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Abstract: Cyanobacterial blooms represent a common environmental issue in aquatic systems, and
these blooms bring forth numerous hazards, with the generation of volatile organic compounds
(VOCs) being one of them. Global climate change has led to alterations in various climatic factors
affecting algal growth, indirectly impacting the quantity of VOCs released by algae. With advance-
ments in remote sensing technology, exploration of the spatiotemporal distributions of algae in large
water bodies has become feasible. This study focuses on Taihu Lake, characterized by frequent
occurrences of cyanobacterial blooms. Utilizing MODIS satellite imagery from 2001 to 2020, we
analyzed the spatiotemporal characteristics of cyanobacterial blooms in Taihu Lake and its subre-
gions. Employing the LightGBM machine learning model and the (SHapley Additive exPlanations)
SHAP values, we quantitatively analyzed the major meteorological drivers influencing cyanobacterial
blooms in each region. VOC-related source spectra and emission intensities from cyanobacteria in
Taihu Lake are collected based on the literature review and are used to compile the first inventory
of VOC emissions from blue-green algae blooms in Taihu Lake. The results indicate that since the
21st century, the situation of cyanobacterial blooms in Taihu Lake has continued to deteriorate with
increasing variability. The relative impact of meteorological factors varies across different regions,
but temperature consistently shows the highest sensitivity in all areas. The VOCs released from
the algal blooms increase with the proliferation of the blooms, posing a continuous threat to the
atmospheric environment of the surrounding cities. This study aims to provide a scientific basis for
further improvement of air quality in urban areas adjacent to large lakes.

Keywords: cyanobacteria; VOCs; MODIS; climate change; explainable machine learning

1. Introduction

Since the 1980s, the frequency and severity of cyanobacterial blooms in Taihu Lake
have exhibited a discernible upward trend [1–3]. On multiple occasions, the repercussions
of algal-bloom incidents have detrimentally impacted the lives of millions, significantly
affecting critical aspects such as drinking water supply, tourism, and aquaculture in the ad-
jacent urban centers [4]. Furthermore, at various life stages, cyanobacteria release (volatile
organic compounds) VOCs [5], influencing both lake ecosystems and the atmosphere,
particularly in the formation of tropospheric ozone and secondary organic aerosols (SOA)
during algal blooms [6–14]. A profound understanding of how climate change influences
the growth of algal blooms, the quantity of VOCs produced by these blooms, and the
impact of VOCs on surrounding urban areas is crucial for further improvement of the
environmental quality of Taihu Lake.
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The growth of cyanobacterial blooms is influenced by various factors, categorized as
external environmental factors and internal physiological and ecological characteristics. In-
ternal physiological and ecological characteristics include unique cell structures that confer
traits such as nitrogen fixation, CO2 concentration mechanisms, buoyancy generation, and
toxin production, providing cyanobacteria with a competitive advantage in phytoplankton
competition [15–19]. External influencing factors are the primary drivers for the occur-
rence of cyanobacterial blooms. These factors include nutrients (nitrogen, phosphorus,
nitrogen-phosphorus ratio, etc.) [20,21], physical variables of water bodies (temperature,
transparency, etc.), hydrodynamic conditions (flow rate, hydraulic retention time, etc.) [22],
biological variables (phytoplankton, filter-feeding fish, etc.), and meteorological factors
(temperature, precipitation, wind speed, radiation duration, etc.).

Prior to the increased attention to global warming, nutrients were considered ab-
solute controllers. However, with the drastic changes in global climate, meteorological
factors such as temperature, precipitation, solar radiation, wind, etc., have exhibited sig-
nificant variations [23,24]. These changes subsequently affect the hydrodynamics and
biogeochemical processes of nutrients in lakes, increasing the frequency and intensity of
cyanobacterial-bloom occurrences and posing a serious threat to lake ecosystem security
and human health [25,26]. In the context of global climate change, algal blooms, exacerbated
by meteorological conditions, pose a significant challenge.

