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Abstract: Hyperspectral images (HSIs) provide valuable spatial–spectral information for ground
analysis. However, in few-shot (FS) scenarios, the limited availability of training samples poses
significant challenges in capturing the sample distribution under diverse environmental conditions.
Semi-supervised learning has shown promise in exploring the distribution of unlabeled samples
through pseudo-labels. Nonetheless, FS HSI classification encounters the issue of high intra-class
spectral variability and inter-class spectral similarity, which often lead to the diffusion of unreliable
pseudo-labels during the iterative process. In this paper, we propose a simple yet effective progressive
pseudo-label selection strategy that leverages the spatial–spectral consistency of HSI pixel samples.
By leveraging spatially aligned ground materials as connected regions with the same semantic and
similar spectrum, pseudo-labeled samples were selected based on round-wise confidence scores.
Samples within both spatially and semantically connected regions of FS samples were assigned
pseudo-labels and joined subsequent training rounds. Moreover, considering the spatial positions of
FS samples that may appear in diverse patterns, to fully utilize unlabeled samples that fall outside the
neighborhood of FS samples but still belong to certain connected regions, we designed a matching
active learning approach for expert annotation based on the temporal confidence difference. We
identified samples with the highest training value in specific regions, utilizing the consistency between
predictive labels and expert labels to decide whether to include the region or the sample itself in the
subsequent semi-supervised iteration. Experiments on both classic and more recent HSI datasets
demonstrated that the proposed base model achieved SOTA performance even with extremely rare
labeled samples. Moreover, the extended version with active learning further enhances performance
by involving limited additional annotation.

Keywords: hyperspectral image classification; semi-supervised learning; pseudo-label selection;
active learning

1. Introduction

Hyperspectral imaging technology has found extensive applications in various do-
mains, including geological mapping, environmental monitoring, vegetation analysis,
atmospheric characterization, biochemical detection, and disaster assessment. The pixel-
level classification of hyperspectral images (HSIs) based on spectral information, known as
HSI classification, is a prominent research focus due to its significant academic, civilian,
and military value. Despite the remarkable achievements of deep learning-based HSI
classification methods in recent years [1–5], it is evident that these methods often rely
on a large number of high-quality labeled samples, which necessitates time-consuming
and labor-intensive real-time investigations, along with expert interpretation of pixel-level
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images. Therefore, conducting research on HSI classification in few-shot (FS) scenarios
holds immense practical significance for advancing and applying hyperspectral technology.

FS HSI classification poses challenges related to the curse of dimensionality (Hughes
phenomenon), scarcity of training samples, and domain adaptation, leading to subpar
performance. To address these challenges, researchers have explored various data pre-
processing techniques. One common approach involves data augmentation methods such
as spectral data enhancement [6], pixel-block pair augmentation [7], random occlusion [8],
and expanded pixel neighborhood information [9]. These techniques aim to increase the
quantity and diversity of training samples. However, it is important to note that, in FS
scenarios, these methods often result in a significant increase in computational complexity
while providing only marginal improvements in classification performance.

Apart from pre-processing, existing works also focus on addressing FS classification
issues through the design of training strategies, which can be roughly categorized as
strict Few-Shot Learning (FSL) [10,11], semi-supervised learning (SSL) [12,13], and active
learning (AL) [14,15]. FSL models often rely on meta-learning training strategies that
utilize a limited number of labeled samples and an auxiliary set to construct multiple
meta-learning tasks [16], enabling the acquisition of an initialization model with strong
generalization capabilities. These models typically extract spatial–spectral features as a
first step, followed by classification using methods such as measuring cosine similarities
between queries and prototypes or predicting pairwise relation scores [17]. In contrast,
SSL methods consider a large number of unlabeled samples in conjunction with extremely
scarce labeled samples to guide model construction. Representative approaches include
self-training via pseudo-labeling [18], the combination of deep clustering [19,20], and
label propagation through graph networks [21], among others. Semi-supervised methods
demonstrate particular effectiveness when only a few labeled samples are available, often
outperforming their FS-supervised counterparts. Unlike FSL and SSL approaches, AL
models selectively perform expert labeling by assessing the information of unlabeled
samples. These models evaluate the unlabeled samples using techniques such as the large
margin theorem [22], posterior probability [23], and committee-based methods [24], etc.
AL techniques offer a different perspective by actively involving experts in the labeling
process to enhance classification performance.

Given its generalization ability and the natural usage of unlabeled samples, we explore
the FS HSI classification under a semi-supervised setting, and establish a self-training-based
model. Though existing training strategies serve to mitigate the issue of the limited general-
ization of FS samples and enhance classification accuracy to a certain extent, most of them
primarily stem from techniques developed for generic optical images, often overlooking
the unique characteristics of HSIs. The high-dimensional yet redundant spectral channels,
and anabatic high intra-class spectral and inter-class spectral similarity largely affect the
process of pseudo-labeling with FS-labeled samples, which induces the risk of diffusing
unreliable pseudo-labels during the iterative process.

To address the aforementioned issues, we first performed a dimension reduction in
conjunction with a hybrid feature extraction backbone. This integration combines convolu-
tional operations and self-attention mechanisms, enabling the comprehensive extraction
of spatial, spectral, and global contextual correlations, facilitating multilevel data com-
prehension. Taking into account the abundant information from unlabeled samples in
HSI, we developed a simple yet effective pseudo-label selection strategy that leverages
the nuanced spatial–spectral consistency of HSI, exploring valuable unlabeled samples
within both semantically and spatially connected regions, distinguishing our model from
previous semi-supervised approaches. As illustrated in Figure 1, from the aerial per-
spective of the HSI, ground materials are represented as high-dimensional pixels, with
materials of the same type naturally appearing as spatially connected regions with similar
spectral distributions.
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Figure 1. The The spatial–spectral consistency on Indian Pines dataset. Two regions with different
types of ground materials (soybean-notill and soybean-clean) are noted in blue and yellow, and the
spectral intensity of three pixels are sampled from them. The spatially adjacent pixels with the same
class label are present in similar spectral distributions (blue and red), while the distant black pixel
with another label is much different. This figure is better viewed in color. (a) Sampling regions,
(b) Spectral curves of sampled samples.

Leveraging the robust feature extractor that integrates the capabilities of convolu-
tional networks and vision transformers, our proposed approach selects pseudo-labeled
samples based on connected regions derived from iterative confidence scores. The overall
framework is illustrated in Figure 2. Initially, using the available FS training samples, we
identify unlabeled samples with confident predictions and link them to connected regions
determined from confidence scores. Unlabeled samples situated in the same semantic
regions as the FS samples are deemed reliable and assigned pseudo-labels for inclusion in
subsequent training rounds, thus selecting pseudo-labeled samples in a stepwise manner.
This self-training process iterates to enhance the model’s performance. Additionally, consid-
ering the varied spatial positions of FS training samples, to fully utilize unlabeled samples
outside the semantic neighborhood of FS samples but still within confidently connected
regions, we identify the highest value training samples in a given region by evaluating
their confidence variations across training rounds and request expert annotations. The
agreement between predicted and expert labels determines whether to include the region
or the sample itself in the subsequent round. This approach facilitates the global expansion
of pseudo-labeled samples, enriching the feature distribution and providing additional
benefits when integrated with pseudo-labeling techniques.
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Figure 2. The overall pseudo-labeling framework. FS training samples are passed through the hybrid
classification model to obtain initial predictions. Samples from the connected regions that contain FS
samples are selected for the next round of training based on the proposed refined pseudo-labeling.
Conversely, active learning is employed to leverage the connected regions without FS samples,
determining whether to include the entire region or specific samples for the next iteration.

The main contributions can be summarized as follows:
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• We identified the key challenges in FS HSI classification and performed a compre-
hensive analysis of the spatial–spectral consistency presented in HSI data. We thus
designed an efficient pseudo-label selection strategy that fully utilizes this property
and incorporates the feature distribution of abundant unlabeled samples.

• In addition to the proposed pseudo-labeling model, we propose an AL approach
for expert annotation selection based on the temporal spatial–spectral confidence
difference to mitigate the randomness of initial FS training samples, thereby expanding
the utilization of unlabeled samples.

