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Abstract: The vegetation patterns in high-latitude and high-altitude regions (HLAR) of the Northern
Hemisphere are undergoing significant changes due to the combined effects of global warming and
human activities, leading to increased uncertainties in vegetation phenological assessment. However,
previous studies on vegetation phenological changes often relied on long-term time series of remote
sensing products for evaluation and lacked comprehensive analysis of driving factors. In this study,
we utilized high temporal resolution seamless MODIS products (MODIS-NDVISDC and MODIS-
EVI2SDC) to assess the vegetation phenological changes in High-Latitude-Altitude Regions (HLAR)
of the Northern Hemisphere. We quantified the differences in vegetation phenology among different
land-use types and determined the main driving factors behind vegetation phenological changes.
The results showed that the length of the growing season (LOS) derived from MODIS-NDVISDC

was 8.9 days longer than that derived from MODIS-EVI2SDC, with an earlier start of the growing
season (SOS) by 1.5 days and a later end of the growing season (EOS) by 7.4 days. Among different
vegetation types, deciduous needleleaf forests exhibited the fastest LOS extension (p < 0.01), while
croplands showed the fastest LOS reduction (p < 0.05). Regarding land-use transitions, the conversion
of built-up land to forest and grassland had the longest LOS. In expanding agricultural areas, the
LOS of land converted from built-up land to cropland was significantly higher than that of other
land conversions. We analyzed human activities and found that as the human footprint gradient
increased, the LOS showed a decreasing trend. Among the climate-related factors, the dominant
response of phenology to temperature was the strongest in the vegetation greening period. During the
vegetation browning period, the temperature control was weakened, and the control of radiation and
precipitation was enhanced, accounting for 20–30% of the area, respectively. Finally, we supplement
and prove that the highest contributions to vegetation greening in the Northern Hemisphere occurred
during the SOS period (May–June) and the EOS period (October). Our study provides a theoretical
basis for vegetation phenological assessment under global change. It also offers new insights for land
resource management and planning in high-latitude and high-altitude regions.
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1. Introduction

One strategy for land vegetation to adapt to environmental changes to continuously
adjust its growth and development patterns, including early greening and delayed dor-
mancy [1–3]. Climate change, including increasing temperatures [4], changing precipitation
patterns [5], solar radiation [6], wind speed [7], and environmental factors such as carbon
dioxide (CO2) and atmospheric nitrogen (N) deposition [8], is a major factor leading to
changes in vegetation phenology, such as budburst, leaf expansion, flowering, fruiting,
and leaf senescence. However, in addition to climate change, the impact of land use and
land cover change (LULCC) on vegetation phenology in high-latitude regions is often
overlooked. Human activities, through changes in land use and management practices,
alter surface vegetation patterns and structures, which also have significant impacts on
ecosystem services and biodiversity [9]. The impact of LULCC on vegetation phenology
is manifested in changes in vegetation types or as feedback after greening. Furthermore,
LULCC can also affect ecological processes such as ecosystem structure and function, car-
bon balance [10], water cycle, and energy flow [11,12]. While the greening of the land’s
surface has contributed to carbon sinks in the past two decades [9,13], it can also have
negative impacts on the surrounding environment, leading to a reduction in ecosystem
services. For example, increased transpiration resulting from greening can lead to soil
moisture deficits, increasing the frequency of drought events in water-limited arid and
semi-arid regions [14]. This can disrupt the natural phenological cycles of plants and affect
their growth and development patterns. Therefore, it is important to understand the impact
of vegetation dynamics and patterns on phenology.

Remote sensing-based land surface phenology (LSP) refers to the phenological infor-
mation of land surface reflectance captured at the pixel scale by satellite sensors [15,16].
Currently, a significant amount of research focuses on overall studies of different vege-
tation functional types, neglecting the phenology of native functional types and the LSP
differences caused by LULCC [17–19]. For example, native vegetation exhibits a higher
resistance to environmental disturbances due to its stable ecological community structure
compared to non-native vegetation [20,21]. Non-native vegetation may require more or less
water and soil nutrients during its growth compared to native vegetation [14,22,23], and it
also shows different responses to climate compared to native vegetation during environ-
mental adaptation [19]. Therefore, it is of great significance to elucidate the phenological
differences among different vegetation types and under LULCC in order to gain a deep
understanding of the driving mechanisms of regional vegetation phenology.

Currently, most remote sensing datasets used to retrieve LSP, such as MODIS products
(MOD13Q1, MOD13A2, MOD09A1) with 16-day or 8-day intervals and the AVHRR GIMMS
NDVI3g dataset with a 15-day interval, are generated using the maximum value synthesis
method. These products excel at mitigating cloud/shadow effects and reducing noise in
surface bidirectional reflectance [24–27]. However, there is considerable uncertainty in the
accuracy of LSP using the maximum value synthesis method. Some studies have quantified
the influence of temporal resolution differences on the accuracy of phenological retrieval,
emphasizing the importance of temporal resolution [28–30]. Other studies have indicated
that higher temporal resolution leads to higher accuracy in phenological retrieval [31–33].
Therefore, selecting datasets with the highest possible temporal resolution is crucial for
improving the accuracy of LSP retrieval.

The human footprint integrates various pressure indicators, including the built envi-
ronment, nighttime lights, population density, land cover, and land use changes, to com-
prehensively assess the degree of environmental impact caused by human activities [34].
Compared to single indicators, the human footprint provides a better understanding of
the extent to which human activities affect the natural environment and has been widely
applied in studies evaluating the impact of human activities on biodiversity conservation
and climate change [35–37]. Previous research has utilized the human footprint to assess the
differential trends in NDVI and LST (Land Surface Temperature) based on the MCD43C4
(Collection5 and Collection6) and MOD11C2 (Collection5 and Collection6) datasets [38].
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The human footprint serves as an important indicator for assessing the intensity of human
activities and has been found to exert a moderate indirect negative influence on net primary
productivity in the Qilian Mountain region [39]. Moreover, the human footprint has been
utilized to calculate the ecological vulnerability index for the Qinghai-Tibet Plateau region
and quantify important indicators of vegetation-driven impacts in ecologically fragile
areas [40,41]. These studies highlight the potential of the human footprint in evaluating the
impact of human activities on the natural environment, thus emphasizing the significance
of research on vegetation phenology changes.

The HLAR in the Northern Hemisphere is known to be sensitive to climate re-
sponses [42,43]. Since the beginning of the 21st century, these regions have experienced
significant climate changes and the combined effects of human activities. This study con-
ducted a comparative analysis of phenological differences in the HLAR using the seamless
data cube (SDC) product derived from MODIS data. The main objectives of this research
were: (1) to quantitatively analyze the spatiotemporal variations of LSP in the HLAR using
NDVISDC and EVI2SDC products; (2) to examine the differences in LSP across different
land use changes in the HLAR; (3) to quantify the effects of human activities and climate
factors on LSP in the HLAR; and (4) to analyze the response of LSP in the HLAR to global
greening/browning. This study aims to provide a theoretical basis for assessing LSP in the
HLAR under global change and to offer new insights for land resource management and
planning in this region.

2. Materials and Methods
2.1. Study Area

The study area includes the continents of Eurasia and North America (Figure 1),
with a total area of approximately 92.51 × 106 km2. The dominant vegetation cover
types in the area are grassland (46.25%), followed by other land uses (15.34%), forests
(13.49%), shrubs (12.46%), croplands (8.15%), water bodies (3.97%), and built-up areas
(0.34%). The region exhibits a diverse range of climate types, including temperate monsoon
climate, temperate maritime climate, mediterranean climate, temperate continental climate,
subarctic coniferous forest climate, plateau mountain climate, and frigid climate. In terms
of topography, the study area includes the Qinghai-Tibet Plateau, which has some of the
highest elevations in the world. Plains below 200 m in elevation account for 34.3% of the
total area. The climate of the study area is characterized by an average temperature of
−19.05 ◦C in January, an average temperature of 14.2 ◦C in July, and an average annual
precipitation of 40.15 mm. The vegetation in the study area exhibits distinct latitudinal,
longitudinal, and vertical zoning patterns [44].
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Figure 1. Spatial distribution of land cover (a) and phenological observation sites (b) in the study
area. The histogram in the bottom left corner (a) represents the regional proportions of different land
cover types. The vegetation types at the phenological observation sites are primarily evergreen and
deciduous forest.
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2.2. Data Sources
2.2.1. Remote Sensing Dataset

The MODIS Seamless Data Cube (SDC) used in this study is obtained from the
Pengcheng Star Cloud platform (http://data.starcloud.pcl.ac.cn/resource/28, accessed
on 1 May 2024). This dataset is based on the daily MOD09GA 500m product and utilizes
time-series algorithms to fill in gaps in discrete observations, effectively preserving the
dynamic changes in surface reflectance [45]. The SDC product provides two spatial resolu-
tions: 500 m and 0.05◦. The 0.05◦ resolution is derived by aggregating data from the 500-m
scale using the same method as MODIS’ aggregation from 500 m to 0.05◦. Considering
various factors, including data volume and temporal resolution, we have chosen the SDC
reflectance dataset with a temporal interval of 4 days and a spatial resolution of 0.05◦

for conducting phenological research. This high-precision dataset provides the necessary
conditions for accurately assessing vegetation phenology in the study area.

