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Abstract: Mathematical algorithms relate satellite data of ocean color with the surface Chlorophyll-a
concentration (Chl-a), a proxy of phytoplankton biomass. These mathematical tools work best when
they are adapted to the unique bio-optical properties of a particular oceanic province. Ocean color
algorithms should also consider that there are significant differences between datasets derived from
different sensors. Common solutions are to provide different parameters for each sensor or use
merged satellite data. In this paper, we use satellite data from the Copernicus merged product suite
and in situ data from the southernmost part of the California Current System to test two widely used
global algorithms, OCx and CI, and a regional algorithm, CalCOFI2. The OCx algorithm yielded the
most favorable results. Consequently, we regionalized it and conducted further testing, leading to
significant improvements, especially in eutrophic and oligotrophic waters. The database was then
separated according to (a) dynamic boundaries in the area, (b) bio-optical properties, and (c) climatic
conditions (El Niño/La Niña). Regional algorithms were obtained and tested for each partition. The
Chl-a retrievals for each model were tested and compared. The best fit for the data was for the regional
algorithms that considered the climatic conditions (El Niño/La Niña). These results will allow for
the construction of consistent regionally adapted time series and, therefore, will demonstrate the
importance of El Niño/La Niña events on the bio-optical properties of the area.

Keywords: Chlorophyll-a; remote sensing; ocean color algorithms; El Niño–Southern Oscillation
(ENSO)

1. Introduction

Oceanic ecosystems, havens for vast biodiversity, essential for climate regulation, and
providers of diverse benefits to humanity, are intricate systems. To comprehend their
dynamics, we must monitor oceanographic variables consistently. Long time series with
adequate spatial resolution are required in order to understand these complex ecosystems.
While ship-based monitoring offers precise results, its infrequent coverage and high costs
limit its efficacy. Moored or remotely operated instruments are an alternative but they are
spatially restricted. Satellite-derived data, on the other hand, provide expansive temporal
coverage, albeit primarily for surface variables. Despite their coarser spatial resolution,
they encompass a vast majority of the ocean’s surface.

Satellite sensors, with their diverse optical bands, sensitivities, and overpass times [1],
produce data that can vary significantly between sensors [2,3]. Such variations arise from
differences in sensor characteristics and inherent uncertainties in calibration and even
with processing algorithms [4]. The parameters used in the algorithms are particular to
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each sensor [5]. Because of all of these facts, continuous climate data records cannot be
constructed [6].

To enhance the satellite data’s time coverage and, therefore, provide consistent time
series, the merging of data from different sensors becomes imperative [2,7,8]. Operational
satellite sensor constellations, such as Copernicus, provide ocean color data as elements of
an integrated, sustained observing system [8] that has better global coverage and allows for
the study of phenomena of a larger timescale than what an individual sensor provides [3].
The efficacy of such merged data must be regionally validated to ensure that the algorithms
used are optimal.

Bio-optical algorithms that relate ocean surface Chlorophyll-a concentration (Chl-a)
with satellite data are predominantly empirical, deriving their parameters from in situ
data [9]. Level-3 Chl-a images available on the NASA Ocean Color website employ an OCx
algorithm merged with the color index algorithm (CI) [10] with different parameters for
different sensors [5]. However, these global algorithms might not be regionally optimal [6].
For instance, some algorithms underestimate the values of Chl-a in the California Cur-
rent area [6,11], while others overestimate them in the Northern Bering Sea and Chukchi
Sea [12,13]. Thus, evaluating global algorithms’ performance at regional levels becomes
paramount, especially when using merged satellite data. Such evaluations pave the
way for robust, long-term data series, enhancing our understanding and management
of ocean ecosystems.

This research aims to evaluate various bio-optical algorithms for the southern part of
the California Current System (CCS), offshore from the Baja California peninsula, and, if
need be, to provide a regionally optimal working algorithm. The CCS, a region known
for its coastal upwelling, eddies, and fronts, has been under scrutiny since 1949 via the
California Cooperative Oceanic Fisheries Investigations (CalCOFI) program focusing on
the California coast, and since 1997 via the Mexican Research Program of the California
Current (IMECOCAL), which centers on the region off the coast of Baja California. This
region is a unique transitional zone where colder subarctic waters mingle with warmer
tropical and subtropical currents [14,15]. This confluence, along with factors like circulation
and water mass mixing, dictates the region’s biological and chemical processes [16,17].
In particular, the mixture and the upwelling of nutrients determine the characteristics of
the ecosystem [14,16–18]. Furthermore, interannual variations such as El Niño–Southern
Oscillation (ENSO) strongly influence this intricate transitional ecosystem.