• The extensive experimental results demonstrate that our base model manages to
achieve state-of-the-art performance without any bells and whistles, even when pro-
vided with extremely limited labeled samples. Furthermore, the incorporation of the
AL approach enhances performance at the cost of limited expert annotations.

2. Related Work
2.1. Semi-Supervised Learning Methods

In the field of HSI classification, deep learning models such as 2D-CNN [25], 3D-
CNN [26], and Long Short-Term Memory Network (LSTM) [27] frequently demonstrate
limited classification performance when labeled samples are scarce. Consequently, re-
searchers have turned to semi-supervised learning methods to improve the classification
performance of these models by utilizing both labeled and unlabeled samples. Commonly
employed semi-supervised learning methods in HSI classification encompass self-training
models [28], generative models [29], and graph models [30–33].

For instance, Chen et al. [34] introduced a semi-supervised approach to alleviate over-
fitting by employing the soft pseudo-labeling of auxiliary unlabeled samples. This method
aids in training the feature extractor with a limited number of labeled samples. Each labeled
sample serves as a reference, and soft pseudo-labels are assigned by computing the distance
between the unlabeled samples and the labeled sample. Similarly, Cui et al. [35] proposed a
sparse representation-based (SRSPL) pseudo-labeling method for HSI classification. This
method utilizes sparse representation to select the most reliable pseudo-labeled samples
for extending the training set. Yue et al. [36] designed a joint loss function that simultane-
ously considers label loss for labeled samples, soft label loss for unlabeled samples, and
self-supervised loss functions. Zhao et al. [12] introduced a novel hyperspectral-specific
augmentation module to generate sample pairs. They employed self-supervised models
to extract features from these pairs through contrastive learning. Feng et al. [13] proposed
constructing specific branches consisting of multiple sets of generators and discriminators
based on clustering partitions. This adaptation helps mitigate the class and mode collapse
problem when dealing with a large number of samples. Tong et al. [37] proposed a graph
convolution model that utilizes attention mechanism weights to exploit the correlation
among unlabeled samples for category inference. Building upon conventional classification
networks, Li et al. [38] incorporated the constraints of self-supervision through a metric
learning branch, utilizing compositional sample pairs.

2.2. Active Learning Methods

Active learning (AL) is a sample partitioning method that iteratively selects high-
value annotated samples using a sampling strategy to identify samples with significant
information content in each round, which are then provided to experts for annotation.
Unlike traditional machine learning’s sample selection strategy, AL selectively chooses
samples from a candidate sample set based on their inherent properties that align with the
specific sampling strategy.

With the advancement of deep learning, the integration of active learning (AL) with
deep neural networks has become increasingly prominent. In HSI processing, Liu et al. [39]
addressed the spatial characteristics of HSI by integrating multi-scale residual networks as
classifiers into AL frameworks. This approach fully leverages the contextual features of the
spatial dimension of HSI and devises a sampling strategy based on BreakingTies, reducing
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the sample requirement to one-third of the original. YANG et al. [40] proposed a multi-path
residual pairwise Siamese network integrated with AL. Initially, they developed a Siamese
network with a relatively low requirement for sample data and integrated the AL strategy
to select more representative samples, thereby enhancing the discriminative ability of the
model. Additionally, et al. [41] established a novel active inference transfer convolutional
fusion network (AI-TFNet) for HSI classification. Furthermore, they constructed an active
inference (AI) pseudo-label propagation algorithm for spatially chi-squared samples by
leveraging the chi-squared pre-segmentation of TFNet. Ding et al. [15] proposed a heuristic
AL approach based on clustering constraints to select informative and diverse samples for
expert labeling. In contrast, Liu et al. [42] introduced the concept of feature-driven AL,
wherein sample selection is conducted in an optimized feature space, and its efficacy is
evaluated based on the overall probability of error.

3. Proposed Method
3.1. Generic Pseudo-Labeling FS HSI Classification and Limitations

Building upon prior few-shot HSI classification works [21], we established notations
for this task. We defined the few-shot labeled training set DL, which consists of samples
from C classes; K is the number of samples in each class. In the stage of prediction, given
a sample from the unlabeled set DQ, the objective is to assign the sample to one of the C
classes. The entire dataset, representing the complete HSI, is denoted as follows:

D =
{
DL =

{
(xl , yl)

K×C
l=1

}
∪
{
DQ =

{
xq
}N

q=1

}}
, (1)

yl ∈ 1, 2, . . . , C, N ≫ K × C

Here, xl ∈ Rd∗1 denotes the l-th d-dimensional FS-labeled sample, yl denotes its corre-
sponding class label, xq ∈ Rd∗1 is the q-th unlabeled sample, and N represents the number
of unlabeled samples. It is important to note that the training and testing sets share the
same label space. For FS HSI classification, the labeled samples DL were used for model
training. In the testing phase, all the remaining unlabeled samples DQ were treated as the
whole test set.

Pseudo-labeling is a classic semi-supervised framework used to improve the perfor-
mance of supervised learning models by leveraging unlabeled data. The process involves
training an initial model using a limited set of labeled data, which is then used to generate
pseudo-labels for the unlabeled dataset based on the model’s predictions. In line with this
concept, given an unlabeled sample xq, the pseudo-label ŷq can be obtained as follows:

ŷq = argmaxc fθ(xq)c (2)

where fθ() represents the current model, fθ(xq) is a vector of category probabilities, where
the length of the vector is the number of classes in the dataset, and each value in the vector
represents the probability value that the sample belongs to that class, and fθ(xq)c is the
predicted probability of sample xq belonging to class C. The argmaxc fθ(xq)c denotes the
class corresponding to the number with the largest value in the probability vector as the
pseudo-label for that sample. The labeled data are augmented with the pseudo-labeled
data to create an enlarged training set. This augmented dataset is then used to retrain the
model, incorporating the new information from the pseudo-labeled samples. The process of
pseudo-label generation and model retraining is iteratively repeated, refining the model’s
predictions on the unlabeled data and potentially improving its overall performance.

While generic pseudo-labeling has shown promising improvements in classification
performance when the amount of labeled data is limited, directly applying it to FS HSI
classification introduces specific challenges. FS HSI classification is often characterized by
the severe Hughes phenomenon, sample scarcity, and domain adaptation. These challenges
may increase the risks of diffusing unreliable pseudo-labels during the rounding process.
We evaluated the percentage of wrongly annotated pseudo-labels by comparing them
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against the ground-truth labels. The results of different training rounds are illustrated
in Figure 3. It is evident that, without the careful selection of reliable pseudo-labels, it
is difficult to reduce the error rate as the rounds increase. However, with our proposed
progressive pseudo-label selection strategy, the accuracy is significantly improved. In the
following sections, we provide detailed explanations of our proposed method.
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Figure 3. The error rates of wrong pseudo-labels during different rounds with two sampling strategies:
(a) Indian Pines, (b) Pavia University.

3.2. Progressive Pseudo-Label Selection Guided by Spatial–Spectral Consistency

The key to enhancing the performance of the pseudo-labeling process lies in the
selection of the most reliable samples for subsequent training. In order to tackle this
challenge, we proposed leveraging the inherent spatial–spectral consistency found in HSI
to allocate the pseudo-labels. In HSI, ground materials of the same type often exhibit
spatial proximity, appearing as pixels within a certain neighborhood range with similar
spectral signatures. Building on this observation, we introduced a hybrid classification
framework; this framework enables the extraction of fine-grained spatial–spectral features
from pixel patches centered around the FS training samples. The original training samples
are shown in Figure 4a; they were used to train the framework. At the initial training
rounds, after obtaining predicted confidence scores from the test patches, we generated
two maps, namely the score map P(i, j) Figure 4b and the label map Ŷ(i, j) Figure 4c, which
possess the same shape [H, W] as the original HSI. In these maps, each spatial position (i, j)
corresponds to the score pij and the predicted label ŷij of the test patch centered around the
corresponding pixel xij, respectively. The FS training samples were naturally included in
the next training round. To filter out unreliable predictions, we masked out positions with
confidence scores lower than the threshold τ using the following equations:

pij = max( f t
θ(xij)) (3)

ŷij = argmaxc f t
θ(xij)c (4)

P(i, j) =
{

pij; pij > τ

0; Otherwise
(5)

Ŷ(i, j) =


ŷij; pij > τ

yij; xij ∈ DL
−1; Otherwise

(6)

Here, for the determination of the threshold τ, we made a reasonable choice through the
following experiments. yij is the ground-truth label for xij sample; i ∈ [1, H] and j ∈ [1, W].
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For simplicity, we omitted the spectral dimension of the sample xij. The index t represents
the current training round.