The land cover dataset chosen is MCD12C1 (https://lpdaac.usgs.gov/, accessed on 1
May 2024), which has been further aggregated into categories of forest, shrub, grassland,
cropland, built-up land, water bodies, and other land using the International Geosphere-
Biosphere Programme (IGBP) classification system. The dataset has a resolution of 0.05◦.
We have chosen the land cover datasets for the years 2001 and 2022 to calculate the land
transfer matrix and conduct further research.

2.2.2. Climate Dataset

This study investigates the response of LSP to global climate change during the
period from 2001 to 2022 using climate variables. The monthly precipitation and solar
radiation datasets are sourced from the TerraClimate dataset (http://www.climatologylab.
org/terraclimate.html, accessed on 1 May 2024) at a spatial resolution of approximately
4.6 km. The monthly temperature dataset is obtained from the MODIS MOD11C3 product
(https://lpdaac.usgs.gov/, accessed on 1 May 2024), with a resolution of 0.05◦. To main-
tain consistency in spatial resolution, the precipitation and solar radiation datasets were
resampled to 0.05◦.

2.2.3. Human Footprint Dataset

The human footprint dataset characterizes the degree of human pressure on the natural
environment. A higher value indicates a greater level of disturbance caused by human
activities in a specific area, while a lower value signifies a lesser impact from human
activities [34]. For this study, we utilized the human footprint dataset from 2001 to 2020
(https://doi.org/10.6084/m9.figshare.16571064, accessed on 1 May 2024). The dataset has
a spatial resolution of 1 km. Subsequently, the dataset was resampled to a resolution of
0.05◦. To better analyze the influence of human activities on regional vegetation phenology,
we categorized the dataset into five levels: lowest (0 < Value ≤ 10), low (10 < Value ≤ 20),
medium (20 < Value ≤ 30), high (30 < Value ≤ 40), and highest (40 < Value ≤ 50).

2.2.4. Phenology Validation Dataset

The USA National Phenology Network (USA-NPN) has recorded a significant number
of phenological events for deciduous forests (deciduous broadleaf forests and deciduous
needleleaf forests) during spring and fewer events during autumn (https://www.usanpn.
org/data#Dashboard, accessed on 1 May 2024). To ensure the accuracy of phenological
observations, we compared the vegetation types associated with USA-NPN sites to the
MCD12C1 land cover types. Sites with matching vegetation types were retained, while
sites with unmatched vegetation types were not considered within the scope of validation.

Additionally, the observation dates were restricted to a range of 1–180 days for spring
phenological events and 180–365 days for autumn phenological events. During the vali-
dation process, the SOS corresponded to breaking leaf buds phenophases in deciduous
forests, while the MidGreendown corresponded to all leaves fallen phenophases in decid-
uous broadleaf forests and deciduous needleleaf forests [25,46]. Ultimately, 300 records

http://data.starcloud.pcl.ac.cn/resource/28
https://lpdaac.usgs.gov/
http://www.climatologylab.org/terraclimate.html
http://www.climatologylab.org/terraclimate.html
https://lpdaac.usgs.gov/
https://doi.org/10.6084/m9.figshare.16571064
https://www.usanpn.org/data#Dashboard
https://www.usanpn.org/data#Dashboard
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of breaking leaf buds phenophases and 100 records of all leaves fallen phenophases for
deciduous forests from 2011 to 2022 were selected for phenological validation.

The Pan-European Phenology Project (PEP27) records long-term phenological obser-
vations for 78 species in 25 European countries (http://www.pep725.eu/, accessed on 1
May 2024) [47]. Similarly, we matched the vegetation types associated with monitoring
sites to the MCD12C1 land cover types and excluded sites with inconsistent vegetation
types. In cases where multiple vegetation types were present at a site, the arithmetic mean
was selected as the final phenological result for that site. The timing of SOS corresponds to
the timing of the first visible leaves (BBCH11) in deciduous broadleaf forests and the first
leaves separated (BBCH10) in evergreen needleleaf forests. The timing of MidGreendown
corresponds to the date when leaves in deciduous broadleaf forests exhibit 50% autumn
coloration (BBCH94) [48–52]. Due to the lack of autumn phenology data for evergreen
needleleaf forests and grasslands, their autumn phenological stages were not considered in
this study. Finally, 300 records of the first visible leaves and 50% autumn coloration dates
for deciduous forests, as well as 73 records of the first leaves separated phenophase for
evergreen needleleaf forests, were selected for phenological validation.

2.3. Methods
2.3.1. Retrieval of LSP

In HLAR of the Northern Hemisphere, the presence of snow-covered vegetation
greatly affects the data quality of satellite observations and has significant implications
for phenological retrieval. To mitigate the impact of snow on vegetation indices, previous
studies have relied on either daily temperature data or the interpolation of monthly temper-
ature data to a daily scale [53]. Subsequently, consecutive 5-day periods with temperatures
below 0 ◦C are identified as snow pixels and replaced with values from the nearest un-
contaminated dates [3,54]. However, the interpolation of monthly temperature data to
a daily scale may introduce uncertainties. Additionally, in HLAR, where temperatures
fluctuate greatly, using 0 ◦C as the threshold for determining the presence of snow may
lead to misclassifying snow-free areas as snow-covered, further increasing the level of
uncertainty. Therefore, considering the uncertainties associated with previous studies, we
utilized spectral indices for snow identification. The Normalized Difference Snow Index
(NDSI) was employed, where pixel values greater than 0 indicate the presence of snow
in a particular area [55]. This method is also used by NASA for phenological datasets. In
our study, we first calculated NDVI, EVI2, and NDSI using the SDC reflectance dataset
(Table 1). Then, we filtered out snow using NDSI values greater than 0. Background values
were replaced with the 5th percentile of non-snow observations. Finally, a Savitzky-Golay
filter was applied to the data to smooth it and eliminate inherent noise.

The amplitude threshold method is used for phenological extraction, which is also
utilized by NASA to generate phenology products. This method, originally proposed by
Fischer [56], is applied using the NDVI from the SDC reflectance dataset (see Table S1 for
details). Following the same procedure, seven phenological parameters are extracted: SOS,
MidGreenup, Maturity, Senescence, MidGreendown, EOS, and LOS.

Table 1. Spectral index formulas.

Vegetation Indices Formulas References

NDVI NDVI = (P2 − P1)/(P2 + P1) [57]
EVI2 EVI2 = [2.5 × (P2 − P1)]/(P2 + 2.4 × P1 + 1) [58]
NDSI NDSI = (P4 − P5)/(P4 + P5) [59]

Note: P1 represents the red band, P2 represents the near-infrared band, P4 represents the green band, and P5
represents the shortwave infrared band.

http://www.pep725.eu/


Remote Sens. 2024, 16, 1744 6 of 25

2.3.2. Accuracy Assessment of LSP

We employed ordinary least squares linear regression models to establish the rela-
tionship between actual phenological observation and remote sensing vegetation index
retrieval phenology. To evaluate the accuracy of vegetation index retrieval phenology,
we utilized regression measurement statistics, including root mean square error (RMSE),
R-squared (R2), and bias [60–62]. The smaller RMSE and bias indicate that the phenology
retrieved by the remote sensing vegetation index is closer to the actual observed phenology,
while the larger R2 indicates that the model has stronger explanatory power, that is, the
use of the remote sensing vegetation index can better reflect phenological changes. The
formula is as follows:

RMSE =

√
1
n∑n

i=1(ŷi − yi)
2 (1)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (2)

Bias =
1
n∑n

i=1(ŷi − yi) (3)

where ŷi represents the phenological results obtained from remote sensing vegetation index
retrievals, yi represents the corresponding actual observed results from the site, n represents
the sample size, and y denotes the average value of the observed results.

2.3.3. Trend Detection Method

The spatial trend analysis of vegetation phenology applied the Theil-Sen slope es-
timation method [63]. When the slope is greater than 0, it indicates that the vegetation
phenology is delayed, and when the slope is less than 0, it indicates that the vegetation
phenology is advanced. At the same time, the Mann-Kendall test is used to measure the
significance of the trend [64]. When the P value is less than 0.05, it shows that there is
a significant trend in the results. These two methods have been widely used to detect
phenological trend changes due to their high computational efficiency and no interference
from spillover values [27,39,65,66]. The formula for Theil-Sen slope estimation can be
written as follows:

Slope = Medium
( xi − xj

i − j

)
(4)

In the equation, Slope represents the trend change of vegetation phenological pa-
rameters estimated by Sen’s slope estimation method. xi and xj denote the values of the
vegetation phenological parameters for the i-th and j-th years, respectively.