Our study assesses the efficacy of two global algorithms (OCx, CI) and a CCS-specific
algorithm [9] using in situ Chlorophyll-a measurements off the Baja California Peninsula,
as well as Copernicus merged satellite data. The significance of this evaluation stems from
the fact that the performance of Chl-a algorithms for Copernicus data in this region remains
untested. Copernicus, with its merged sensor data, offers enhanced spatial and temporal
coverage, enabling a deeper dive into regional processes; for example, the longer-term
trends modulating atmosphere–ocean interactions in Eastern Boundary Upwelling Systems
triggered by decadal-scale fluctuations linked to climate forcing [19].

Post evaluation, we propose and test a regionalization tailored for this area and satellite
dataset. To refine our understanding, we segmented the dataset based on hydrographic
properties, bio-optical properties, and climatic events like ENSO. For each segment, specific
algorithms were introduced and evaluated. Our findings facilitate the selection of the most
representative model for this region using the Copernicus dataset, shedding light on the
region’s distinct bio-optical properties. A meticulously analyzed Chl-a retrieval from a
consistent dataset across instruments will bolster our understanding of biogeochemical
processes and the broader implications of climate change.

2. Methodology

In this section, we describe the methodology used to estimate Chl-a from satellite data
in the IMECOCAL region. We initiate with the application of a global algorithm to the
remotely sensed reflectance, Rrs(λ), in order to obtain the modeled Chlorophyll concentra-
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tion, mChl-a. Then, mChl-a is compared with the in situ Chlorophyll concentration data
(Chl-a) to ascertain the algorithm’s suitability for the region. Should discrepancies arise, we
propose a regional adaptation of the algorithm.

The methodology unfolds in three phases. First, we describe the data, both Rrs(λ) and
in situ Chl-a. Subsequently, we describe the algorithms that transform Rrs(λ) mChl-a. Lastly,
we make an assessment of the algorithm using a comparison between the mChl-a and the
in situ Chl-a data.

2.1. Remotely Sensed Reflectance Data

The satellite-derived surface reflectance data, Rrs(λ), was obtained from Copernicus
(https://www.copernicus.eu/ accessed on 11 September 2018). The Copernicus program
has the objective of offering merged data records from multiple sensors (SeaWiFS, MODIS,
MERIS, VIIRS-SNPP&JPSS1, and OLCI-S3A&S3B) using the highest quality merging pro-
cesses to date. Level 3 monthly averages of Rrs(λ) at 412 nm, 443 nm, 490 nm, 555 nm, and
670 nm wavebands were retrieved for the area (Figure 1), which ranges from 23◦N to 32◦N
in latitude and 120◦W to 112◦W in longitude. The composite images, with a resolution of
4 by 4 km, cover the period from January 1998 to May 2016, aligning with the collection
dates of the in situ Chl-a data.
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Figure 1. General grid of IMECOCAL stations where in situ samples were collected. The line number
increases from 100 toward the south on line 137. Numbers above transects indicate station numbers,
which increase with distance from the coast. The blue arrows indicate the main directions of the
California Current System in the region.

2.2. In Situ Chlorophyll a Concentration Data

The in situ Chl-a concentration data belongs to the database collected from the IME-
COCAL region (Figure 1) ranging from January 1998 to April 2016 (Table 1). To obtain the
in situ Chl-a, water was collected from the network of stations in 5 L Niskin bottles coupled
in a rosette at varying depths: 1 m, 10 m, 20 m, 50 m, 100 m, 150 m, and 200 m. Two liters
of water at each depth were filtered through Whatman GF/F filters at a pressure below
150 mm Hg. The filters were then placed in Histoprep tissue capsules (Fisherbrand, Fisher
Scientific, Pittsburg, PA, USA) and frozen in liquid nitrogen, pending analysis. Chlorophyll

https://www.copernicus.eu/
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extraction was performed using acetone at 90% and at 4 ◦C in darkness for 24 h as recom-
mended by Ref. [20]. Chl-a concentration (mg m−3) was determined by the fluorometric
method [21,22], with a Turner Designs A10 fluorimeter for the 1998 to 2005 samples and a
Turner Designs trilogy fluorimeter for 2005 to 2016. Both fluorimeters were calibrated with
pure Chl-a (Sigma-Aldrich, Darmstadt, Germany). A more comprehensive description of
the methodology can be found in Ref. [23]. For the purpose of this study, the mean in situ
Chl-a concentration between the surface and 10 m depth data was used.