(a) (b) (c) (d)

Figure 4. Progressive pseudo-label selection strategy. (a) Original few-shot training samples. (b) Pre-
dicted confidence score map. (c) Predicted label map. (d) Selected pseudo-label map. The brownish-
red color in (b) represents higher confidence scores. Different colors in (c,d) represent different classes.

Considering the regional distribution of HSI pixels, as depicted in Figure 1, there
exists a substantial likelihood that ground materials within a specific range of spatial
neighborhoods belong to the same class. Initially, each pixel in the HSI is transformed
into spatial–spectral features by the classification network in patch form. We denote the
category information of the pixel in terms of confidence score, wherein pixels with low
confidence, indicating difficulty in classification, are filtered out using a thresholding
approach. Subsequently, the resulting predicted label map Ŷ(i, j) naturally comprises
multiple connected regions, signifying similarity in the predicted label of pixels within
these regions. Among them, we prioritize those encompassing FS training samples as the
most dependable. This preference is attributed to the spatial proximity of the samples
within these regions to the training samples, consistent with the inherent distribution of the
corresponding ground materials. Finally, we utilize these regions to select samples whose
predicted labels align with those of the training samples, designating them as pseudo-
labeled samples, as shown in Figure 4d. These pseudo-labeled samples are then integrated
into subsequent training iterations using the following formula:

G = {gi; if xl ∈ gi} (7)

D̂Lt+1
= D̂Lt ∪ {xq; if xq ∈ G} (8)

Here, gi represents the i-th connected region, identified using an eight-neighborhood
approach. The set G denotes the selected regions that contain FS samples. D̂Lt+1

represents
the training set that incorporates the newly added pseudo-labels for the (t + 1)-th iteration.

3.3. Incorporation of Active Learning

The semi-supervised sample selection strategy described above shows good results
in exploiting the potential of unlabeled samples within the neighborhood of FS training
samples. However, the limitation of this approach is that unlabeled samples can only be
utilized based on the initial position of the FS training samples. To overcome this limitation,
we designed a new active learning (AL) approach by additionally selecting some highly
informative test samples for expert annotation within the connected regions that do not
contain the original FS training samples, as depicted in Figure 5. This compensates for the
shortcomings of the previous strategy, i.e., ignoring a certain number of high-confidence
test samples in subsequent rounds.

In AL, the choice of a query strategy is pivotal. Our objective was to identify and
select samples that provided the highest value for model training. As the connected regions
no longer have the support of FS samples with ground-truth labels, it became crucial to
maximize the utilization of these regions. Hence, our aim was to find test samples that,
through expert annotations, could absorb as many confident pseudo-labels as possible
for the next round. To achieve this, we adopted a two-fold perspective in identifying
the most valuable queries: (1) As the first step of Figure 5, we prioritize regions that
contain a significant number of confident predictions. These regions are more likely to
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provide reliable information for further training. (2) Within these regions, we identify the
sample with the lowest confidence by the maximum confidence difference of the score
maps of neighboring rounds and compare their predictions with the expert labels. This
comparison helps us determine whether the particular sample or the entire region should
be included in subsequent training. By employing this approach, we ensured that informed
decisions were made regarding the inclusion of specific samples and regions in the training
process. This optimization of the selection strategy enhanced the overall performance of
the classification task.

Figure 5. The proposed active learning framework.

More specifically, firstly, we consider the presence of outliers in the remaining con-
nected regions that deviate significantly from the norm. These outliers may have limited
suitability for sample selection or differentiation. In order to address this issue, we intro-
duce a sample size threshold Nτ to identify and discard a small number of outliers, if any,
from the remaining connected regions. This threshold ensures that the selection process
focuses on the majority of samples while disregarding a few potential outliers:

Ĝ = {gi; if xl /∈ gi&|gi| > Nτ} (9)

Here, Ĝ denotes the set of regions that satisfy our selection criteria, and |gi| is the number
of samples in region gi.

Next, we proceed to identify a predicted sample in each region gi in Ĝ. Firstly, we
select the bottom n confident samples from gi. For each selected sample, we calculate the
difference between its confidence score from the current and the previous iteration. The
sample with the largest difference indicates the most informative and valuable candidate
for expert annotation. We consult the expert to obtain the ground-truth label for this sample.
If the predicted label aligns with the expert one, we incorporate all samples within this
region for the subsequent round of training. Otherwise, we include only the selected
sample itself. This process can be expressed as follows:

v = argmaxj|p
t(xj)− pt−1(xj)|j; ∀xj ∈ Btm(gi) (10)

ŷv = argmaxc f t
θ(xv)c (11)

D̂Lt+1
=

{
D̂Lt ∪ {gi}; if ŷv==yv

D̂Lt ∪ {xv}; Otherwise
(12)
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Here, xv represents the unlabeled sample that undergoes the maximum change between
two consecutive training rounds. Btm(gi) denotes the set of bottom n confident samples
within gi. ŷv represents the predicted label assigned by the current classifier, and yv denotes
the expert annotation for that particular sample.

It is worth noting that the number of expert-labeled samples in each round of the
AL stage is less than 10. Therefore, our proposed AL method provides a complementary
approach for sample selection, which can ensure that the pseudo-labeled samples cover the
distribution of the entire dataset as comprehensively as possible by shifting from local to
global patterns. Full details of the training process are given in Algorithm 1.

Algorithm 1 Expanding reliable training set via progressive sample selection
Input: FS-labeled set DL; unlabeled set DQ; max training rounds R; confidence threshold
τ; connected region sample size threshold Nτ ; initialized model f 0

θ ;
Output: Model f Iter

θ

1: Training initialized model f 0
θ with DL

2: for t = 0 to R do
3: Get confidence score pij and label ŷij of DQ via Equations (2) and (3)
4: Generate two maps P(i, j) and Ŷ(i, j) via Equations (4) and (5)
5: Obtain connected regions of Ŷ by eight-neighborhood method
6: Select regions G that contain FS training samples as Equation (6)
7: Merge pseudo-labeled samples as D̂Lt

for next iteration as Equation (7)
8: Density-weighted selection is adopted for remaining regions Ĝ via Equation (8)
9: Get predicted label for samples in Btm(gi) via Equations (9) and (10)

10: Augment D̂Lt
for next round as Equation (11) Re-train f t

θ using D̂Lt+1
as training

set
11: end for

3.4. Hybrid Classification Framework

Considering the high spectral dimension of HSI pixels and their spatial–spectral consis-
tency, we adopted a hybrid classification framework that leverages the benefits of both CNNs
and vision transformers, as shown in Figure 6. CNNs are renowned for their robustness
to local and translation invariance, as well as their ability to extract hierarchical features.
Conversely, vision transformers excel at capturing global context information. Building upon
the inspiration from previous work [43], we constructed our framework as follows.

PCA
S
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Figure 6. Hybrid classification framework. The patch samples are sequentially passed through the
3D-CNN and 2D-CNN blocks to obtain feature maps that combine spectral and spatial information.
These features are then fed to the transformer encoder to capture the contextual information. In the
classification head, the model update is constrained by the cross-entropy loss.
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3.4.1. Conv Block

We begin by applying PCA dimensionality reduction to the high-dimensional raw
data. Our convolutional structure consists of a 3D convolutional (Conv) layer and a 2D
Conv layer, which handle spectral and spatial features, respectively. The 3D Conv layer
incorporates information from the data to extract spatial–spectral semantic features, and
the 2D Conv layer specializes in capturing fine-grained spatial features.

To process the data, we sample each patch xi ∈ Rs×s×B from the original HSI, centered
around a specific pixel using a window size of s. Here, B represents the reduced spectral
dimension size. The semantic category of each patch is determined by the label of its center
pixel. To account for edge pixels, we apply padding to generate corresponding patches.
Instead of using single pixels, we treat patches as individual samples for both training
and testing. The 3D Conv layer takes the training patch as input and extracts feature
maps accordingly. These maps are reshaped and subsequently fed into the 2D Conv layer.
Following standard practice, activation layers are applied after each Conv layer.