2.3.4. The Speed of Vegetation Development

In order to reveal the speed of vegetation development during each phenophase,
Piao’s method was employed [67]. Taking the NDVI as an example, the calculation formula
is as follows:

VNDVI(t) = NDVIt − NDVIt−1 (5)

The VNDVI(t) represents the difference in NDVI between two consecutive months
within the year. If VNDVI(t) > 0, it indicates the development of vegetation, while if
VNDVI(t) < 0, it represents the senescence of the vegetation.
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2.3.5. Partial Correlation Analysis

In this study, the partial correlation analysis method was used to investigate the
correlations between precipitation, temperature, solar radiation, and LSP. Partial correlation
refers to examining the correlation between a single climate factor and LSP while controlling
for the influence of other climate factors [3]. The formula is as follows:

Rxy×z =
Rxy − RxzRyz√

(1 − R2
xz)

(
1 − R2

yz

) (6)

Rxy denotes the correlation between x and y while controlling for z. Rxy, Rxz, and
Ryz represent the correlations between two factors. Due to the lagged and cumulative
effects of climate on LSP, this study also investigated the optimal preseason length for
each climate factor [42,68]. The preseason length was set from 0 to 4 months, and the
maximum preseason partial correlation coefficient was used as the correlation between LSP
and climate factors [69].

3. Results
3.1. Accuracy Verification of LSP

Based on the phenological results of deciduous vegetation recorded by the PEP27,
they show good agreement with phenological observations obtained from remote sensing
data (Figure 2). For PEP27, the timing of the first visible leaves in deciduous broadleaf
forests (DBF) was concentrated between 60 and 110 days. The SOS derived from NDVISDC
was concentrated between 40 and 120 days (R2 = 0.64, RMSE = 16.05 d). The SOS derived
from EVI2SDC was concentrated between 65 and 115 days (R2 = 0.68, RMSE = 9.36 d). The
timing of 50% of leaves exhibiting autumn coloration in deciduous broadleaf forests was
concentrated between 250 and 310 days. The MidGreendown of NDVISDC was concentrated
between 260–320 days (R2 = 0.62, RMSE = 12.39 d), while the MidGreendown of EVI2SDC
was concentrated between 260–310 days (R2 = 0.65, RMSE = 6.81 d). Furthermore, the
validation results of vegetation phenology derived from remote sensing observations
exhibit high R2 and low RMSE when compared to the phenological records of evergreen
forest from the PEP27 and deciduous forest observations from the USA-NPN (Table S2,
Figures S1 and S2). Based on these findings, both vegetation indices provide acceptable
accuracy in representing vegetation phenology results, thereby enabling further analysis
and research.

3.2. Human Footprint and Land Use Changes in HLAR

In the HLAR, the human footprint exhibits an overall increasing trend (+0.0135 yr−1),
indicating a significant rise in the pressure exerted by human activities on the natural
environment (Figure 3). The highest human footprint is observed in Europe and the Great
Lakes region of North America, while the Arctic region has the lowest human footprint.
From 2001 to 2022, the area of grassland experienced the largest increase, expanding by ap-
proximately 165.6 × 104 km2, followed by built-up areas with an increase of approximately
2200 km2. Forests, shrubs, croplands, other land types, and water bodies all experienced
decreases, with water bodies undergoing the largest reduction, amounting to a decrease of
84.61 × 104 km2 (Table 2). The land transfer flow chart (Figure S3) reveals a predominant
transition of land cover types towards grasslands, followed by forests.
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Table 2. The land use transfer matrix of the study area from 2001 to 2022 (× 104 km2).

2022
2001

Grassland Forest Shrub Cropland Built-Up Other
Lands

Water Total

Grassland 2122.2 116.9 85.6 45.4 0.9 50.3 67.0 2488.3

Forest 97.7 668.1 0.5 6.4 0.1 0.04 5.5 778.34

Shrub 41.8 1.0 420.2 0.3 -- 1.2 17.9 482.4

Cropland 41.1 3.0 0.2 484.0 0.5 0.3 0.5 529.6

Built-up 0.7 0.2 -- 0.8 20.7 0.01 0.02 22.43

Other lands 16.0 0.1 0.2 -- --- 565.0 1.2 582.5

Water 3.2 0.9 0.2 0.2 0.01 3.0 4360.0 4367.51

Total 2322.7 790.2 506.9 537.1 22.21 619.85 4452.12 9251.08
Remote Sens. 2024, 16, 1744 8 of 25 
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broadleaf forest.
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3.3. Spatial and Temporal Variation of LSP

In the spatial distribution of LSP in HLAR (Figure 4), the general patterns of LSP of
the two vegetation indices are similar. However, the difference between the two vegetation
indices is still noticeable, the EVI2SDC shows a later date for vegetation greening compared
to the NDVISDC (later days: 1.5 d for SOS, 2.9 d for MidGreenup, 0.1 d for Maturity).
Additionally, the vegetation senescence phase of EVI2SDC occurs earlier than NDVISDC
(earlier days: 9.2 d for Senescence, 11.5 d for MidGreendown, 7.4 d for EOS). The LOS of
NDVISDC is longer than that of EVI2SDC (longer days: 8.9 d for LOS).

The LSP retrieved by NDVISDC and EVI2SDC showed no significant difference in the
trend change (Figure 5). The trend of the SOS, MidGreenup, Maturity, and Senescence is
mainly characterized by advanced phenology (advanced trends ratio (significant advanced
trends ratio): 58.73–72.85% (10.29–17.58%) for NDVISDC, 67.66–76.5% (12.48–18.23%) for
EVI2SDC). The trend of the MidGreendown and EOS is mainly characterized by delayed phe-
nology (delayed trends ratio (significant delayed trends ratio): 58.47–61.72% (10.49–11.29%)
for NDVISDC, 52.89–59.36% (11.28–12.35%) for EVI2SDC), as shown in Table S3. The overall
LOS is mainly extended (extended trends ratio (significant extended trends ratio): 65.01%
(18.06%) for NDVISDC, 65.20% (17.33%) for EVI2SDC). The LOS for NDVISDC and EVI2SDC
is extended by 0.11 d yr−1 and 0.13 d yr−1, respectively.

Among different vegetation types, the average LOS retrieved by NDVISDC and
EVI2SDC is longest for evergreen broadleaf forests (212.62 d) and shortest for open shrub-
lands (118.92 d) (Figure S5). From the trend analysis over time, LOS shows a shorten-
ing trend for evergreen broadleaf forests (−0.36 d yr−1), deciduous broadleaf forests
(−0.08 d yr−1), grasslands (−0.10 d yr−1), and croplands (−0.62 d yr−1) (Figure S6). The
vegetation type with the longest extension is deciduous coniferous forests (+0.78 d yr−1),
followed by open shrubs (+0.50 d yr−1).
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Figure 4. The spatial distribution of multi-year average phenological parameters retrieved by
NDVISDC and EVI2SDC in HLAR from 2001 to 2022. Histograms depict the frequency distribution of
corresponding phenological dates. The LOS can be found in Figure S4.

3.4. LSP under Different LULCCs

Different LULCCs have a significant impact on LSP. Analyzing the SOS, EOS, and
LOS based on NDVISDC and EVI2SDC (Figures 6a–d and S7), it is observed that the longest
LOS occurs after land conversion from built-up areas to forests (218.40 d, 207.60 d) and
grasslands (217.6 d, 209.0 d). The SOS (129.53 d, 134.02 d) and EOS (301.54 d, 286.09 d)
are the latest and earliest, respectively, for shrub conversion to forests. Among the shrub
land use change patterns, the EOS is the latest for conversion to forests (283.71 d, 272.88 d).
In the cropland land use change pattern, the LOS is highest for conversion from forests
to croplands (197.62 d, 168.70 d), and the SOS is earliest for conversion from shrubs to
croplands (71.93 d, 64.60 d).
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Analyzing the phenological parameters of MidGreenup, Maturity, Senescence, and
MidGreendown (Figures 6e–h and S8), it is observed that in the forest land use change
pattern, the MidGreendown is earliest for conversion from croplands to forests (127.18
d, 133.98 d), and the Senescence is earliest for conversion from built-up areas to forests
(222.03 d, 208.63 d). In the grassland land use change pattern, the MidGreenup is earliest
for conversion from built-up areas to grasslands (115.84 d, 119.03 d). The Maturity is the
latest for conversion from shrubs to grasslands (184.44 d, 185.77 d). In the cropland land use
change pattern, MidGreenup (91.57 d, 88.25 d), Maturity (116.09 d, 115.04 d), Senescence
(148.13 d, 147.87 d), and MidGreendown (171.03 d, 175.43 d) are the earliest for conversion
from shrubs to croplands. Conversely, MidGreenup (110.84 d, 113.01 d), Maturity (148.38 d,
147.47 d), Senescence (199.25 d, 194.81 d), and MidGreendown (247.71 d, 246.16 d) are the
latest for conversion from built-up areas to croplands.
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viated phenological parameters. The naming rule of the remaining abscissa names is that the land 
cover type represented by the first letter (S: shrub, G: grassland, C: cropland, B: build-up, O: other 
land, W: water) is transferred to the land cover type represented by the second letter. The third letter 
or the third and fourth letters represent phenological parameters (S: SOS, E: EOS, L: LOS, MG: Mid-
Greenup, MA: Maturity, SE: Senescence, MD: MidGreendown). The gray dotted line from top to 
bottom represents the average EOS, LOS, and SOS (a–d) under different LULCC patterns, as well as 
the average MidGreendown, Senescence, Maturity, and MidGreenup (e–h). The phenological dif-
ferences of LSP retrieved by EVI2SDC are shown in Figures S7 and S8. 