The impact mechanism of meteorological conditions on cyanobacteria has been exten-
sively studied, as evidenced by numerous research endeavors. For instance, temperature
is a key factor influencing cyanobacterial growth, affecting various physicochemical pro-
cesses in water [27–29]. Temperature influences various chemical and physical processes
in the water, such as the dissolution, dissociation, or decomposition rates of substances
like minerals and organic matter. These processes indirectly impact the photosynthesis of
algae in aquatic environments. More importantly, temperature affects the reaction rates of
photosynthetic enzymes, the rates of synthetic metabolism, and respiratory intensity within
cyanobacteria, altering the overall photosynthetic yield and the net production process
of algae. For rainfall impacts, Bouvy et al. [30] suggest that nutrients can be transferred
into water bodies by rainfall, and at the same time, rainfall can increase water volume,
dilute pollutants, lower water and air temperatures, and lead to a rise in lake levels, thereby
altering the concentration of nutrients in the water. The importance of rainfall in affecting
bloom occurrence is also reported by Reichwaldt et al. [31] and Wood et al. [32]. Solar radia-
tion serves as the driving force for the photosynthetic process in algae. The photosynthetic
rate of algae increases with increasing light intensity until it reaches the compensation
point, where the rate of photosynthesis equals the rate of respiration. As light intensity
continues to increase, the photosynthetic rate will also continue to rise until it reaches the
light saturation point, at which the photosynthetic rate reaches its maximum value and
remains steady. [31,32]. Wind is a crucial factor influencing hydrodynamics in aquatic
environments. Studies indicate that when wind acts on the water surface, it induces turbu-
lence, significantly impacting both the vertical and horizontal distribution of cyanobacteria.
Excessive wind speed may submerge cyanobacteria underwater, preventing the formation
of blooms. Conversely, low wind speeds result in a relatively smooth water surface with
no wave action, causing cyanobacteria to float on the water, drift downwind, accumulate
along windward shores, and form blooms [31,33,34].

Remote sensing, with its advantages of high spatial and temporal resolutions and
low-cost detection, has been extensively used for land vegetation studies and cyanobacteria
distribution monitoring [35–41]. Recently, decision trees, machine learning, and other meth-
ods were explored to enhance the accuracy of algal-bloom inference. It can be asserted that
the satellite-based inference of extensive algal blooms has evolved into a relatively mature
technology. The endeavor is noted in attempting to characterize regional VOC conditions
through the inverse estimation of atmospheric column concentrations of VOCs [42–45]. Yet,
the integration of remote sensing with cyanobacteria-released VOCs research is scarce.
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This study investigates the impact of climate change on cyanobacterial blooms in
Taihu Lake, one of China’s major freshwater lakes located in eastern China. We performed
a rigorous quantitative analysis using the LightGBM machine learning model and the
SHAP (SHapley Additive exPlanations) method to identify and assess the primary climatic
drivers influencing these blooms in each region of Taihu Lake. Additionally, we compiled
an inventory of VOC emissions from cyanobacterial blooms based on source spectra and
emission intensities. The study also provides a preliminary exploration of changes in VOC
emissions from algal blooms in the context of climate change, offering reference data for
investigating the impact of bloom-released VOCs on surrounding areas. Section 2 presents
data and methods. Section 3 details the spatiotemporal characteristics of cyanobacterial
blooms, VOC-emission patterns, and meteorological conditions observed in Taihu Lake
through satellite data. Section 4 discusses the impact of meteorological factors on cyanobac-
terial blooms and the implications of the algal-bloom VOC inventory. A conclusion is given
in Section 5.

2. Data and Methods
2.1. Study Area

Taihu Lake (30.56◦–31.87◦N, 119.54◦–120.85◦E, right panel of Figure 1) stands as the
third-largest freshwater lake in China, encompassing an area of approximately 2338 square
kilometers. By the year 2022, the lake’s volumetric capacity reached 51.6 billion cubic
meters, featuring a maximum depth of 4.8 m and an average depth of 1.9 m. Nestled within
the economically advanced Yangtze River Delta (YRD) region (left panel of Figure 1), the
Taihu Lake Basin [46,47], constitutes 4.8% of China’s total population and contributes 9.8%
to the nation’s gross domestic product.
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As shown in the right panel of Figure 1, Taihu Lake is further divided into 7 regions
based on the lake’s nutrient status, vegetation distribution, and hydraulic connectivity [47].
The name and description of each region are summarized in Table 1. This study predom-
inantly focuses on the Northwest, Meiliang Bay, Gonghu Bay, Central, and Southwest
regions of Taihu Lake. The selection of these regions is motivated by their recurrent
exposure to the impacts of cyanobacterial blooms.
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Table 1. Overview of Taihu Lake subdivisions.

Region Description

Northwest The primary inflow region, including Zhushan Bay (the very north part),
receives ~80% of the total inflow, as well as most of the pollution.

Meiliang Bay The region experiences frequent pollution, with the west affected by industrial
and agricultural pollutants, and the north impacted by urban pollution.