3.4.2. Encoder Block

Utilizing the Conv features that capture local information, we incorporate a trans-
former encoder block to fully explore the correlations within these features. To prepare
the 2D feature maps for input into the transformer encoder, we reshape them into a se-
quence of tokenized data. The length of the sequence is determined by the spatial size of
the feature maps, with an additional class token included. To enable the transformer to
consider the spatial relationship between tokens, we apply positional embedding to the
feature sequences. These sequences are then used as the query (Q), key (K), and value (V)
inputs for the multi-head self-attention mechanism. By attending to the class token, we
obtain an output that represents the classification probability. This output is processed
through a fully connected layer followed by a SoftMax operation. During self-training, the
cross-entropy loss is computed using the corresponding ground-truth or pseudo-labels.
This loss serves as the objective function to guide the training process and update the model
parameters accordingly.

3.4.3. Inference

In the final stage of prediction, the test patches undergo processing through the 3D–2D
Conv block, followed by the transformer encoder. The predicted label for each patch is
determined based on the category assigned to the center pixel of that particular patch.
This approach ensures that the classification decision is made with respect to the central
information within each patch, providing a reliable prediction for the HSI classification task.

4. Experimental Analysis
4.1. Datasets

To validate the effectiveness of our proposed method and enable fair comparison with
existing approaches, we conducted performance evaluations on four widely recognized
public datasets: Indian Pines (IP), Pavia University (PU), WHU-Hi-HanChuan (HC), and
WHU-Hi-HongHu (HH).

4.1.1. IP Dataset

The Indian Pines (IP) dataset was acquired using the Airborne Visible/Infrared Imag-
ing Spectrometer (AVIRIS) sensor over northwestern Indiana, USA. The original dataset
consists of 224 spectral bands spanning the range of 0.4 to 2.5 µm. It comprises a total of
145 × 145 pixels with a spatial resolution of 20m and encompasses 16 distinct land cover
classes. For visual reference, Figure 7 presents the false-color map and ground-truth map
of the IP dataset.
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Figure 7. Indian Pines (IP) dataset. (a) False-color map. (b) Ground-truth map. (c) Classes by colors.

4.1.2. PU Dataset

The University of Pavia (PU) dataset was obtained using the Reflection Optical System
Imaging Spectrometer (ROSIS) sensor, and provides valuable data captured over the
University of Pavia in northern Italy. The original dataset consists of 115 spectral bands,
covering a wavelength range of 0.43 to 0.86 µm. The image itself spans 610 × 340 pixels
and has a spatial resolution of 1.3 m. It encompasses information related to nine distinct
land cover classes. For a visual representation of the dataset, please refer to Figure 8,
which showcases both the false-color map and the ground-truth map associated with the
PU dataset.

Asphalt

Meadows

Gravel

Trees

Painted

Bare Soil

Bitumen

Self-Blocking 

Shadows

(a) (b) (c)

Figure 8. Pavia University (PU) dataset. (a) False-color map. (b) Ground-truth map. (c) Classes
by colors.

4.1.3. HC Dataset

The WHU-Hi-HanChuan (HC) dataset was acquired in June 2016 in Hanchuan, Hubei
province, China, using a 17 mm focal length Headwall Nano-Hyperspec imaging sen-
sor mounted on a Leica Aibot X6 UAV V1 platform. The imagery has dimensions of
1217 × 303 pixels with 274 bands covering the range from 400 to 1000 nm. The spatial
resolution of the UAV-borne hyperspectral imagery is approximately 0.109 m. Figure 9
is a visual representation of the dataset, which includes both the false-color map and the
ground-truth map for the HC dataset.
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Figure 9. WHU-Hi-HanChuan (HC) dataset. (a) False-color map. (b) Ground-truth map. (c) Classes
by colors.

4.1.4. HH Dataset

The WHU-Hi-HongHu (HH) dataset was acquired in November 2017 in Honghu City,
Hubei province, China, using a 17 mm focal length Headwall Nano-Hyperspec imaging
sensor mounted on a DJI Matrice 600 Pro UAV platform. The imagery has dimensions
of 940 × 475 pixels with 270 bands covering the range from 400 to 1000 nm. The spatial
resolution of the UAV-borne hyperspectral imagery is approximately 0.043 m. Figure 10
is a visual representation, which includes both the false-color composite image and the
available ground-truth map for the HH dataset.
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Figure 10. WHU-Hi-HongHu (HH) dataset. (a) False-color map. (b) Ground-truth map. (c) Classes
by colors.
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4.2. Evaluation Metrics

To comprehensively assess the effectiveness of our proposed method and enable a
thorough comparison with other approaches, we employed four quantitative evaluation
metrics for HSI classification. These metrics include overall accuracy (OA), average accuracy
(AA), and kappa coefficient (Kappa). Additionally, we reported the classification accuracy
for each specific land cover category. Higher values for these metrics indicate superior
classification performance. In addition to quantitative evaluation, we also presented visual
representations of the classification maps generated by different models.

4.3. Implementation Details

We utilized the conventional cross-entropy loss function for classification. Specifically,
assuming that there are N samples, the output confidence of the model is noted as yi
and the corresponding ground-truth label is ti, the cross-entropy loss can be expressed
as follows:

Lcross−entropy = − 1
N

N

∑
i=1

C

∑
j=1

tijlogyij (13)

where C denotes the number of categories, tij indicates whether the ith sample belongs to
the jth category, and yij is the predicted corresponding probability. A smaller cross-entropy
value signifies a closer alignment between the model’s predicted output and the true label,
which correlates with improved performance.

In the experiments, we randomly selected five samples per class as initial samples (FS)
and the number of annotations in each round of active learning was limited to no more
than 10. We utilized the Adam optimizer with an initial learning rate of 1 × 10−3 and a
weight decay of 5 × 10−4 to train our models. Each training round was performed using a
mini-batch size of 32 for a total of 50 epochs. We set the maximum number of rounds to
eight. Empirically, we selected τ = 0.6 as the threshold and initially set Nτ to 100. The value
of Nτ was halved every two training rounds. Furthermore, we set the bottom sample size
nbtm to 10.

For the hybrid classification framework, by following the parameter settings in the
paper [44], the number of principal components B was set to 30, and the input patch sample
width and height were set to 13 × 13. The patch size was selected by referring to [43] and
experimental comparisons. We observed that larger patches (15 × 15 and 17 × 17) showed
only marginal impacts on results with heavier computational burden. To strike a balance
between effectiveness and efficiency, we adopted a patch size of 13 in our final models. For
the transformer backbone, we followed the standard ViT encoder and set the number of
heads to eight with a token size of 64. In order to account for sample selection variability,
each setting was executed 10 times on each dataset using randomly labeled samples each
time. The average accuracy and standard deviation of these 10 runs were reported. All
models were trained and tested using the PyTorch framework and executed on a single
NVIDIA GeForce RTX 3090 GPU.

To demonstrate the superiority of our model, we conducted a comprehensive compar-
ison with several well-established supervised and semi-supervised HSI classification meth-
ods. The comparative analysis included the following approaches: SSFTT [43], S3Net [45],
DM-MRN [46], FPGA [47], Fusion of Spectral–Spatial Classifiers (FSS) [48], as well as
Superpixel-guided Training Sample Enlargement with Distance-Weighted Linear Regres-
sion (STSE-DWLR) [49], and the combination of Superpixel Graph and Poisson Learning
(DSSPL) [21]. Moreover, in the HC and HH datasets, we added MDMC [50], SSRN [51],
and A2S2K-ResNet [52] to compare. To ensure fair and consistent comparisons, only five
original samples of each class were randomly selected for training for all methods. Our
proposed base model is referred to as refined Pseudo-Labeling (rPL), and its full version
with AL is denoted as rPL-AL.
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4.4. Results and Analysis

Tables 1–4 present the classification results of the compared methods on four datasets.
The best and second-best performances are highlighted in bold and italic, respectively.
Figures 11–14 provide visualizations of the predicted categories, with each category repre-
sented by a different color. Our rPL model demonstrates superior performance across all
evaluation metrics. Additionally, the incorporation of AL techniques further enhances the
overall performance by effectively leveraging limited expert annotations. These conclusions
are reinforced by the visualized classification diagrams, confirming the effectiveness and
superiority of our proposed approach.