Figure 6. The phenological differences of LSP based on the NDVISDC for LULCC in forests (a,e),
shrubs (b,f), grasslands (c,g), and croplands (d,h). In panels (a–d) and (e–h), the first three or
four boxplots represent the phenology under native vegetation. These boxplots are labeled using
abbreviated phenological parameters. The naming rule of the remaining abscissa names is that the
land cover type represented by the first letter (S: shrub, G: grassland, C: cropland, B: build-up, O:
other land, W: water) is transferred to the land cover type represented by the second letter. The
third letter or the third and fourth letters represent phenological parameters (S: SOS, E: EOS, L: LOS,
MG: MidGreenup, MA: Maturity, SE: Senescence, MD: MidGreendown). The gray dotted line from
top to bottom represents the average EOS, LOS, and SOS (a–d) under different LULCC patterns, as
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well as the average MidGreendown, Senescence, Maturity, and MidGreenup (e–h). The phenological
differences of LSP retrieved by EVI2SDC are shown in Figures S7 and S8.

By comparing the differences in phenological trends under different LULCC in the
NDVISDC and EVI2SDC (Figures 7 and S9), it is observed that the SOS is delayed and the
EOS is advanced in most cases of land conversion to croplands. However, for cropland
conversion to shrubs, the LSP shows an earlier Senescence, MidGreendown, and EOS,
which is opposite to the phenological trend of native shrub forest, forest land to shrub,
grassland to shrub, and water body to shrub.
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cropland, B: build-up, O: other land, W: water) is transferred to the land cover type represented by 
the second letter. Each row represents the corresponding phenological parameters. MGP, MAT, 
SEN, and MGD are abbreviations of MidGreenup, Maturity, Senescence, and MidGreendown. The 
black borders with trends greater than 0.35 or less than 0.35 are specially marked. Similarly, the 
trend distribution of EVI2SDC is shown in Figure S9. 

  

Figure 7. Land use change patterns in forest, shrub, grassland, and cropland based on the phenological
trend retrieved from NDVISDC. Each column in the picture represents the change in land use type.
From left to right, the land cover type represented by the first letter (S: shrub, G: grassland, C:
cropland, B: build-up, O: other land, W: water) is transferred to the land cover type represented by
the second letter. Each row represents the corresponding phenological parameters. MGP, MAT, SEN,
and MGD are abbreviations of MidGreenup, Maturity, Senescence, and MidGreendown. The black
borders with trends greater than 0.35 or less than 0.35 are specially marked. Similarly, the trend
distribution of EVI2SDC is shown in Figure S9.

3.5. The Impact of Human Activities (Human Footprint) on LSP

Figure 8 shows that as the human footprint gradient gradually increases, the SOS and
EOS of NDVISDC and EVI2SDC show early greening and late dormancy. In the lowest and
highest levels of human footprint, the SOS and EOS represented by NDVISDC (EVI2SDC)
differed by 44.83 d (45.24 d) and 14.00 d (21.89 d). As the gradient of the human footprint
increases, the LOS becomes longer.

Within the lowest and highest levels of human footprint, the differences in LOS for
NDVISDC and EVI2SDC are 58.84 d and 67.13 d, respectively. MidGreenup, Maturity, and
Senescence occur earlier with the increasing gradient of human footprint. Within the lowest
and highest levels of human footprint, the differences in these phenological parameters for
NDVISDC (EVI2SDC) are 36.44 d (38.28 d), 26.44 d (29.68 d), and 16.85 d (18.22 d), respectively.
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Figure 8. Vegetation phenology at different human footprint levels.

Figure 9 shows the trends of LSP under different gradients of human footprint. Within
the lowest level of human footprint, both NDVISDC and EVI2SDC show an overall trend of
advancing from the SOS to the Senescence, while the MidGreendown to the EOS exhibits a
delayed trend. The LOS for NDVISDC and EVI2SDC increases by 0.28 d yr−1 and 0.25 d yr−1,
respectively. However, in the remaining scenarios, the MidGreendown and EOS show an
overall trend of advancement. At the same time, the LOS exhibits a shortening trend. The
largest reduction of LOS for NDVISDC and EVI2SDC is observed when the human footprint
is in the range of 20–30, with an annual reduction of 0.86 d and 0.35 d, respectively.
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and EVI2 for each phenological parameter refer to the NDVISDC and EVI2SDC datasets, respectively.
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4. Discussion
4.1. The Impact of Climate Change on LSP

Temperature, precipitation, and solar radiation were selected as climatic variables, and
the response of each phenological parameter to climate variables was quantified by using
the maximum partial correlation (Figures 10 and S10). We found that the temperature was
dominated by the negative correlation from the SOS to the Senescence, indicating that with
the increase in temperature, the phenological period of vegetation greening was advanced.
For EOS, the positive correlation was dominant, indicating that higher temperatures can
prevent the decrease of vegetation chlorophyll caused by low temperatures and the dis-
coloration of leaves caused by unsaturated membrane fatty acids [70], which delayed the
autumn phenology, especially in high latitudes.
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Figure 10. Spatial distribution of the partial correlation coefficients between phenological pat-
terns (SOS and EOS) and climate variables (temperature, precipitation, and solar radiation) over
the HLAR. The histograms represent the frequency distribution of the corresponding partial
correlation coefficients.

We found that temperature exhibits different responses to the SOS, MidGreenup,
and Maturity in the HLAR. In high-latitude regions, elevated temperatures meet the heat
requirements for early regreening of cold-adapted vegetation, promoting early regreening
and growth [71]. However, in high-altitude areas such as the Qinghai-Tibet Plateau, there is
a significant positive correlation between temperature and the greening phase of phenology,
which can be attributed to the consumption of a significant amount of heat during the
process of thawing frozen soil and increasing soil moisture, resulting in a gradual decrease
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in temperature and the early regreening of vegetation. Some studies suggest that vegetation
on the Qinghai-Tibet Plateau is primarily controlled by precipitation. As temperatures
increase, increased surface water evaporation delays vegetation regreening [72,73].

The proportional difference between the positive and negative correlations of radiation
and precipitation throughout the entire phenological period is within 20%, which suggests
that their influences on vegetation phenology in HLAR of the Northern Hemisphere are
relatively balanced compared to temperature. Various vegetation types, geographical
regions, and complex ecosystems cause different responses to precipitation and temper-
ature, resulting in little difference in positive and negative partial correlations between
radiation and precipitation on phenology. For example, in cold and wet regions, increased
precipitation during spring is often accompanied by low temperatures, which negatively
affect vegetation growth [66,74]. Conversely, in arid regions, higher temperatures promote
vegetation growth. During the vegetation browning phase, increased precipitation is often
accompanied by low temperatures and cloudiness, which reduce solar radiation and pho-
toperiod in autumn and accelerate the accumulation of senescence enzymes and leaf aging.
Additionally, the higher soil moisture resulting from increased precipitation is unfavorable
for the growth of vegetation roots, leading to an early onset of dormancy [75]. In arid
regions, increased solar radiation accelerates vegetation activity, shortens the growth cycle,
promotes leaf senescence, and causes vegetation to enter dormancy earlier [76].

The predominant climatic factors driving the seven phenological characteristics in
HLAR were studied by calculating the absolute maximum partial correlation coefficients be-
tween temperature, precipitation, and radiation (Table S4). Temperature accounts for more
than 74% of the control over vegetation phenology in HLAR of the Northern Hemisphere
for the SOS, MidGreenup, and Maturity. However, for the Senescence, MidGreendown, and
EOS, the influence of temperature on vegetation phenology decreases significantly com-
pared to the greening period. In contrast, the control effects of precipitation and radiation
show an increasing trend, accounting for approximately 20–30% of the region, respectively.
Nevertheless, temperature remains the primary factor governing vegetation senescence
in HLAR in the Northern Hemisphere. In addition, the preseason length of the response
of each phenological parameter to climate variables was studied (Figures S11–S16). The
influence of temperature and solar radiation on the phenological parameters of the month
is slightly greater than that of the preseason temperature and solar radiation from 1 to
4 months. Temperature with a preseason length of 1 month had a greater impact on SOS
and MidGreenup. Temperature with a preseason length of 2 months has a greater impact
on Maturity. The temperature of the month and the preseason length of 4 months have a
greater impact on Senescence. The temperature of the month has a great influence on the
MidGreendown and EOS.

