2 data was
followed by the simulated water level in all the hydraulic model simulations based
on GPM-generated boundary flow datasets. Although there were differences in some
parts of the simulated water levels in comparison with Jason2, particularly at the start
of the rainy season, the error was limited within a range of 0.5 to 1.5 m.

(v) Validation of the flood inundation maps revealed that the simulated flood extent
matched well with the observed one. In the upstream part of the model domain
up to Tezpur, the inundation cells showed a relatively higher percentage of false
alarms and missed events for both floods (14 August 2017 and 16 July 2019). The POD
and CSI indicators showed that the model performance in flood inundation was
reasonably good. The POD and CSI values for all the model runs were above 0.70
for all the validation areas in both of the flood events. It is noteworthy that the
model performance was approximately same for all three GPM-based boundary flow
datasets. So, for the purpose of flood inundation mapping, any of the near-real time
GPM SPPs tested, IMERG-Early, IMERG-Late, and GSMaP, can be used.
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Overall, the performance of the hydrological and hydrodynamic model simulations
of the Brahmaputra Basin showed the potential of using near real-time GPM satellite
precipitation products for discharge simulation and flood inundation mapping in sparsely
gauged large catchments.
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SPP Month B5 B14 B15 B16 B17 B18 B19 B20 B21 B23 B24 B26 B27 B28 B29 
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January 4.02 4.00 2.52 7.71 10.81 1.28 0.84 0.71 0.62 1.29 1.03 0.63 0.55 0.76 0.87 

February 3.57 4.87 1.71 5.27 7.30 1.09 0.82 0.81 3.44 1.32 0.66 0.96 1.19 0.77 1.66 

March 10.94 3.70 1.17 2.52 3.81 1.05 1.16 1.38 1.42 0.90 0.77 0.51 0.66 0.50 1.66 

April 8.17 4.22 2.19 3.40 3.82 1.77 1.55 1.25 2.93 1.48 0.98 1.17 1.10 0.98 1.76 

May 15.54 6.25 2.77 3.96 5.39 2.29 1.73 1.82 5.64 2.95 1.82 1.89 1.93 1.65 3.07 

June 13.02 4.08 3.18 4.49 5.83 1.63 1.35 1.18 6.06 2.49 1.18 2.37 1.87 1.22 3.64 

July 11.62 4.08 3.23 7.06 6.07 1.50 1.21 1.15 4.26 2.12 1.21 1.96 1.73 1.34 4.23 

August 7.90 4.43 2.53 4.43 4.23 1.49 1.17 1.06 4.06 2.06 1.25 1.73 1.50 1.17 3.26 

September 17.41 4.89 4.58 5.94 7.21 1.99 1.44 1.28 4.62 2.31 1.25 1.65 1.63 1.36 3.89 

October 14.29 3.42 1.90 3.68 4.49 1.36 1.10 1.58 3.60 2.19 1.36 1.80 1.39 1.25 2.92 

November 13.16 3.92 0.86 2.10 4.95 0.98 0.82 1.07 2.35 2.99 1.93 2.10 3.93 2.79 8.28 

December 2.28 2.80 0.74 1.33 2.82 1.15 1.04 1.65 1.21 2.16 0.72 0.34 0.35 0.37 0.28 

IM
ER

G
-L

at
e 

January 4.06 3.85 2.49 7.66 10.61 1.18 0.83 0.72 0.62 1.23 1.05 0.60 0.54 0.75 0.87 

February 3.90 4.57 1.69 5.17 6.89 1.03 0.82 0.83 2.97 1.19 0.65 0.94 1.11 0.74 1.56 

March 11.54 4.00 1.16 2.53 3.74 1.01 1.17 1.41 1.55 0.92 0.80 0.53 0.68 0.52 1.68 

April 8.12 4.26 2.16 3.40 3.80 1.75 1.53 1.21 2.95 1.50 0.98 1.18 1.07 1.04 1.73 

May 15.30 6.00 2.62 3.83 5.11 2.16 1.66 1.76 5.54 2.87 1.74 1.82 1.88 1.61 2.98 

June 13.60 4.26 3.18 4.33 5.66 1.65 1.36 1.18 6.31 2.67 1.25 2.48 1.91 1.34 3.87 

July 11.85 4.07 3.21 6.91 5.95 1.45 1.16 1.07 4.22 2.08 1.19 1.93 1.67 1.35 4.08 

August 7.94 4.56 2.49 4.25 4.18 1.49 1.19 1.07 4.02 2.10 1.28 1.74 1.47 1.20 3.18 

September 16.42 4.63 4.20 5.24 6.48 1.92 1.39 1.23 4.27 2.21 1.21 1.55 1.49 1.36 3.66 

October 14.77 3.42 1.87 3.41 4.43 1.31 1.03 1.46 3.60 2.10 1.33 1.78 1.31 1.23 2.71 

November 15.42 3.87 0.87 2.28 5.12 0.94 0.75 0.97 2.73 2.96 1.71 2.07 5.83 2.44 9.14 

December 3.14 3.22 0.83 1.46 3.44 1.11 0.98 1.51 1.28 2.09 0.73 0.31 0.32 0.35 0.26 

G
SM

aP
 

January 6.27 5.63 2.98 5.52 5.24 1.79 1.55 0.91 3.19 3.67 1.03 4.23 3.37 1.40 2.19 

February 6.46 3.55 2.45 4.68 5.40 0.86 0.75 0.77 2.46 1.76 0.69 1.58 1.43 1.26 2.03 

March 12.14 4.04 1.56 2.24 4.25 2.04 2.20 3.23 1.39 1.39 1.66 1.00 1.18 1.16 2.01 

April 6.59 5.48 2.48 3.16 3.90 3.29 2.95 2.91 3.81 2.42 1.82 1.90 1.92 1.39 3.04 

May 6.77 7.29 2.47 3.33 5.50 4.57 3.61 3.99 6.13 4.12 2.97 3.04 3.93 2.16 4.88 

June 6.86 6.28 3.11 4.11 6.78 3.49 3.29 3.03 7.29 4.36 2.49 4.22 3.63 2.15 6.05 

July 8.35 5.71 3.58 8.38 7.79 2.92 2.92 2.71 6.76 3.78 2.60 4.88 4.28 2.59 8.37 

August 3.80 5.36 2.79 4.25 3.60 2.37 2.14 1.90 6.17 3.26 1.96 3.51 3.24 1.71 5.58 

September 11.34 5.66 5.95 7.44 8.06 3.32 2.82 2.36 7.53 3.96 2.05 3.60 3.84 2.33 6.47 

October 6.18 5.72 2.95 4.49 5.36 2.64 2.65 3.53 5.58 4.40 3.14 4.06 3.03 2.45 5.40 

November 5.03 3.61 0.69 1.22 2.62 1.42 1.58 1.83 6.89 3.23 3.11 6.04 17.84 4.18 17.54 

December 3.70 5.04 2.45 2.36 4.40 1.71 1.56 3.26 5.67 3.20 4.66 2.14 1.39 3.33 1.39 
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