Table 1. Per-class accuracies, OA, AA, and Kappa metrics of different methods on the IP dataset. The
best and second-best scores are noted in bold and italic.

Class SSFTT S3Net DM-MRN FPGA FSS STSE-DWLR DSSPL Ours: rPL Ours: rPL-AL
1 100.00 ± 0.00 100.00 ± 0.00 98.76 ± 1.21 100.00 ± 0.00 77.15 ± 2.62 98.48 ± 1.79 99.13 ± 0.52 100.00 ± 0.00 100.00 ± 0.00
2 57.09 ± 4.23 55.77 ± 6.32 78.50 ± 3.23 57.09 ± 3.42 83.88 ± 1.67 47.91 ± 1.93 70.78 ± 1.2 74.52 ± 6.11 91.56 ± 0.78
3 59.07 ± 6.21 68.40 ± 5.22 66.79 ± 7.72 54.72 ± 4.42 77.59 ± 1.93 64.25 ± 1.05 78.29 ± 1.37 81.26 ± 2.53 99.58 ± 0.23
4 98.00 ± 0.34 97.89 ± 1.10 95.69 ± 1.03 99.20 ± 0.21 79.65 ± 2.23 83.84 ± 1.18 85.40 ± 1.92 99.95 ± 0.01 99.96 ± 0.13
5 87.05 ± 4.11 98.11 ± 0.87 87.66 ± 3.43 86.84 ± 3.22 69.07 ± 3.30 81.70 ± 0.94 81.06 ± 1.21 88.20 ± 2.21 99.44 ± 0.23
6 94.35 ± 0.92 98.10 ± 0.41 97.24 ± 1.22 95.31 ± 2.32 81.38 ± 2.67 91.16 ± 0.10 89.40 ± 5.93 99.05 ± 0.32 99.97 ± 0.01
7 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 72.64 ± 3.08 97.86 ± 0.18 98.21 ± 1.98 100.00 ± 0.00 100.00 ± 0.00
8 95.14 ± 0.98 99.76 ± 0.10 100.00 ± 0.00 100.00 ± 0.00 91.29 ± 1.15 99.94 ± 0.01 88.89 ± 3.32 100.00 ± 0.00 100.00 ± 0.00
9 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 66.10 ± 4.34 99.00 ± 0.32 99.00 ± 3.16 100.00 ± 0.00 100.00 ± 0.00
10 52.47 ± 5.61 80.39 ± 3.65 84.39 ± 2.70 55.06 ± 4.91 75.08 ± 1.86 69.89 ± 2.31 81.48 ± 2.31 85.52 ± 2.19 100.00 ± 0.00
11 67.89 ± 5.40 70.56 ± 3.14 63.22 ± 4.54 77.47 ± 2.81 90.42 ± 0.50 83.29 ± 1.92 82.90 ± 2.13 82.93 ± 4.31 99.30 ± 0.23
12 41.59 ± 2.43 63.84 ± 4.54 83.67 ± 5.34 35.47 ± 4.74 79.21 ± 2.15 77.64 ± 1.53 72.48 ± 6.32 70.52 ± 4.45 80.00 ± 3.79
13 98.00 ± 3.42 99.60 ± 1.11 98.13 ± 0.43 99.87 ± 0.11 88.55 ± 1.82 99.51 ± 0.10 99.03 ± 0.21 100.00 ± 0.00 100.00 ± 0.00
14 89.05 ± 2.98 94.24 ± 3.2 94.42 ± 1.38 84.37 ± 3.53 74.38 ± 2.94 83.10 ± 3.51 87.12 ± 1.87 95.44 ± 1.10 99.99 ± 0.00
15 90.57 ± 2.21 91.97 ± 3.41 91.91 ± 1.02 73.66 ± 3.21 64.80 ± 3.55 87.28 ± 2.34 88.06 ± 4.17 94.69 ± 1.40 99.55 ± 0.02
16 83.14 ± 4.10 99.56 ± 0.10 99.56 ± 0.21 89.88 ± 2.10 89.63 ± 1.41 95.14 ± 0.45 90.03 ± 0.34 96.46 ± 2.56 97.35 ± 1.23

OA 71.93 ± 3.56 78.50 ± 1.91 80.54 ± 2.52 72.92 ± 3.92 81.42 ± 1.12 80.52 ± 5.98 85.91 ± 4.84 86.25 ± 3.81 97.41 ± 0.85
AA 82.25 ± 2.76 88.01 ± 0.75 88.89 ± 2.03 81.79 ± 2.34 78.83 ± 2.07 85.76 ± 3.45 87.02 ± 3.12 91.35 ± 1.83 97.95 ± 0.65

Kappa 68.42 ± 3.10 75.83 ± 2.01 78.14 ± 2.08 69.21 ± 4.12 80.28 ± 1.27 78.68 ± 6.41 83.32 ± 5.35 84.30 ± 4.41 97.04 ± 0.97

Table 2. Per-class accuracies, OA, AA, and Kappa metrics of different methods on the PU dataset.
The best and second-best scores are noted in bold and italic.

Class SSFTT S3Net DM-MRN FPGA FSS STSE-DWLR DSSPL Ours: rPL Ours: rPL-AL
1 63.93 ± 5.34 81.30 ± 2.41 82.17 ± 4.21 66.98 ± 6.42 70.00 ± 1.78 77.69 ± 4.41 80.72 ± 7.49 98.17 ± 0.41 100.00 ± 0.00
2 78.12 ± 3.22 73.59 ± 0.87 86.15 ± 1.13 74.41 ± 4.32 79.47 ± 8.26 82.25 ± 1.32 92.73 ± 5.09 93.49 ± 1.43 100.00 ± 0.00
3 18.53 ± 4.31 70.67 ± 3.31 84.13 ± 2.91 94.12 ± 2.11 95.06 ± 1.74 98.12 ± 2.43 95.24 ± 3.24 83.15 ± 1.54 99.80 ± 0.01
4 84.6 ± 2.09 66.67 ± 2.34 69.40 ± 3.32 95.02 ± 1.32 32.85 ± 2.00 59.44 ± 6.24 82.83 ± 6.1 77.15 ± 2.31 96.55 ± 1.80
5 99.63 ± 0.95 99.4 ± 0.20 99.01 ± 0.51 100.00 ± 0.00 95.47 ± 7.49 98.54 ± 0.50 96.31 ± 3.00 100.00 ± 0.00 99.81 ± 0.04
6 67.59 ± 4.31 89.27 ± 1.59 54.87 ± 3.67 78.01 ± 4.56 97.38 ± 1.94 97.74 ± 2.72 99.29 ± 0.03 100.00 ± 0.00 100.00 ± 0.00
7 98.40 ± 3.78 99.01 ± 0.69 94.10 ± 5.22 99.84 ± 0.24 99.67 ± 0.70 88.42 ± 5.8 88.06 ± 3.1 100.00 ± 0.00 100.00 ± 0.00
8 95.11 ± 3.54 62.53 ± 8.10 86.31 ± 6.10 57.49 ± 13.04 87.72 ± 2.76 75.12 ± 1.40 83.29 ± 1.57 95.52 ± 1.43 100.00 ± 0.00
9 93.94 ± 2.54 96.3 ± 2.40 88.72 ± 4.31 94.57 ± 2.11 30.41 ± 1.80 99.89 ± 0.00 99.89 ± 0.00 92.15 ± 2.11 99.50 ± 0.42

OA 75.42 ± 3.56 77.1 ± 1.97 81.31 ± 1.66 76.70 ± 2.28 83.78 ± 3.30 83.02 ± 3.80 86.74 ± 2.31 93.00 ± 1.23 99.52 ± 0.23
AA 77.86 ± 5.60 82.01 ± 3.21 82.88 ± 2.29 84.50 ± 1.34 83.78 ± 3.30 87.69 ± 4.03 89.37 ± 5.07 93.23 ± 1.98 99.74 ± 0.12

Kappa 68.69 ± 4.81 71.1 ± 2.55 75.3 ± 1.89 70.73 ± 0.79 77.74 ± 5.40 78.84 ± 4.50 84.05 ± 2.86 91.12 ± 2.5 99.64 ± 0.16

Table 3. Per-class accuracies, OA, AA, and Kappa metrics of different methods on the HC dataset.
The best and second-best scores are noted in bold and italic.