4.2. The Effects of Global Greening on LSP

Researchers have developed a clear understanding of the trend change of LSP over
time. However, there has been relatively limited exploration of the changes in NDVI or EVI2
during vegetation phenology, as well as the associated speed of vegetation development.
Therefore, we calculated the monthly speed of vegetation development (VNDVI and VEVI2)
based on NDVISDC and EVI2SDC, and discussed the changes in NDVI (EVI2) and the speed
of vegetation development under vegetation phenology.

The VNDVI and VEVI2 of the SOS exhibit a positive development trend (Figures 11 and S18),
with the fastest vegetation development observed in June. However, there are significant
variations in vegetation development among different phenological months. The speed of
vegetation development is highest during the SOS in May and June, while it slows down during
March and April. For the SOS derived from NDVISDC and EVI2SDC, the pixel proportion for
March-April is 36.89% and 29.75%, respectively, whereas it increases to 62.34% and 69.32% for
May–June (Figure S17), which indicates that vegetation with SOS occurring in May–June plays
a dominant role in greening in HLAR.
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During MidGreenup and Maturity, the speed of vegetation development slows
down dominantly, while the trends in NDVISDC and EVI2SDC show an increasing pattern
(Figures S19–S22). During the Senescence, the speed of vegetation senescence from
September to November accelerates dominantly, and the trends of NDVISDC and EVI2SDC
were increasing, and the pixel proportions reached 90.96% and 90.10%, respectively. For
the EOS, NDVISDC and EVI2SDC accounted for 93.83% and 97.69% of the phenological
pixels from September to November, of which the largest proportion was in October,
reaching 44.87% and 60.58%. The speed of vegetation senescence from September to
November is slowing down, and the trend is increasing significantly. Therefore, during
the EOS, the vegetation dominated by October contributed the most to the greening of
the HLAR. This study can be a useful supplement to Liu‘s view that June and October
dominate greening in the Northern Hemisphere [77].

Based on the NDVISDC and EVI2SDC datasets, we conducted a trend analysis of
NDVISDC and EVI2SDC from 2001 to 2022 at the global scale and in several typical regions.
The results indicate that NDVISDC and EVI2SDC have 82.38% and 85.98% of the pixels
showing a positive growth trend, and the proportion of significant pixels is 54.87% and
61.67%, respectively (Figure 12). Global NDVISDC (EVI2SDC) increased at a rate of 0.011
(0.008) decade−1. The greening rate in the Northern Hemisphere is higher than that
in the Southern Hemisphere (NDVISDC: 0.013 vs. 0.006 decade−1; EVI2SDC: 0.009 vs.
0.008 decade−1). Among the continents (Figure S23), Europe exhibits the highest greening
rate (NDVISDC(EVISDC): 0.022 (0.013) decade−1), followed by Asia (NDVISDC(EVISDC):
0.016 (0.011) decade−1), which are both higher than the overall global greening rate. The
contributions of Asia and Europe to global greening, as revealed by NDVISDC and EVI2SDC,
were 50.67% and 51.14%, respectively. Oceania had the smallest contribution to greening,
with 4.10% for NDVISDC and 3.79% for EVI2SDC. At the national scale, China and India
exhibit the most significant greening trends, with India having a higher greening rate than
China (NDVISDC: 0.035 vs. 0.03 decade−1; EVI2SDC: 0.023 vs. 0.021 decade−1). Additionally,
Russia shows a relatively fast greening trend among these countries (NDVISDC(EVI2SDC):
0.017 (0.011) decade−1), surpassing the global and Northern Hemisphere greening rates.
Canada has the lowest greening rate among these countries (NDVISDC(EVI2SDC): 0.005
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(0.002) decade−1). Russia’s relatively fast greening trend may be attributed to the increase
in forest and grassland area by 79.27 km2×104 from 2001 to 2022. Additionally, with global
climate warming, the extension of the vegetation growing period in high-latitude regions
has increased the accumulation of NDVI and EVI. Human land use management is the main
driving force behind land greening in China and India [78]. The rate of greening in India is
dominated by cultivated land (69.30% for NDVISDC, 68.90% for EVI2SDC), and the rate of
greening in China is dominated by grassland (66.31% for NDVISDC, 64.42% for EVI2SDC),
as shown in Table S6. China‘s greening is mainly due to the gradual implementation of
policies such as returning farmland to forests and grasslands for low-yielding fields in
the past 20 years and the national construction of the Three-North Shelterbelt [79], which
has led to a rapid increase in the area of green space and played an important role in
improving land degradation, reducing surface temperature, and carbon storage [79–81].
India’s greening is primarily driven by the expansion of agricultural land and multiple
cropping patterns. With India‘s growing population and food demand, India continues to
increase the use of chemical fertilizers and irrigation of surface water and groundwater [82].
This pattern of greening may not be sustainable in the long term.
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4.3. The Relationship between Different Vegetation Types and Vegetation Phenology

We analyzed the interannual variations of LSP for three vegetation types: forest,
grassland, and shrub. NDVISDC and EVI2SDC exhibit the trends of these phenological
parameters for each vegetation type, and the trend direction was basically similar. However,
there are some discrepancies in the trend directions for grassland during the SOS and for
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shrubs during the MidGreenup. For instance, for the SOS of grassland, NDVISDC indicates
an advancement of −0.012 d yr−1, while EVI2SDC shows a delay of 0.01 d yr−1. During the
MidGreenup of shrubs, NDVISDC shows a delay of 0.069 d yr−1, whereas EVI2SDC shows
an advancement of 0.102 d yr−1 (Figures 13 and S24). The discrepancies in phenological
trends shown by different datasets have also been reported in other studies [83]. The
phenological stages of forests, including the SOS, MidGreenup, Maturity, Senescence, and
MidGreendown, are all advancing at rates of −0.21 d yr−1, −0.16 d yr−1, −0.17 d yr−1, and
−0.01 d yr−1 for NDVISDC, respectively. Similarly, for EVI2SDC, these stages are advancing
at rates of −0.21 d yr−1, −0.14 d yr−1, −0.19 d yr−1, and −0.11 d yr−1. However, the EOS
for forests is delaying by 0.09 d yr−1 for NDVISDC and 0.09 d yr−1 for EVI2SDC. The result
also indicates that shrubs are experiencing changes in their phenological stages. Specifically,
the SOS, MidGreenup, Maturity, and Senescence are all advancing at rates of −0.27 d yr−1,
−0.24 d yr−1, −0.27 d yr−1, and −0.15 d yr−1 for NDVISDC, respectively. Similarly, for
EVI2SDC, these stages are advancing at rates of −0.27 d yr−1, −0.26 d yr−1, −0.29 d yr−1,
and −0.21 d yr−1. However, contrary to the trend in earlier stages, the EOS for shrubs is
prolonging, with a rate of 0.11 d yr−1 for NDVISDC and 0.03 d yr−1 for EVI2SDC. From 2001
to 2022, in the overall phenological changes of forests, shrubs, and grasslands, the trend of
SOS was advanced (NDVISDC: 1.7 d decades−1, EVI2SDC: 1.6 d decades−1), the trend of
EOS was delayed (NDVISDC: 0.4 d decade−1, EVI2SDC: 0.4 d decade−1), and the trend of
LOS is prolonged (NDVISDC: 2.0 d decades−1, EVI2SDC: 1.9 d decades−1).
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Figure 13. The interannual phenological variations of forests, shrubs, and grasslands from 2001 to
2022. Panels (a–c) represent the interannual variations of the SOS, EOS, and LOS for forests, shrubs,
and grasslands, respectively. Panel (d) illustrates the overall phenological changes of forests, shrubs,
and grasslands. The abbreviations “Gra” and “SHR” represent grasslands and shrubs, respectively.

Table 3 compares the phenological trends of different vegetation types. Due to the
selection of different datasets, different phenological retrieval methods, different time
spans, and different types of vegetation definitions, the same vegetation type may exhibit
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variations within the same region. Some scholars have compared vegetation phenol-
ogy in the Northern Hemisphere (>30◦) using the MOD13C1 and CIF datasets. They
focused on secondary land cover types within different vegetation types, such as deciduous
broadleaf forests, open shrublands, and sparse grasslands, to examine the phenological
trends [83]. Researchers have conducted phenological studies in the temperate region
of China, where the fastest advancement of SOS in the deciduous broadleaf forests was
observed (13.6 d decade−1) [84]. In the Northern Hemisphere (>30◦), the SOS of deciduous
forests showed an advancement of 1.7 d decade−1 based on the MOD13C1 dataset and
1.3 d decade−1 based on the SIF dataset [83]. For mixed forests in the temperate region
of China, the SOS advanced by 6.5 d decade−1 [84], while it advanced by 2.6 d decade−1

in mixed forests in the Northern Hemisphere (>40◦) [85]. The SOS of deciduous conifer-
ous forests exhibited an advancement of 3.3 d decade−1 from 1982 to 2014 in Xinjiang,
China [86]. Some scholars have also studied the phenological trends of primary vegetation
types in the Northern Hemisphere (>40◦) from 1982 to 2013 and found that shrubs and
grasslands have delayed SOS and EOS, and the LOS of shrubs is reduced by 0.1 d decade−1.
In our study, shrubs showed earlier SOS and delayed EOS, with an extension of the LOS
by 3.8 d decade−1 according to NDVISDC and 3.0 d decade−1 according to EVI2SDC. Addi-
tionally, forests and grasslands showed early SOS and delayed EOS from 1982 to 2014 in
Northeast China, and the LOS of forests and grasslands was extended by 2.2 d decades−1

and 0.9 d decades−1 [87].