Table 1. Dates of IMECOCAL campaigns where in situ Chl-a data were obtained are marked in blue.

Year January February March April May June July August September October November December
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016

2.3. Description of the Algorithms

Bio-optical algorithms are designed to estimate the near-surface Chlorophyll-a con-
centration from satellite data by using a functional relationship between remotely sensed
reflectance data, Rrs(λ), and modeled Chlorophyll-a concentration, mChl-a. These algo-
rithms, developed since the 1970s, predominantly use empirical equations [9]. Among the
plethora of available algorithms, the NASA Ocean Color website predominantly employs a
combination of the O´Reilly band ratio (OCx) and the Hu Color index algorithm (CI) [10].
In addition to these global algorithms, there are specialized algorithms tailored for the
California Current System, such as CalCOFI 2 [24]. This study will evaluate the efficacy of
all the aforementioned algorithms within the IMECOCAL region.

2.3.1. OCx Algorithm

The OCx algorithm is one of the primary methodologies we employed to derive mChl-a
from Rrs data. This algorithm is characterized by a polynomial relationship expressed as:

log10 (mChl − a) =a0 +
4

∑
i=1

aiFi, (1)

where the ai coefficients of this function are sensor-specific and based on global data [5,25],
and F is the logarithm of the blue/green ratio of remotely sensed reflectance (R), as
seen below:

F = log10[R] = log10

[
max(Rrs(443, 490))

Rrs(555)

]
, (2)

The OCx algorithm was assessed using the parameters associated with the different
sensors (SeaWiFs, MERIS, MODIS, and OCTS [25]). The optimal fit was for the SeaWiFs
parameters a0 = 0.3272, a1 = −2.9940, a2 = 2.7218, a3 = −1.2259, a4 = −0.5683.
Consequently, these parameters were selected for this study.
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2.3.2. CI algorithm

Another globally recognized algorithm explored in this study is the CI algorithm [10].
The CI algorithm employs a three-band model, utilizing reflectance values from the blue,
green, and red bands (443 nm, 555 nm, and 670 nm, respectively).

CI = Rrs(555)−
[

Rrs(443) +
555 − 443
670 − 443

(Rrs(670)− Rrs(443))
]

, (3)

This index is subsequently related to the mChl-a concentration.

log10 (mChl − a) =− 0.409 + 191.6590 CI (4)

The CI algorithm is employed for retrievals below 0.15 mg m−3, while the OCx
algorithm is used for values exceeding 0.2 mg m−3. For intermediate values, a weighted
combination of both algorithms is utilized [25].

2.3.3. CalCOFI 2 Algorithm

Given that our research data originate from the southern part of the CCS, we also
considered algorithms specifically tailored for the California Current region. The CalCOFI
2 band linear algorithm [24] determines mChl-a using the logarithm of the blue/green ratio
of reflectance, F (as defined in Equation (2)), in the following linear relationship:

log10 (mChl − a) =0.444F − 2.431 (5)

2.4. Model Validation

To ensure the accuracy of our mChl-a model, we compared it against in situ Chl-a
data. If discrepancies were observed, regional adjustments were proposed. For algorithm
validation, we employed several metrics: the coefficient of determination R2, the adjusted
coefficient of determination R2

a, the sum of squares error (SSE), and the root mean squared
logarithmic error (RMSLE). Additionally, the Akaike information criterion (AIC) was
computed to compare the modeled results.

AIC = −2ln(L) + 2k (6)

where L is the log-likelihood and k is the number of parameters in the model [26]. The
AIC, commonly used for model selection, compares the performance of a set of models
by estimating their quality based on error, data size, and the number of parameters. The
smaller the value of the AIC, the better the quality of the model.