Class SSFTT S3Net DM-MRN MDMC FPGA SSRN A2S2K-ResNet Ours: rPL Ours: rPL-AL
1 80.60 ± 5.21 53.92 ± 7.21 68.86 ± 3.36 70.74 ± 4.32 76.45 ± 4.21 62.45 ± 3.11 72.51 ± 6.65 91.65 ± 2.11 97.99 ± 1.17
2 81.26 ± 4.15 82.63 ± 3.90 78.22 ± 3.21 70.60 ± 6.83 76.70 ± 5.32 35.63 ± 8.82 52.11 ± 4.56 87.49 ± 2.65 95.78 ± 1.43
3 84.82 ± 2.32 89.63 ± 4.12 92.29 ± 2.90 94.89 ± 1.54 94.72 ± 2.59 84.54 ± 3.53 90.74 ± 3.78 93.99 ± 2.11 93.58 ± 2.54
4 98.35 ± 1.88 98.99 ± 0.58 99.23 ± 0.95 96.86 ± 1.80 95.04 ± 2.13 95.02 ± 1.34 98.20 ± 2.35 98.99 ± 1.13 99.85 ± 0.26
5 94.89 ± 2.34 66.52 ± 6.98 95.89 ± 2.45 93.82 ± 3.42 99.70 ± 0.38 66.58 ± 6.43 99.91 ± 0.21 100.00 ± 0.00 100.00 ± 0.00
6 52.85 ± 5.34 60.53 ± 4.65 57.31 ± 6.43 66.91 ± 8.54 65.30 ± 4.65 61.34 ± 5.76 70.64 ± 3.54 77.57 ± 3.50 79.53 ± 2.75
7 94.46 ± 2.95 60.80 ± 5.31 74.56 ± 4.39 82.84 ± 2.86 81.11 ± 3.65 40.17 ± 10.54 46.76 ± 8.11 89.59 ± 2.69 96.25 ± 1.56
8 79.15 ± 3.25 65.23 ± 3.65 71.60 ± 5.32 76.45 ± 3.48 76.29 ± 2.65 52.66 ± 4.70 51.08 ± 3.65 79.51 ± 4.52 93.91 ± 2.11
9 21.65 ± 3.25 43.85 ± 2.84 66.91 ± 3.43 34.72 ± 6.47 62.25 ± 3.67 39.92 ± 2.57 32.78 ± 6.71 69.79 ± 3.49 83.26 ± 2.76
10 55.61 ± 7.37 86.63 ± 4.20 87.67 ± 3.10 87.70 ± 3.50 92.06 ± 2.49 93.66 ± 2.40 85.83 ± 2.43 93.72 ± 2.48 91.47 ± 2.43
11 69.14 ± 4.40 54.06 ± 6.33 67.18 ± 5.87 70.4 ± 4.70 87.45 ± 3.51 67.41 ± 8.55 73.28 ± 4.58 85.37 ± 3.61 97.04 ± 1.18
12 93.14 ± 2.41 90.17 ± 2.55 96.24 ± 1.69 81.00 ± 4.06 98.45 ± 0.64 39.99 ± 4.76 65.75 ± 6.70 97.97 ± 1.42 99.92 ± 0.01
13 35.15 ± 7.51 43.62 ± 5.08 50.19 ± 8.53 54.46 ± 6.48 49.95 ± 7.86 70.97 ± 4.54 43.03 ± 6.70 75.80 ± 4.82 76.31 ± 3.54
14 38.98 ± 4.60 43.63 ± 3.90 52.80 ± 6.70 50.46 ± 4.54 63.45 ± 3.41 34.68 ± 3.89 36.93 ± 6.54 70.79 ± 4.50 91.84 ± 2.54
15 96.81 ± 1.45 89.63 ± 3.02 94.00 ± 2.54 77.27 ± 3.57 92.04 ± 2.65 63.98 ± 5.02 88.34 ± 3.54 93.07 ± 2.52 96.51 ± 2.11
16 85.43 ± 2.43 75.63 ± 3.54 88.6 ± 2.65 95.42 ± 1.55 88.40 ± 2.03 70.41 ± 3.83 94.85 ± 2.43 93.71 ± 2.43 99.18 ± 0.87

OA 74.10 ± 3.42 66.87 ± 3.3 76.54 ± 3.82 77.69 ± 1.35 80.84 ± 2.40 61.53 ± 1.35 72.02 ± 2.55 87.41 ± 1.21 95.30 ± 1.19
AA 72.64 ± 2.5 69.31 ± 2.50 77.61 ± 1.73 75.43 ± 1.26 81.89 ± 1.98 61.21 ± 1.15 68.93 ± 2.02 86.7 ± 0.91 92.09 ± 1.03

Kappa 70.23 ± 2.84 62.38 ± 3.7 73.02 ± 3.86 74.17 ± 1.31 77.93 ± 2.64 56.65 ± 1.36 67.59 ± 1.92 85.37 ± 1.34 95.49 ± 1.20
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Table 4. Per-class accuracies, OA, AA, and Kappa metrics of different methods on the HH dataset.
The best and second-best scores are noted in bold and italic.

Class SSFTT S3Net DM-MRN MDMC FPGA SSRN A2S2K-ResNet Ours: rPL Ours: rPL-AL
1 92.81 ± 2.80 58.02 ± 4.87 76.15 ± 3.80 88.95 ± 3.32 67.49 ± 3.54 70.08 ± 5.54 91.87 ± 2.55 97.74 ± 0.93 99.16 ± 0.36
2 45.23 ± 9.23 57.38 ± 5.62 46.65 ± 4.07 38.55 ± 5.91 55.94 ± 6.23 58.97 ± 4.43 61.51 ± 3.90 70.60 ± 3.94 84.43 ± 3.08
3 75.57 ± 3.94 26.76 ± 5.84 82.84 ± 3.90 89.22 ± 3.65 86.80 ± 4.75 75.51 ± 2.56 85.17 ± 4.32 93.43 ± 2.97 96.15 ± 2.55
4 83.14 ± 5.54 92.13 ± 3.81 90.74 ± 2.95 91.76 ± 3.10 94.20 ± 2.65 86.71 ± 3.31 94.34 ± 1.95 99.14 ± 0.54 99.80 ± 0.24
5 82.09 ± 3.36 82.18 ± 5.32 83.24 ± 4.87 89.25 ± 3.06 71.22 ± 5.80 91.75 ± 4.65 80.28 ± 5.43 85.82 ± 4.10 92.63 ± 3.59
6 86.59 ± 5.49 90.51 ± 3.89 87.59 ± 4.09 87.97 ± 5.84 93.95 ± 3.97 20.50 ± 7.32 90.55 ± 3.89 96.42 ± 2.54 99.10 ± 0.89
7 32.93 ± 8.64 18.75 ± 4.65 50.44 ± 6.54 30.86 ± 7.43 57.03 ± 6.67 39.96 ± 3.65 14.25 ± 6.04 64.95 ± 5.64 90.74 ± 3.45
8 58.28 ± 4.42 15.92 ± 5.53 45.09 ± 4.11 35.84 ± 3.40 60.04 ± 3.54 23.25 ± 2.86 47.96 ± 4.85 55.59 ± 5.33 84.10 ± 3.51
9 88.37 ± 3.21 87.88 ± 4.09 96.11 ± 2.15 89.46 ± 2.80 85.37 ± 3.69 84.69 ± 3.50 81.95 ± 5.33 96.93 ± 2.66 99.35 ± 1.05
10 33.92 ± 5.65 49.85 ± 5.33 68.25 ± 4.68 65.21 ± 7.41 69.86 ± 6.21 45.56 ± 5.98 35.08 ± 5.32 68.25 ± 6.34 85.79 ± 3.43
11 48.70 ± 8.53 21.76 ± 6.90 41.75 ± 5.32 70.68 ± 5.30 34.82 ± 5.96 49.51 ± 4.87 64.63 ± 5.98 66.48 ± 6.31 76.02 ± 4.86
12 52.36 ± 4.42 39.13 ± 5.42 55.19 ± 6.12 36.59 ± 7.53 60.39 ± 3.21 60.24 ± 5.06 46.87 ± 7.92 71.76 ± 5.54 85.23 ± 4.65
13 56.83 ± 5.11 37.17 ± 4.32 57.90 ± 5.21 56.37 ± 4.64 56.98 ± 6.10 27.67 ± 8.04 35.61 ± 6.32 59.59 ± 4.32 79.07 ± 2.11
14 50.25 ± 5.70 48.16 ± 5.30 70.22 ± 4.63 77.56 ± 3.57 77.63 ± 4.41 55.53 ± 7.39 86.55 ± 3.59 97.36 ± 1.77 99.72 ± 0.43
15 99.60 ± 0.58 97.70 ± 1.06 99.40 ± 0.73 98.80 ± 0.97 99.10 ± 0.79 97.40 ± 1.69 97.99 ± 1.16 99.50 ± 0.89 100.00 ± 0.00
16 91.46 ± 3.11 91.63 ± 3.65 86.85 ± 3.19 99.44 ± 0.69 68.98 ± 5.49 88.06 ± 3.20 85.89 ± 2.65 95.97 ± 1.33 97.82 ± 1.18
17 81.32 ± 5.28 71.94 ± 4.76 99.04 ± 1.10 86.02 ± 2.04 65.02 ± 5.72 77.83 ± 4.19 73.81 ± 4.94 76.94 ± 6.49 88.20 ± 3.19
18 91.72 ± 3.14 97.76 ± 2.11 91.28 ± 3.12 92.81 ± 2.98 93.28 ± 3.94 83.70 ± 3.85 94.36 ± 2.48 98.19 ± 1.10 97.82 ± 1.58
19 71.87 ± 4.87 51.83 ± 5.96 80.84 ± 3.7 82.74 ± 3.95 75.95 ± 3.70 57.14 ± 5.96 82.83 ± 3.54 83.98 ± 4.04 93.97 ± 2.67
20 54.00 ± 4.98 41.25 ± 8.54 70.78 ± 5.32 80.18 ± 3.46 62.77 ± 1.43 59.58 ± 8.33 60.32 ± 4.57 55.90 ± 5.48 75.04 ± 4.54
21 90.03 ± 3.43 90.12 ± 2.87 90.93 ± 3.12 82.46 ± 2.11 96.44 ± 2.15 93.89 ± 1.97 94.63 ± 2.08 98.64 ± 1.09 99.54 ± 0.86
22 98.54 ± 1.12 96.85 ± 2.60 77.72 ± 3.27 84.01 ± 3.62 82.31 ± 3.59 79.07 ± 4.78 94.62 ± 2.11 99.16 ± 0.73 99.63 ± 0.58