Table 3. Comparison of LSP of forest, shrub, and grassland in different study regions.

Study Area Vegetation
Types Periods

Trend (d yr−1) Satellite
Data Resolution Reference

SOS EOS LOS

The NH
(>30◦) DBF 2001–2018 −0.17 −0.05 0.12 MOD13C1 0.05◦ [83]

The NH
(>30◦) OS 2001–2018 −0.10 0.14 0.23 MOD13C1 0.05◦ [83]

The NH
(>30◦) SA 2001–2018 −0.13 −0.01 0.12 MOD13C1 0.05◦ [83]

The NH
(>30◦) DBF 2001–2018 −0.13 −0.08 0.06 SIF 0.05◦ [83]

The NH
(>30◦) OS 2001–2018 −0.06 −0.01 0.05 SIF 0.05◦ [83]

The NH
(>30◦) SA 2001–2018 −0.13 −0.02 0.11 SIF 0.05◦ [83]

The NH
(>40◦) MF 1982–2013 −0.26 0.35 0.61 AVHRR

GIMMS 8KM [85]

The NH
(>40◦) Shrub 1982–2013 0.08 0.07 −0.01 AVHRR

GIMMS 8KM [85]

The NH
(>40◦) GRA 1982–2013 0.02 0.04 0.02 AVHRR

GIMMS 8KM [85]

Temperate
region China GRA 1982–2015 --- 0.16 --- AVHRR

GIMMS 8KM [88]

Temperate
region China MEA 1982–2015 --- 0.17 ---- AVHRR

GIMMS 8KM [88]

Temperate
region China CNF 1982–2015 −1.08 --- --- AVHRR

GIMMS 8KM [84]

Temperate
region China MF 1982–2015 −0.65 --- --- AVHRR

GIMMS 8KM [84]

Temperate
region China DBF 1982–2015 −1.36 --- --- AVHRR

GIMMS 8KM [84]

Temperate
region China GRA 1982–2015 −0.33 ---- --- AVHRR

GIMMS 8KM [84]
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Table 3. Cont.

Study Area Vegetation
Types Periods

Trend (d yr−1) Satellite
Data Resolution Reference

SOS EOS LOS

Xinjiang,
China DNF 1982–2014 −0.30 --- --- AVHRR

GIMMS 8KM [86]

The
Northeast

China
Forest 1982–2014 −0.06 0.16 0.22 AVHRR

GIMMS 8km [87]

The
Northeast

China
GRA 1982–2014 −0.07 0.02 0.09 AVHRR

GIMMS 8km [87]

The HLAR
of NH Forest 2001–2022 −0.21 0.09 0.30 NDVISDC 0.05◦ This study

The HLAR
of NH GRA 2001–2022 −0.01 −0.07 −0.06 NDVISDC 0.05◦ This study

The HLAR
of NH Shrub 2001–2022 −0.27 0.11 0.38 NDVISDC 0.05◦ This study

The HLAR
of NH Forest 2001–2022 −0.21 0.09 0.30 EVI2SDC 0.05◦ This study

The HLAR
of NH GRA 2001–2022 0.01 −0.01 −0.02 EVI2SDC 0.05◦ This study

The HLAR
of NH Shrub 2001–2022 −0.27 0.03 0.30 EVI2SDC 0.05◦ This study

Note: DNF: Deciduous Needleleaf Forests, OS: Open Shrublands, SA: Savannas, CNF: Cold-temperate Needleleaf
Forest, MF: Mixed Needle-leaf and Broadleaf Forests, DBF: Deciduous Broadleaf Forests, MEA:MEADOW.

5. Conclusions

In this study, high temporal resolution MODIS products (NDVISDC and EVI2SDC) from
2001 to 2022 were used to explore the vegetation phenology in HLAR of the Northern
Hemisphere from the perspective of human footprint and land use change, and the re-
lationship between climate drive and vegetation greening and phenology was analyzed.
The LSP characterized by EVI2SDC is later than NDVISDC in the development period of
vegetation and earlier than NDVISDC in the senescence period of vegetation. From the
analysis of time trends, the trend of the SOS, MidGreenup, Maturity, and Senescence is
mainly in advance, and the MidGreendown to the EOS is mainly delayed. The LOS of
NDVISDC and EVI2SDC was prolonged by 0.11 d yr−1 and 0.13 d yr−1, respectively. Among
different vegetation types, the LOS of evergreen broadleaf forest was the longest (212.62 d),
the LOS of open shrub was the shortest (118.92 d), and the deciduous coniferous forest
exhibits the fastest rate of LOS extension (0.78 d yr−1). Regarding phenological changes
under land use transitions of forests and grasslands, the LOS is the longest when the land
is converted from built-up areas to forests and grasslands, with LOS values of 217.76 d
(NDVISDC) and 209.0 d (EVI2SDC), respectively. In the expansion of cropland pattern, the
conversion of forests to cropland has the highest LOS, with values of 197.62 d (NDVISDC)
and 168.70 d (EVI2SDC), respectively.

Based on the analysis of temporal trends, in the case of most land cover conversion
to cropland, the SOS is delayed and the EOS is advanced, which is contrary to the trend
of most forests, grasslands, and shrubs. As the gradient of the human footprint gradually
increases, the timing of SOS and EOS of NDVISDC and EVI2SDC appears earlier and later,
but LOS shows a shortening trend. Temperature plays a predominant role in phenological
responses, while the effects of precipitation and radiation on phenology are relatively
balanced compared to temperature. At the same time, we supplemented the vegetation
development and senescence months that play a key role in greening in the northern
hemisphere. This study provides important insights into land use management under
global climate change and enhances our understanding of global greening processes.



Remote Sens. 2024, 16, 1744 22 of 25

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs16101744/s1, Figures S1–S24; Tables S1–S7.

Author Contributions: Conceptualization, X.M.; methodology, X.M.; validation, H.Y. (Hanmin Yin),
Q.L. and Y.L.; resources, Q.L.; data curation, H.Y. (Hanmin Yin); writing—original draft preparation,
H.Y. (Hanmin Yin) and Q.L.; writing—review and editing, H.Y. (Hanmin Yin) and Q.L.; supervi-
sion, X.L. and H.Y. (Huping Ye). All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Open Project of Key Laboratory, Xinjiang Uygur Au-
tonomous Region (2023D04073), the Xinjiang Tianshan Youth Talent Top Project (2023TSYCCX0078),
the Major Key Project of PCL, and the National Key Research and Development Program of China
(2020YFA0608703).

Data Availability Statement: The MODIS Seamless Data Cube (SDC) is obtained from the Pengcheng
Star Cloud platform (http://data.starcloud.pcl.ac.cn/resource/28, accessed on 1 May 2024).

Acknowledgments: We would like to thank NASA’s Land Process Distributed Active Archive Center
(LPDAAC) (https://lpdaac.usgs.gov/, accessed on 1 May 2024) for the MOD11C3 and MCD12C1
datasets, the solar radiation and precipitation dataset provided by TerraClimate, the human footprint
dataset shared by Haowei Mu, and the validation dataset provided by the United States National
Phenology Network (USA-NPN) and the Pan-European Phenological Data Project (PEP27). Their
contribution is crucial to the success of this project, and we sincerely thank them for their support.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Yang, Z.; Shen, M.; Jia, S.; Guo, L.; Yang, W.; Wang, C.; Chen, X.; Chen, J. Asymmetric responses of the end of growing season to

daily maximum and minimum temperatures on the Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 13278–13287. [CrossRef]
2. Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant phenology and global climate

change: Current progresses and challenges. Glob. Change Biol. 2019, 25, 1922–1940. [CrossRef] [PubMed]
3. Li, P.; Liu, Z.; Zhou, X.; Xie, B.; Li, Z.; Luo, Y.; Zhu, Q.; Peng, C. Combined control of multiple extreme climate stressors on

autumn vegetation phenology on the Tibetan Plateau under past and future climate change. Agric. For. Meteorol. 2021, 308, 108571.
[CrossRef]

4. Park, H.; Jeong, S.; Peñuelas, J. Accelerated rate of vegetation green-up related to warming at northern high latitudes. Glob.
Change Biol. 2020, 26, 6190–6202. [CrossRef] [PubMed]

5. Liu, Q.; Fu, Y.H.; Zeng, Z.; Huang, M.; Li, X.; Piao, S. Temperature, precipitation, and insolation effects on autumn vegetation
phenology in temperate China. Glob. Change Biol. 2016, 22, 644–655. [CrossRef] [PubMed]

6. Basler, D.; Körner, C. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species.
Tree Physiol. 2014, 34, 377–388. [CrossRef] [PubMed]

7. Dong, L.; Wu, C.; Wang, X.; Zhao, N. Satellite observed delaying effects of increased winds on spring green-up dates. Remote Sens.
Environ. 2023, 284, 113363. [CrossRef]

8. Guo, M.; Wu, C.; Peng, J.; Lu, L.; Li, S. Identifying contributions of climatic and atmospheric changes to autumn phenology over
mid-high latitudes of Northern Hemisphere. Glob. Planet. Change 2021, 197, 103396. [CrossRef]

9. Chazdon, R.; Brancalion, P. Restoring forests as a means to many ends. Science 2019, 365, 24–25. [CrossRef]
10. Keenan, T.F.; Gray, J.; Friedl, M.A.; Toomey, M.; Bohrer, G.; Hollinger, D.Y.; Munger, J.W.; O’Keefe, J.; Schmid, H.P.; Wing, I.S.

Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 2014, 4,
598–604. [CrossRef]

11. Huntington, T.G. Climate change, growing season length, and transpiration: Plant response could alter hydrologic regime. Plant
Biol. 2004, 6, 651–653. [CrossRef]

12. Peñuelas, J.; Rutishauser, T.; Filella, I. Phenology feedbacks on climate change. Science 2009, 324, 887–888. [CrossRef] [PubMed]
13. Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.;

Smith, P. Natural climate solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [CrossRef] [PubMed]
14. Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X. Revegetation in China’s Loess Plateau is

approaching sustainable water resource limits. Nat. Clim. Change 2016, 6, 1019–1022. [CrossRef]
15. Delbart, N.; Kergoat, L.; Le Toan, T.; Lhermitte, J.; Picard, G. Determination of phenological dates in boreal regions using

normalized difference water index. Remote Sens. Environ. 2005, 97, 26–38. [CrossRef]
16. Helman, D. Land surface phenology: What do we really ‘see’ from space? Sci. Total Environ. 2018, 618, 665–673. [CrossRef]

[PubMed]
17. Lewis, S.L.; Wheeler, C.E.; Mitchard, E.T.; Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature

2019, 568, 25–28. [CrossRef]

https://www.mdpi.com/article/10.3390/rs16101744/s1
https://www.mdpi.com/article/10.3390/rs16101744/s1
http://data.starcloud.pcl.ac.cn/resource/28
https://lpdaac.usgs.gov/
https://doi.org/10.1002/2017JD027318
https://doi.org/10.1111/gcb.14619
https://www.ncbi.nlm.nih.gov/pubmed/30884039
https://doi.org/10.1016/j.agrformet.2021.108571
https://doi.org/10.1111/gcb.15322
https://www.ncbi.nlm.nih.gov/pubmed/32869929
https://doi.org/10.1111/gcb.13081
https://www.ncbi.nlm.nih.gov/pubmed/26340580
https://doi.org/10.1093/treephys/tpu021
https://www.ncbi.nlm.nih.gov/pubmed/24713858
https://doi.org/10.1016/j.rse.2022.113363
https://doi.org/10.1016/j.gloplacha.2020.103396
https://doi.org/10.1126/science.aax9539
https://doi.org/10.1038/nclimate2253
https://doi.org/10.1055/s-2004-830353
https://doi.org/10.1126/science.1173004
https://www.ncbi.nlm.nih.gov/pubmed/19443770
https://doi.org/10.1073/pnas.1710465114
https://www.ncbi.nlm.nih.gov/pubmed/29078344
https://doi.org/10.1038/nclimate3092
https://doi.org/10.1016/j.rse.2005.03.011
https://doi.org/10.1016/j.scitotenv.2017.07.237
https://www.ncbi.nlm.nih.gov/pubmed/29037474
https://doi.org/10.1038/d41586-019-01026-8


Remote Sens. 2024, 16, 1744 23 of 25

18. Buechel, M.; Slater, L.; Dadson, S. Hydrological impact of widespread afforestation in Great Britain using a large ensemble of
modelled scenarios. Commun. Earth Environ. 2022, 3, 6. [CrossRef]

19. Wang, L.; She, D.; Xia, J.; Meng, L.; Li, L. Revegetation affects the response of land surface phenology to climate in Loess Plateau,
China. Sci. Total Environ. 2023, 860, 160383. [CrossRef]

20. Hua, F.; Bruijnzeel, L.A.; Meli, P.; Martin, P.A.; Zhang, J.; Nakagawa, S.; Miao, X.; Wang, W.; McEvoy, C.; Peña-Arancibia, J.L.
The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 2022, 376, 839–844.
[CrossRef]

21. Wang, C.; Zhang, W.; Li, X.; Wu, J. A global meta-analysis of the impacts of tree plantations on biodiversity. Glob. Ecol. Biogeogr.
2022, 31, 576–587. [CrossRef]

22. Jia, Y.; Li, T.; Shao, M.a.; Hao, J.; Wang, Y.; Jia, X.; Zeng, C.; Fu, X.; Liu, B.; Gan, M. Disentangling the formation and evolvement
mechanism of plants-induced dried soil layers on China’s Loess Plateau. Agric. For. Meteorol. 2019, 269, 57–70. [CrossRef]

23. Zhou, G.; Xia, J.; Zhou, P.; Shi, T.; Li, L. Not vegetation itself but mis-revegetation reduces water resources. Sci. China Earth Sci.
2021, 64, 404–411. [CrossRef]

24. Li, P.; Peng, C.; Wang, M.; Luo, Y.; Li, M.; Zhang, K.; Zhang, D.; Zhu, Q. Dynamics of vegetation autumn phenology and its
response to multiple environmental factors from 1982 to 2012 on Qinghai-Tibetan Plateau in China. Sci. Total Environ. 2018, 637,
855–864. [CrossRef] [PubMed]

25. Xin, Q.; Li, J.; Li, Z.; Li, Y.; Zhou, X. Evaluations and comparisons of rule-based and machine-learning-based methods to retrieve
satellite-based vegetation phenology using MODIS and USA National Phenology Network data. Int. J. Appl. Earth Obs. Geoinf.
2020, 93, 102189. [CrossRef]

26. Qi, Y.; Wang, H.; Ma, X.; Zhang, J.; Yang, R. Relationship between vegetation phenology and snow cover changes during
2001–2018 in the Qilian Mountains. Ecol. Indic. 2021, 133, 108351. [CrossRef]

27. Ge, C.; Sun, S.; Yao, R.; Sun, P.; Li, M.; Bian, Y. Long-term vegetation phenology changes and response to multi-scale meteorological
drought on the Loess Plateau, China. J. Hydrol. 2022, 614, 128605. [CrossRef]

28. Zhu, Y.; Zhang, Y.; Zu, J.; Wang, Z.; Huang, K.; Cong, N.; Tang, Z. Effects of data temporal resolution on phenology extractions
from the alpine grasslands of the Tibetan Plateau. Ecol. Indic. 2019, 104, 365–377. [CrossRef]

29. Zhao, D.; Hou, Y.; Zhang, Z.; Wu, Y.; Zhang, X.; Wu, L.; Zhu, X.; Zhang, Y. Temporal resolution of vegetation indices and
solar-induced chlorophyll fluorescence data affects the accuracy of vegetation phenology estimation: A study using in-situ
measurements. Ecol. Indic. 2022, 136, 108673. [CrossRef]

30. Zhao, Y.; Wang, M.; Zhao, T.; Luo, Y.; Li, Y.; Yan, K.; Lu, L.; Tran, N.N.; Wu, X.; Ma, X. Evaluating the potential of H8/AHI
geostationary observations for monitoring vegetation phenology over different ecosystem types in northern China. Int. J. Appl.
Earth Obs. Geoinf. 2022, 112, 102933. [CrossRef]

31. Zhang, X.; Friedl, M.A.; Schaaf, C.B. Sensitivity of vegetation phenology detection to the temporal resolution of satellite data. Int.
J. Remote Sens. 2009, 30, 2061–2074. [CrossRef]

32. Kross, A.; Fernandes, R.; Seaquist, J.; Beaubien, E. The effect of the temporal resolution of NDVI data on season onset dates and
trends across Canadian broadleaf forests. Remote Sens. Environ. 2011, 115, 1564–1575. [CrossRef]

33. Cui, T.; Martz, L.; Zhao, L.; Guo, X. Investigating the impact of the temporal resolution of MODIS data on measured phenology in
the prairie grasslands. GISci. Remote Sens. 2020, 57, 395–410. [CrossRef]