3. Results
3.1. Performance of OCx, CI and CalCOFI 2 Algorithms

The performance of two global algorithms, OCx (Equation (12)) and CI (Equation (4)),
alongside the CCS-specific CalCOFI 2 (Equation (5)), was assessed for the IMECOCAL
region waters (Figure 2). All algorithms were applied to the reflectance data, yielding the
logarithm of the mChl-a concentration. The results, plotted against F (Equation (2)), are
shown in Figure 2. The CI algorithm exhibited greater dispersion in mChl-a estimates
compared to OCx and CalCOFI 2. This is attributed to the CI algorithm’s reliance on blue,
green, and red bands (Equation (3)), whereas OCx and CalCOFI 2 utilize only the blue and
green bands. This means that the CI algorithm has one more input variable than the others;
therefore, there is greater dispersion on the resulting mChl-a.

As waters adopt a greener hue, F values decrease as mChl-a values increase. Upon
applying the algorithms to the IMECOCAL data (Figure 2), the primary discrepancies
between the OCx and CI algorithms correspond to values of mChl-a higher than or equal
to 0.3 mg m−3 (log10(mChl-a) ∼ −0.5) and a ratio of blue/green reflectance of R ≤ 2.5
(F ≤ 0.4). For these reflectance ratios, OCx yields mChl-a values surpassing those of CI. The
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difference between CI and OCx retrievals for waters with large R values is small, yielding
very similar results for the area, though with slightly higher retrievals for the CI algorithm.
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Figure 2. Results from applying OCx (blue squares), CI (yellow circles), and CalCOFI2 (pink triangles)
algorithms to remote sensing reflectance data (F = log10[R], Equation (2)) off the coast of Baja
California compared to the log10 of in situ Chl-a data (gray dots).

The CalCOFI 2 algorithm consistently underestimated the Chlorophyll concentration
across the data spectrum. This underestimation increases with the value of the blue/green
reflectance ratio R. Therefore, for the IMECOCAL area, OCx is the algorithm that yields the
best results from a qualitative point of view. A comprehensive quantitative analysis will
be presented subsequently. Based on both the qualitative and quantitative scrutiny of the
algorithm retrievals, Ocx is used as the basic algorithm for further comparisons, discarding
the CI and CalCOFI 2 algorithms.

3.2. Performance of the Regionalized Algorithm versus Ocx

While the Ocx algorithm aligns well with the region (Figure 2), refining it to better
match the area’s unique characteristics can enhance its accuracy. A polynomial fit was thus
applied to model the functional relationship between F and the in situ Chl-a IMECOCAL
data. Polynomial functions were tried because any function can be reduced to a polynomial
through Taylor series. After evaluating polynomials from the first to the fifth order, the
following fourth-order function was selected based on quantitative metrics (R2, R2

a, SSE,
RMSLE, and AIC).

log10 (mChl − a) =0.1746 − 1.9952F + 1.9992F2 − 4.1958F3 + 3.3837F4 (7)

Figure 3 shows the contrast between the in situ Chl-a data and the mChl-a derived
from the OCx (global) and the regional algorithm (Equation (7)). The regional algorithm
mChl-a values closely mirror those of the global algorithm within the 1.5 < R < 4.5
(0.18 < F < 0.65) range of blue/green reflectance ratios. For values of R > 4.5 (F > 0.65),
the regional algorithm estimates are approximately 1.8 mg m−3 higher than the global
algorithm, which is even larger than the CI retrievals (Figure 2). Conversely, for ratios
R < 1.5 (F < 0.18), the regional algorithm yields lower mChl-a. Quantitatively, the regional
algorithm consistently outperforms OCx, as evidenced by the SSE values for different F
ranges. For the F < 0.18 area, the OCx sum of square error, SSE, is 24.4881

(
mg m−3)2, while
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for the regional algorithm, it is 13.7582
(
mg m−3)2. For the F > 0.6 region of the chart, the

SSE for OCx is 632.2217
(
mg m−3)2 and for the regional algorithm it is 500.5084

(
mg m−3)2.