OA 70.43 ± 4.54 69.86 ± 2.40 80.37 ± 3.42 80.75 ± 3.21 81.9 ± 2.86 66.01 ± 1.21 78.67 ± 2.08 88.11 ± 1.56 95.16 ± 1.40
AA 71.62 ± 3.49 61.12 ± 2.65 75.41 ± 2.87 75.22 ± 2.53 73.43 ± 2.10 64.84 ± 1.56 72.78 ± 1.45 81.93 ± 1.65 91.06 ± 1.13

Kappa 68.85 ± 3.87 62.75 ± 1.46 75.66 ± 2.66 76.08 ± 2.21 77.31 ± 1.98 58.37 ± 1.43 73.39 ± 1.36 84.98 ± 1.76 93.88 ± 0.98
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(f) (g) (h) (i) (j)

Figure 11. GT and predicted class maps of compared methods on 5-shot IP dataset: (a) GT, (b) SSFTT,
(c) S3Net, (d) DM-MRN, (e) FPGA, (f) FSS, (g) STSE-DWLR, (h) DSSPL, (i) rPL, and (j) rPL-AL. The
areas with significant effects are marked with yellow and red boxes.

(a) (b) (c) (d) (e)

Figure 12. Cont.



Remote Sens. 2024, 16, 1747 16 of 24

(f) (g) (h) (i) (j)

Figure 12. GT and predicted class maps of compared methods on 5-shot PU dataset: (a) GT, (b) SSFTT,
(c) S3Net, (d) DM-MRN, (e) FPGA, (f) FSS, (g) STSE-DWLR, (h) DSSPL, (i) rPL, and (j) rPL-AL. The
areas with significant effects are marked with red boxes.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 13. GT and predicted class maps of compared methods on 5-shot HC dataset: (a) GT, (b) SSFTT,
(c) S3Net, (d) DM-MRN, (e) MDMC, (f) FPGA, (g) SSRN, (h) A2S2K-ResNet, (i) rPL, and (j) rPL-AL.
The areas with significant effects are marked with red boxes.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 14. GT and predicted class maps of compared methods on 5-shot HH dataset: (a) GT, (b) SSFTT,
(c) S3Net, (d) DM-MRN, (e) MDMC, (f) FPGA, (g) SSRN, (h) A2S2K-ResNet, (i) rPL, and (j) rPL-AL.
The areas with significant effects are marked with red boxes.

4.4.1. IP Dataset Result

In the results of the IP dataset presented in Table 1, our rPL method achieves percent-
ages of 86.25%, 91.35%, and 84.3% for three evaluation metrics, respectively. These results
outperform those of the compared FS-supervised and semi-supervised methods. Specifi-
cally, our method demonstrates improvements of 0.4%, 4.97%, and 1.18% compared to the
second-best performing method, DSSPL. Furthermore, our method achieves the highest
accuracy in 11 out of the 16 land cover categories, highlighting its strong performance
across a wide range of specific ground types.

On the other hand, the performance of the other compared methods display less
stability when dealing with different categories. Classic SSFTT and FPGA methods struggle
to accurately delineate the boundaries between features in inter-class samples, especially in
cases where HSIs exhibit high spectral similarity. Graph-based models, which typically em-
ploy the superpixel approach to represent HSIs as weighted graphs, demonstrate improved
performance compared to the classic methods. However, they are still influenced by the
quality of the coarse superpixel segmentation, particularly in scenarios where both spatial
adjacency and high spectral similarity coexist. For instance, in the categories “corn-note”
and “corn-mint”, these models tend to produce subpar results. In contrast, our models
notably excel in these challenging areas, while the comparison methods exhibit a significant
“salt and pepper” artifact, emphasizing the effectiveness of our approach in managing
intricate feature distributions.

In particular, when examining the local details framed by the yellow and red boxes, we
observe multiple feature classes within a small area, posing a challenge to the model’s ability
to handle such local intricacies. The classification outcomes of SSFTT, S3Net, DM-MRN,
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FPGA, and DSSPL methods in these regions often exhibit confusion and a considerable
number of misclassifications. Additionally, both FSS and STSE-DWLR methods tend to
misclassify multiple features from different classes as the same class within this region.
In contrast, our rPL and rPL-AL methods demonstrate better performance in handling
such details within these regions. By leveraging the spatial–spectral consistency, our
semi-supervised strategy effectively improves the reliability of pseudo-labeled samples
during training.

Furthermore, by incorporating limited expert annotations so that the amount of
labeled samples does not exceed 10 in each round, our rPL-AL model achieves respective
increases of 12.9%, 7.22%, and 15.1% in terms of OA, AA, and Kappa metrics compared
to the original rPL method. The integration of AL techniques has proven instrumental in
effectively utilizing the unlabeled samples and extracting valuable information from the
remaining regions. This strategic utilization of AL has resulted in significant improvements
in performance.

4.4.2. PU Dataset Result

Compared to the IP dataset, the spatial distribution of land features in the PU dataset
exhibits more irregular patterns, and the sample distribution is more dispersed. Despite
this challenge, our method demonstrated excellent classification performance, emphasizing
the generalization capability of our training strategy. As shown in Table 2, our rPL method
achieves over 90% accuracy in terms of OA, AA, and Kappa metrics, surpassing the second-
best method by 7.21%, 6.99%, and 8.42%, respectively. Our rPL also achieves the best
performance in six out of nine categories, demonstrating its effectiveness in diverse land
cover types. Furthermore, the incorporation of AL techniques significantly enhances the
performance of our model. The AL-aided rPL model achieves gains of 7.01%, 6.98%, and
9.35% in OA, AA, and Kappa coefficients, respectively. This advancement results from
the integration of semi-supervised pseudo-labeling and active learning, enhancing the
model’s adaptability across various spatial distributions of ground materials, especially in
dispersed cases.