34. Mu, H.; Li, X.; Wen, Y.; Huang, J.; Du, P.; Su, W.; Miao, S.; Geng, M. A global record of annual terrestrial Human Footprint dataset
from 2000 to 2018. Sci. Data 2022, 9, 176. [CrossRef] [PubMed]

35. Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M.
Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun.
2016, 7, 12558. [CrossRef] [PubMed]

36. Tucker, M.A.; Böhning-Gaese, K.; Fagan, W.F.; Fryxell, J.M.; Van Moorter, B.; Alberts, S.C.; Ali, A.H.; Allen, A.M.; Attias, N.; Avgar,
T. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 2018, 359, 466–469. [CrossRef]
[PubMed]

37. Hoffmann, S.; Irl, S.D.; Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun.
2019, 10, 4787. [CrossRef]

38. Heck, E.; de Beurs, K.M.; Owsley, B.C.; Henebry, G.M. Evaluation of the MODIS collections 5 and 6 for change analysis of
vegetation and land surface temperature dynamics in North and South America. ISPRS J. Photogramm. Remote Sens. 2019, 156,
121–134. [CrossRef]

39. Wang, C.; Zhao, W.; Zhang, Y. The change in net ecosystem productivity and its driving mechanism in a mountain ecosystem of
arid regions, Northwest China. Remote Sens. 2022, 14, 4046. [CrossRef]

40. Zhao, Z.; Li, T.; Zhang, Y.; Lü, D.; Wang, C.; Lü, Y.; Wu, X. Spatiotemporal patterns and driving factors of ecological vulnerability
on the Qinghai-Tibet Plateau based on the google earth engine. Remote Sens. 2022, 14, 5279. [CrossRef]

41. Yang, S.; Zhao, Y.; Yang, D.; Lan, A. Analysis of Vegetation NDVI Changes and Driving Factors in the Karst Concentration
Distribution Area of Asia. Forests 2024, 15, 398. [CrossRef]

42. Piao, S.; Fang, J.; Zhou, L.; Ciais, P.; Zhu, B. Variations in satellite-derived phenology in China’s temperate vegetation. Glob.
Change Biol. 2006, 12, 672–685. [CrossRef]

https://doi.org/10.1038/s43247-021-00334-0
https://doi.org/10.1016/j.scitotenv.2022.160383
https://doi.org/10.1126/science.abl4649
https://doi.org/10.1111/geb.13440
https://doi.org/10.1016/j.agrformet.2019.02.011
https://doi.org/10.1007/s11430-020-9670-x
https://doi.org/10.1016/j.scitotenv.2018.05.031
https://www.ncbi.nlm.nih.gov/pubmed/29763866
https://doi.org/10.1016/j.jag.2020.102189
https://doi.org/10.1016/j.ecolind.2021.108351
https://doi.org/10.1016/j.jhydrol.2022.128605
https://doi.org/10.1016/j.ecolind.2019.05.004
https://doi.org/10.1016/j.ecolind.2022.108673
https://doi.org/10.1016/j.jag.2022.102933
https://doi.org/10.1080/01431160802549237
https://doi.org/10.1016/j.rse.2011.02.015
https://doi.org/10.1080/15481603.2020.1723279
https://doi.org/10.1038/s41597-022-01284-8
https://www.ncbi.nlm.nih.gov/pubmed/35440581
https://doi.org/10.1038/ncomms12558
https://www.ncbi.nlm.nih.gov/pubmed/27552116
https://doi.org/10.1126/science.aam9712
https://www.ncbi.nlm.nih.gov/pubmed/29371471
https://doi.org/10.1038/s41467-019-12603-w
https://doi.org/10.1016/j.isprsjprs.2019.07.011
https://doi.org/10.3390/rs14164046
https://doi.org/10.3390/rs14205279
https://doi.org/10.3390/f15030398
https://doi.org/10.1111/j.1365-2486.2006.01123.x


Remote Sens. 2024, 16, 1744 24 of 25

43. Cong, N.; Wang, T.; Nan, H.; Ma, Y.; Wang, X.; Myneni, R.B.; Piao, S. Changes in satellite-derived spring vegetation green-up date
and its linkage to climate in China from 1982 to 2010: A multimethod analysis. Glob. Change Biol. 2013, 19, 881–891. [CrossRef]
[PubMed]

44. Gao, M.; Wang, X.; Meng, F.; Liu, Q.; Li, X.; Zhang, Y.; Piao, S. Three-dimensional change in temperature sensitivity of northern
vegetation phenology. Glob. Change Biol. 2020, 26, 5189–5201. [CrossRef]

45. Liang, X.; Liu, Q.; Wang, J.; Chen, S.; Gong, P. Global 500 m seamless dataset (2000–2022) of land surface reflectance generated
from MODIS products. Earth Syst. Sci. Data Discuss. 2023, 2023, 1–40. [CrossRef]

46. Elmore, A.J.; Stylinski, C.D.; Pradhan, K. Synergistic Use of Citizen Science and Remote Sensing for Continental-Scale Measure-
ments of Forest Tree Phenology. Remote Sens. 2016, 8, 502. [CrossRef]

47. Templ, B.; Koch, E.; Bolmgren, K.; Ungersböck, M.; Paul, A.; Scheifinger, H.; Rutishauser, T.; Busto, M.; Chmielewski, F.-M.;
Hájková, L. Pan European Phenological database (PEP725): A single point of access for European data. Int. J. Biometeorol. 2018, 62,
1109–1113. [CrossRef] [PubMed]

48. Ma, Q.; Huang, J.-G.; Hänninen, H.; Berninger, F. Reduced geographical variability in spring phenology of temperate trees with
recent warming. Agric. For. Meteorol. 2018, 256–257, 526–533. [CrossRef]

49. Fu, Y.H.; Zhang, X.; Piao, S.; Hao, F.; Geng, X.; Vitasse, Y.; Zohner, C.; Peñuelas, J.; Janssens, I.A. Daylength helps temperate
deciduous trees to leaf-out at the optimal time. Glob. Change Biol. 2019, 25, 2410–2418. [CrossRef]

50. Paoli, A.; Weladji, R.B.; Holand, Ø.; Kumpula, J. The onset in spring and the end in autumn of the thermal and vegetative growing
season affect calving time and reproductive success in reindeer. Curr. Zool. 2019, 66, 123–134. [CrossRef]

51. Bórnez, K.; Descals, A.; Verger, A.; Peñuelas, J. Land surface phenology from VEGETATION and PROBA-V data. Assessment
over deciduous forests. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101974. [CrossRef]

52. Liu, Y.; Wu, C.; Tian, F.; Wang, X.; Gamon, J.A.; Wong, C.Y.; Zhang, X.; Gonsamo, A.; Jassal, R.S. Modeling plant phenology by
MODIS derived photochemical reflectance index (PRI). Agric. For. Meteorol. 2022, 324, 109095. [CrossRef]

53. Xu, X.; Du, H.; Fan, W.; Hu, J.; Mao, F.; Dong, H. Long-term trend in vegetation gross primary production, phenology and their
relationships inferred from the FLUXNET data. J. Environ. Manag. 2019, 246, 605–616. [CrossRef] [PubMed]

54. Liu, Y.; Wu, C.; Wang, X.; Jassal, R.S.; Gonsamo, A. Impacts of global change on peak vegetation growth and its timing in
terrestrial ecosystems of the continental US. Glob. Planet. Change 2021, 207, 103657. [CrossRef]

55. Chang, Q.; Xiao, X.; Jiao, W.; Wu, X.; Doughty, R.; Wang, J.; Du, L.; Zou, Z.; Qin, Y. Assessing consistency of spring phenology of
snow-covered forests as estimated by vegetation indices, gross primary production, and solar-induced chlorophyll fluorescence.
Agric. For. Meteorol. 2019, 275, 305–316. [CrossRef]

56. Fischer, A. A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop
parameters. Remote Sens. Environ. 1994, 48, 220–230. [CrossRef]

57. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec.
Publ. 1974, 351, 309.

58. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance
of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]

59. Hall, D.K.; Riggs, G.A. Normalized-difference snow index (NDSI). In Encyclopedia of Snow, Ice and Glaciers; Springer:
Berlin/Heidelberg, Germany, 2010.

60. Delloye, C.; Weiss, M.; Defourny, P. Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate
nitrogen uptake in intensive winter wheat cropping systems. Remote Sens. Environ. 2018, 216, 245–261. [CrossRef]

61. Chen, X.; Yang, Y. Observed earlier start of the growing season from middle to high latitudes across the Northern Hemisphere
snow-covered landmass for the period 2001–2014. Environ. Res. Lett. 2020, 15, 034042. [CrossRef]

62. Xu, D.; Wang, C.; Chen, J.; Shen, M.; Shen, B.; Yan, R.; Li, Z.; Karnieli, A.; Chen, J.; Yan, Y. The superiority of the normalized
difference phenology index (NDPI) for estimating grassland aboveground fresh biomass. Remote Sens. Environ. 2021, 264, 112578.
[CrossRef]

63. Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [CrossRef]
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