This indicates that the regional algorithm yields better results than the OCx.
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3.3. Adjusting the Algorithm to Regional Properties
3.3.1. Dynamic Properties

In the vicinity of 32◦N, water from the California Current (CC) converges with an
intrusion of water from the Central North Pacific [27]; thus, the CC turns toward the shore
and part of it veers north to incorporate into the Southern California Eddy and the Southern
California Countercurrent, while the remainder continues southward along the Baja Cali-
fornia coast [28]. Therefore, this convergence forms a persistent feature called the Ensenada
Front, an ecological transition zone [27] marked by a strong gradient in Chlorophyll-a
concentration. In the Ensenada Front, the eutrophic waters of the CC end abruptly, possibly
due to the subduction of this pigment and nutrient-rich waters to the southwest [28]. The
Ensenada Front separates the CC region [28,29] into a northern mesotrophic area which
has been studied by the CalCOFI project, and a southern oligotrophic area studied by
the IMECOCAL project. As depicted in Figure 3, the CalCOFI 2 algorithm’s performance
underscores the need for distinct algorithms for these areas given the notably different
bio-optical properties.

The southernmost part of the CCS, adjacent to the Baja California Peninsula, serves as
a transitional zone where cold water from the subarctic meets warmer water coming from
the tropics and subtropics [14,15]. The location of this transitional zone fluctuates season-
ally [14], influencing the state of the oceanic ecosystem because of mixing circulation and
water masses, and convergence modulates the biological and chemical processes [16,17].
Previous studies [14,17] have identified two distinct provinces separated at around 28◦N
at Punta Eugenia (Figure 1). North of Punta Eugenia, there are subarctic waters through-
out most of the year, with year-round upwelling that is most intense during spring and
early summer [15]. In the southern region, coastal upwelling occurs mainly in spring and
summer, while the tropical and subtropical influences are limited to summer and fall. Also,
there are two cyclonic gyres north and south of Punta Eugenia [14]. Ref. [15] suggested
that the separation in provinces is due to the change of sign in the wind stress curl at that
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latitude. This interruption in circulation has consequences for the biological properties of
the area. Just as the Ensenada Front separates regions with markedly different bio-optical
properties, this other dynamic boundary could have the same effect. Therefore, the dataset
was separated to determine if these differences would yield an improvement in the mChl-a
retrievals. The southern province includes lines 123 to 137 and the northern province
includes lines 97 to 120, that is, north of Punta Eugenia (Figure 1). Despite expectations of
differences in the distribution or values of R or mChl-a, the data dispersion was similar
across both provinces, and the polynomials fitted were very similar to the regional algo-
rithm proposed. Variance in mChl-a over the northern province was 1.2583

(
mg m−3)2,

while in the southern province it was 1.1840
(
mg m−3)2, with no statistical difference

between the two areas.

3.3.2. Bio-Optical Properties

As with the latitudinal dynamic boundaries described before, coastal proximity is
anticipated to influence Chlorophyll-a concentration due to various factors, including the
continental outflow of inorganic matter carried hundreds of miles from the coast by Santa
Ana winds [30,31] and upper layer mixing and thermocline shoaling originated by coastal
upwelling, among others. These physical processes bring about nutrient enrichment in the
euphotic zone and the subsequent increase of Chl-a. In order to explore the influence of near-
shore coastal processes and given the correlation between station number and proximity
to the coast (Figure 1), the station number was plotted against the green/blue ratio, R−1

(Figure 4a). A discernible pattern emerged with green/blue ratios higher than or equal to 1
nearer to the coast. This is likely due to the fact that these stations are nutrient-enriched and
contain more Chl-a due to the photon absorption by phytoplanktonic pigments [32]. When
the green/blue ratio decreases, the mChl-a concentration also decreases. This offshore trend
suggests that the data could be categorized based on bio-optical properties (green/blue
reflectance ratio) in three categories: coastal waters with a green/blue ratio of reflectance
of 1 or higher, transitional waters with a green/blue ratio between 0.5 and 1, and oceanic
waters with a green/blue ratio of 0.5 and lower. Figure 4b shows the locations of the
stations according to these three categories.
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Polynomial algorithms were then fitted for each category (Figure 5), with the order
determined by quantitative analysis metrics (R2, R2

a, SSE, RMSLE, and AIC)

log10 (mChl − a) =0.2138 − 2.6481F (8)

log10 (mChl − a) =0.2501 − 1.7957F − 0.4325F2 (9)

log10 (mChl − a) =0.2786 − 2.1925F + 0.8474F2 (10)Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 16 
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to the log10 of in situ Chl-a data (red squares for coastal waters, green crosses for transitional waters,
and blue circles for oceanic waters).