4.4.3. HC Dataset Result

The HC dataset possesses a larger sample size and a higher annotation rate compared
to the IP and PU datasets, posing new challenges for classification. As shown in Table 3,
our rPL model demonstrates improvements of 8.12%, 5.87%, and 9.54% compared to the
second-best performing method, FPGA. Furthermore, it achieves the best performance
in 10 out of 16 categories compared to other methods. Additionally, the AL-assisted rPL
model achieves improvements of 8.71%, 6.21%, and 11.85% for three metrics. Moreover,
integrating semi-supervised pseudo-labeling and active learning enhances the model’s
adaptability to the spatial distribution of samples. Our proposed strategy remains effective
for datasets with both dense and sparse sample distributions.

4.4.4. HH Dataset Result

Like the HC dataset, the HH dataset contains more diverse annotated samples and
categories, as depicted in Table 4. Both our rPL and rPL-AL models achieve the highest clas-
sification performance. Specifically, the rPL method outperforms the second-best method
by 6.21%, 11.5%, and 9.92% across three metrics. Additionally, our rPL demonstrates the
highest performance in 14 out of 22 categories, showcasing its effectiveness across diverse
land cover types. Furthermore, the introduction of our proposed AL strategy leads to a
further improvement in overall experimental performance by 8.0%, 11.1%, and 10.47%.
These results demonstrate that our model maintains consistent performance with datasets
containing a large amount of samples.

Moreover, we also compared the running time with other methods, and, as shown in
Tables 1–4, the rPL and rPL AL show relative advantages. Compared to rPL, the running
time of rPL AL slightly increases, indicating that incorporating AL into deep learning
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frameworks has a negligible impact on running time. We emphasize that our method
achieves an appropriate balance between effectiveness and efficiency through classification
accuracy and operational complexity.

4.5. Hyperparameter Sensitivity
4.5.1. Convergence Analysis

Figure 15a illustrates the convergence curves of our proposed rPL and rPL-AL methods
across all datasets used in this study. The x-axis represents the number of rounds, while the
y-axis indicates accuracy values from 60 to 100. These curves portray the overall accuracy
per round. A consistent trend spans all four datasets: initial increases in accuracy metrics
followed by stabilization, signifying model convergence. Our models converge in a relatively
brief span, typically within six to eight rounds, emphasizing the efficiency of rPL and rPL-
AL in achieving stable, high-quality classification results swiftly. Additionally, Figure 15b
depicts the loss during the semi-supervised training process, each round consisting of
50 epochs. This illustrates that our model converges after each round, with subsequent
rounds exhibiting a gradual decrease in training loss.
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Figure 15. (a) Convergence of the proposed rPL and rPL-AL on four datasets with 5-shot setting.
(b) Training loss per round on IP dataset.

4.5.2. Confidence Threshold τ

The selection of the threshold τ in the experiment played a crucial role in determin-
ing the initial screening rule for pseudo-labeling. To investigate the impact of different
threshold settings on the experimental results, we considered τ values of 0.1, 0.4, 0.6, and
0.9, respectively. Figure 16a displays the classification performance corresponding to each
threshold on the IP dataset. More comprehensive experiments on other datasets showed
that both low (0.1) and high thresholds (0.9) lead to lower classification performance com-
pared to the selected threshold of 0.6. These three metrics exhibit a pattern of initially
increasing and then decreasing as the threshold increases. Therefore, we empirically chose
the suitable threshold for pseudo-labeling in order to strike a balance between includ-
ing enough confident pseudo-labeled samples for training and avoiding the inclusion of
samples with uncertain labels that could negatively impact the classification performance.
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Figure 16. (a) Metrics with different confidence thresholds τ on 5-shot IP dataset. (b) Metrics with
different region sizes Nτ on 5-shot IP dataset.

4.5.3. Connected Region Size Threshold Nτ

The decision of whether pixels within a connected region are “discarded” during AL
is based on the size of the connected region, denoted as Nτ . To thoroughly investigate
the influence of Nτ , we conducted a series of experiments with four datasets where Nτ

was fixed for the whole training phase with varying values. Additionally, we explored the
dynamic setting where Nτ was nearly halved every two rounds.

As depicted in Figure 16b, decreasing the value of Nτ results in an upward trend in
performance, albeit with a longer convergence time. Our dynamic strategy achieves the
best overall performance and efficiency. In the initial rounds of training, where instability
is more prominent, we opted to reserve a small number of regions to ensure the reliability
of the pseudo-labeled samples for rapid convergence. As the training progressed, we
gradually relaxed the selection criteria for the regions, adapting to the changing dynamics
of the learning process.

4.6. Ablation Study
4.6.1. Pseudo-Label Selection Strategy

To validate the effectiveness of our pseudo-label selection strategy, we conducted a
comprehensive comparison with several alternative approaches. These include a 5-shot
fully supervised baseline, selecting only eight spatially adjacent (EA) samples, randomly
selecting a certain number of samples above a threshold (including 200, 1000, and all),
and our rPL model. The classification results after one training iteration are presented
in Figure 17a. Our proposed selection strategy showcases a substantial improvement
over the alternative approaches. This outcome emphasizes the significance of leveraging
the spatial–spectral consistency of HSI pixels to identify reliable samples. In addition,
we also conducted experiments on the remaining two datasets, and our rPL consistently
achieved the best results. This robust performance strongly supports the effectiveness of
our proposed pseudo-labeled sample selection strategy.
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Figure 17. (a) Metrics with different pseudo-label selection strategies on 5-shot IP dataset. (b) Metrics
with different AL strategies and rPL+ with similar amount of labeled samples on IP dataset.

4.6.2. AL Strategy

It is evident that rPL-AL demonstrates a significant improvement in classification
accuracy compared to rPL. To validate the effectiveness of our AL strategy, we conducted a
comparison with two alternative approaches. First, during the final round of training, we
observed the classification performance of rPL with more labeled samples (approximated
with rPL-AL), noted as rPL+. For rPL+, we used 10 samples per class for semi-supervised
training. Secondly, for rPL-AL, we selected five samples per class as initial samples, and the
number of labeled samples did not exceed ten in each round of AL. Finally, we replaced our
AL strategy with randomly selected samples for expert annotation, without considering
the connected regions, referred to as random-AL.

From Figure 17b, it is clear that rPL-AL outperforms rPL+, highlighting that the ad-
vantage of AL extends beyond simply increasing the number of labeled samples during
pseudo-labeling. Furthermore, when compared to random-AL, our results emphasize
the importance of carefully selecting suitable samples for expert annotation. This ap-
proach enables the effective utilization of unlabeled samples while minimizing the labeling
cost. In addition, we conducted experiments on the remaining datasets. While rPL+ and
random-rPL methods independently exhibit commendable results, rPL-AL consistently
demonstrates the overall best performance across all four datasets. The superior perfor-
mance of rPL-AL confirms the significance of our AL strategy in maximizing the potential
of unlabeled samples while optimizing the classification process.

5. Conclusions

In this paper, we present a novel approach for FS HSI classification. The proposed
method addresses the challenges of limited training samples and unreliable pseudo-label
propagation by leveraging the spatial–spectral consistency of HSI pixel samples. By consid-
ering the spatially aligned ground materials as connected regions with the same semantic
label and similar spectrum, we enhanced our hybrid classification framework by selecting
confident pseudo-labeled samples. These samples were assigned pseudo-labels and used
in the iterative process to improve classification accuracy. Furthermore, we introduced an
active learning strategy to maximize the utilization of unlabeled samples. This strategy
identifies the least confident sample within a region and requests expert annotation. The
agreement between the predicted and expert labels is used to determine the inclusion of the
region or the individual sample in the next iteration. The effectiveness of our approach was
demonstrated through experimental results on benchmark datasets. The proposed method
achieved state-of-the-art performance even with extremely limited labeled samples. More-
over, the active learning approach enhanced classification accuracy by involving a minimal
amount of additional annotation. In the future, we will continue to explore HSI tasks in FS
scenarios, mainly focusing on domain adaptation, and multi-source information fusion.
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