The results of these algorithms, depicted in Figure 5, align with the general data
trend and closely resemble the regional algorithm (lower mChl-a prediction than OCx for
coastal waters (small R, large R−1) and higher mChl-a predictions than OCx for oceanic
waters (small R−1). These algorithms consider the bio-optical properties of each area;
coastal stations have a greater abundance of microphytoplankton (diatoms, dinoflagellates,
silicoflagellates) associated with a larger phytoplanktonic absorption coefficient, whereas,
in oceanic waters, smaller phytoplanktonic cells are found (nano and picophytoplankton)
with smaller absorption coefficients [33]. They also offer the advantage of simpler inversion
and reduced overfitting risk. The regional algorithm, on the other hand, provides a unified
function for the entire R range.

3.3.3. Climatic Events

In addition to the dynamic and bio-optical properties, it is crucial to consider the
impact of large-scale climatic events on the region’s properties. Notably, discrepancies
have been observed during ENSO events in the CCS [29]. The shifting boundaries between
subarctic waters and tropical/subtropical waters during cold and warm events have been
identified [17]. Such shifts, generally associated with changes in circulation and biological
and chemical characteristics, necessitate an analysis of in situ data variations during
these events.

To classify the data, three distinct indexes were employed: the Southern Oscillation
Index (SOI, https://www.ncdc.noaa.gov/ accessed on 12 December 2018), the Oceanic

https://www.ncdc.noaa.gov/
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Niño Index (ONI, https://origin.cpc.ncep.noaa.gov/ accessed on 12 December 2018), and
the multivariate ENSO index (MEI, https://www.esrl.noaa.gov/ accessed on 12 December
2018). Data were categorized as El Niño or La Niña based on the classification provided by
any of the three indexes for the respective month and year. If none of the indexes indicated
a cold or warm event for that period, the data were labeled as normal. Subsequently, a
polynomial function was fitted for each condition, as depicted in Figure 6.
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Figure 6. Algorithm retrievals for data classified as (a) La Niña, (b) El Niño, (c) or normal compared
to the log10 of in situ Chl-a data.

In waters off the Baja California Peninsula, coastal upwelling determines the vari-
ability of the phytoplankton community [34]. Therefore, when there is a disruption in
these patterns, i.e., during El Niño/La Niña events, biomass and community composition
experience a shift. A warm El Niño event is usually associated with weaker alongshore
northwesterly winds, deepening of the seasonal thermocline, and the near-shore poleward
transport of warmer, nutrient-depleted water. Therefore, a decrease in diatom abundance
and an increase in the small cell communities is expected. A cold La Niña event brings
stronger winds and colder, nutrient-rich water, which tend to favor diatom growth [35,36].

The extent of eutrophic and mesotrophic areas of the California Current during ENSO
events has been analyzed, determining that there are important differences between the
waters off of Baja California to those off the coast of California [29]. Furthermore, a reduc-
tion of the eutrophic and mesotrophic areas off the Southern California Bight associated
with a decrease in upwelling was noted [29], along with an increase in the extent of the
mesotrophic areas off of Baja California extending up to 700 km offshore, thus unlikely be-
ing due to upwelling but possibly to cyanobacteria. During the El Niño event of 1997–1998,
Ref. [37] noted that in the region south of Punta Eugenia, tropical and subtropical waters
dominated the region, while north of Punta Eugenia, there was a coastal poleward flow
that displaced the core of the California Current offshore. Due to the large variability of
this transitional region, both at the seasonal and interannual scales, one would not expect a
global algorithm to adequately comprise the processes within this ecosystem.

The analysis for interannual warm and cold events in Figure 6 revealed that most
data have high R values and low Chlorophyll-a during El Niño. Therefore, during El Niño
events, waters tend to be more oligotrophic, showing the expected shift towards smaller
cells [36]. This is because warmer waters make both thermocline and nutricline deeper,
diminishing nutrient availability in the euphotic zone [38]. Also, different behaviors can be
seen with the simplest algorithm for the normal (Equation (11)) and La Niña (Equation (12))
data and more complex for El Niño events (Equation (13)). The algorithms developed for
different climatic conditions, as detailed in Equations (11)–(13), were selected based on
quantitative analysis metrics (R2, R2

a, SSE, RMSLE, and AIC; see Table 2 below):

log10 (mChl − a) =0.2962 − 2.0437F + 0.4425F2 (11)

log10 (mChl − a) =0.2337 − 2.1695F + 1.0492F2 (12)

https://origin.cpc.ncep.noaa.gov/
https://www.esrl.noaa.gov/
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log10 (mChl − a) =0.3141 − 2.4323F + 2.2698F2 − 3.1653F3 + 2.0039F4 (13)

Table 2. The coefficient of determination (R2), the adjusted coefficient of determination
(

R2
a
)
, the sum

of square error (SSE), the root mean squared logarithmic error (RMSLE), and the Akaike information
criterion (AIC) for each of the tested and proposed algorithms. The R2 and R2

a marked with an
asterisk were outside of the expected range of [0, 1].

Error CalCOFI 2 CI OCx Regional Bio-Optical
Properties

Climatic
Condition

R2 0 * 0.2640 0.4054 0.4441 0.4473 0.4585
R2

a 0 * 0.2637 0.4046 0.4434 0.4465 0.4579
SSE 156,141.81 450.60 364.03 340.33 338.39 331.52

RMSLE 7.1715 0.3853 0.3463 0.3348 0.3339 0.3304
AIC 25,949.82 8195.45 7553.75 7349.37 7332.03 7267.75

3.4. Quantitative Comparison of Algorithms

The performance of each algorithm was evaluated using various error metrics, as
outlined in Equations (6)–(8), with the results presented in Table 2. The CalCOFI 2 algorithm
exhibited the highest error, confirming its unsuitability for waters off of Baja California. In
contrast, the OCx algorithm outperformed the CI algorithm, as evidenced by the SSE values.
The algorithm considering climatic conditions demonstrated the most promising results,
with the lowest values for SSE, RMSLE, and AIC. The difference between the coefficient of
determination and its adjusted value depends on the degrees of freedom and is reflected in
the third decimal number, indicating that the differences are not important and, therefore,
can be considered the same. The RMSLE and the SSE are the lowest for the algorithm
with the climatic condition. The regional algorithm, while being an improvement over the
global algorithms tested, was further enhanced when the dataset was segmented based on
bio-optical properties and climatic conditions.

4. Discussion

The applicability of global algorithms to the waters off of the Baja California Penin-
sula was assessed. Both CI and OCx algorithms exhibit similarities for waters with
mChl-a values less than 0.3 mg m−3 (log10(mChl-a) ∼ −0.5) and a blue/green reflectance
ratio of R ≥ 2.5 (F ≥ 0.4), as depicted in Figure 2. CI is deemed superior for re-
trievals below 0.15 mg m−3, while OCx is more effective for higher mChl-a concentra-
tions (Chl-a ≥ 0.2 mg m−3) [25]. The CI algorithm includes information on reflectance at
670 nm [10], and therefore, the retrieved Chl-a values show more dispersion than the OCx.
Ref. [39] stated that regionalizing the algorithms diminishes the bias, but uncertainties are
still important because of the natural variation of the optical properties of phytoplankton,
the presence of other optically active components, and the atmospheric correction. These
authors found that removing the 443 nm band improved the performance of the Ocx algo-
rithm. However, given that the natural data dispersion surpasses the difference between CI
and OCx for mChl-a < 0.3 mg m−3, OCx was deemed more suitable for the region, leading
to its selection for regionalization.

The proposed regional algorithm has a slightly better fit for the area as compared to
Ocx (Table 2). However, the metrics shown in Table 2 analyze the whole of the algorithm.
As shown in Figure 3, the divergence between the algorithms is in the extreme conditions of
oligotrophic (high R or F, low mChl-a) and eutrophic waters (low R or F, high mChl-a). For
these conditions, the regional algorithm outperforms the OCx, yielding results with a lower
specific SSE for the oligotrophic and eutrophic areas. This discrepancy suggests that the
IMECOCAL region’s oligotrophic waters possess a higher pigment concentration than the
global database used to derive OCx parameters. As Ref. [28] posits, the presence of small
cells (cyanobacteria), typical of tropical and subtropical waters in warm waters off of the
Baja California Peninsula, could explain this variation. While other factors like particulate
matter or continental debris might influence this difference, their sporadic occurrence
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means their impact is limited to specific situations and data points. As per Ref. [5], OCx
is effective in eutrophic areas due to its higher mChl-a output. However, the IMECOCAL
region’s data indicates lower mChl-a values for smaller R values, leading the regional
algorithm to produce reduced mChl-a results. This suggests that the eutrophic zone in the
IMECOCAL region has a lower pigment concentration than the global database.

The regional algorithm, tailored to the unique oceanographical and optical properties
of the area, offers improved predictions for both eutrophic and oligotrophic zones. The seg-
mentation of the database resulted in models with minimal complexity (Equations (10)–(12)).
Notably, a linear model was the best fit for coastal waters (Figure 6). The most optimal
overall fit was achieved when the database was segmented based on climatic conditions.
The El Niño condition presents a more intricate data distribution compared to La Niña
and normal conditions. During El Niño events, Chlorophyll-a was lower than during the
transitional and La Niña conditions. When analyzing the interannual variations associated
with ENSO, ref. [40] found an increase in the mesotrophic area in the IMECOCAL region
during these warm events. This coincides with the fact that for the IMECOCAL area, the
dispersion in R values is less during an El Niño event. Ref. [41] found that during the cold
event of 2008, the productivity rates increased. This coincides with the high Chlorophyll-a
observed in the IMECOCAL data during La Niña and normal conditions during El Niño.
During La Niña events, the colder waters and intensified upwelling [17] enhance nutrient
availability for phytoplankton, thereby elevating mChl-a levels, predominantly in coastal
and transitional stations. Such events alter the region’s physical, biological, and chemical
attributes, promoting microphytoplankton growth. The consequential shift in the phyto-
plankton community, as reflected in the algorithms, underscores the climatic conditions’
significance for the region.

5. Conclusions

The Chlorophyll-a satellite images are one of the most used products in oceanogra-
phy [39]. However, the global algorithms applied are biased because their parameters are
obtained with data from all around the globe and for a particular sensor. Therefore, it is
important to assess their efficiency in order to determine if they are regionally appropri-
ate before use [39]. Off the coast of California, the global algorithms underestimate the
Chlorophyll-a concentration by a factor of 5 [2,6]. However, for the IMECOCAL area, these
algorithms retrieved mChl-a of the same order of magnitude as the in situ Chl-a data. The
CalCOFI 2 algorithm, on the contrary, drastically underestimates the in situ Chl-a concen-
tration in the IMECOCAL area, suggesting that there are significantly different bio-optical
properties between these sections of the CC. The fact that the Ensenada Front works as a
dynamic boundary that greatly alters the bio-optical properties in different sections of the
CCS suggests that the boundary at around 28◦ N [14] that reduces ecological connectivity
would do the same. Nonetheless, the data are not significantly different, showing that
this dynamic boundary does not have a perceptible effect on the bio-optical properties of
seawater in the area. The differences observed in the algorithms could be due not only
to the bio-optical differences in the data per se but also to the differences in the merged
satellite data. Therefore, it is important to establish accurate parameters for the specific
merged satellite data.

The regional algorithm differs from the global OCx mainly in oligotrophic waters, with
higher Chlorophyll-a values that could be due to the presence of small cells characteristic
of tropical and subtropical waters. The database was then classified according to the
green/blue ratio of reflectance (R−1), which allowed for a distinction between coastal,
transitional, and oceanic waters, each with a polynomial function fitted to it. Though
the differences between the regional algorithm and this set of algorithms are small, the
classification in coastal, transitional, and oceanic waters allows for a better parameterization
for different properties compared with the combined use of CI and OCx by NASA. The
weighted approach used for CI and OCx is based on the Chl-a value, which requires
retrieval for the determination of an adequate algorithm. The use of this set allows for
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a distinction of properties based on a value of R, that is, the classification of the data is
performed before the retrieval.

The evaluation of the algorithms using merged satellite data provides a deeper under-
standing of the area and a better option for constructing long time series that can aid in the
comprehension of the processes in the area. With the Copernicus satellite data, the climatic
conditions algorithm allows for the construction of a more consistent time series for the
IMECOCAL region.
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