Gonghu Bay The key water source for two major cities, receiving river discharges for urban
consumption

Central Far offshore with the deepest water.

Southwest Connected to three major inflowing rivers, it serves as a transitional zone
dominated by planktonic plants and submerged vegetation

East The primary outflow of Taihu Lake

East Taihu Bay A shallow bay primarily utilized for aquaculture and is inhabited by
submerged vegetation

2.2. Data
2.2.1. Satellite Data

The Moderate-Resolution Imaging Spectroradiometer (MODIS), onboard Terra and Aqua
satellites, has been systematically acquiring extensive datasets in land, atmospheric, and
oceanic remote sensing since the first launch of Terra in December 1999. The data used in this
study is the level 3 product of MODIS, namely the MOD13Q1 “https://modis.gsfc.nasa.gov/
(accessed on 8 October 2023)”. This product integrates observations gathered over a 16-day
period from both Terra and Aqua satellites. Following rigorous radiometric and atmo-
spheric correction, the aggregated data is derived using the maximum value composition
or constrained view maximum composition method [48]. While the processed data ex-
hibits a reduced temporal resolution, it ensures a close approximation to the authentic
values within that timeframe. For a more comprehensive understanding of MOD13Q1’s
algorithms and data structure, detailed explanations are available at the following website:
“https://lpdaac.usgs.gov/products/mod13q1v006/ (accessed on 6 November 2023)”.

In our approach to extracting cyanobacterial blooms, we opted for the enhanced
vegetation index (EVI) [49,50]. As elucidated by Xiao et al. [51], the coefficients in the fitting
formulas for various vegetation indices (ratio vegetation index, normalized difference
vegetation index, floating algae index, kernel object space convolution, and object space
affine brightness index) are subject to the influence of aerosol optical thickness (AOT). EVI
displays the least sensitivity to AOT in relation to unit area biomass. Under conditions
of elevated unit area algal biomass, EVI manifests noteworthy variations. Additionally,
MODIS’s EVI product employs the constrained view angle–maximum value composite
algorithm, which significantly enhances pixel utilization. Consequently, this study selected
the EVI product from MOD13Q1 to infer the spatiotemporal distribution of cyanobacteria
during outbreaks in Taihu Lake. The EVI calculation formula is as follows:

EVI = 2.5× ρNIR − ρRED
ρNIR + C1× ρRED − C2× ρBLUE + L

(1)

where, ρNIR represents the reflectance in the near-infrared band, ρRED denotes the re-
flectance in the redlight band, and ρBLUE corresponds to the reflectance in the blue light
band. C1 is an atmospheric correction parameter for red light with a numerical value of 6,
while C2 is the atmospheric correction parameter for blue light with a value of 7.5. L is a
soil background adjustment parameter with a numerical value of 1.0. The EVI ranges from
−1 to 1, and a threshold of 0 is selected to determine the presence of cyanobacterial blooms.
A higher EVI value indicates a higher chlorophyll content [51].

The MOD13Q1 data for the years 2001–2020 was obtained for this study. To ensure
data quality, invalid values resulting from cloud interference were eliminated to ensure the
EVI values fell within the range of −0.2 to 1.

https://modis.gsfc.nasa.gov/
https://lpdaac.usgs.gov/products/mod13q1v006/
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2.2.2. Meteorological Data

Following prior research, meteorological factors exert significant influence on algal
blooms, including temperature, wind, precipitation, and solar radiation. The precipita-
tion (PRE) and near-surface air temperature (T2) data utilized in this study are sourced
from the China 1 km Monthly Resolution Precipitation Dataset for the years 1901–2022
“http://www.geodata.cn/data/datadetails.html?dataguid=192891852410344&docid=941
(accessed on 16 November 2023)” and the China 1 km Monthly Resolution Average Tem-
perature Dataset for the years 1901–2022 “http://www.geodata.cn/data/datadetails.html?
dataguid=164304785536614&docid=946 (accessed on 16 November 2023)” from the Na-
tional Earth System Science Data Center, National Science & Technology Infrastructure
of China “http://www.geodata.cn (accessed on 16 November 2023)”. These datasets are
derived from grid data obtained through the Delta downscaling method based on global
0.5◦ climate data from CRU (Climatic Research Unit) and high-resolution climate data
from WorldClim. Data quality is controlled by 496 independent meteorological observation
points, including three points in the vicinity of Taihu Lake. The temporal coverage spans
from 2001 to 2022, with a spatial resolution of 1 km [52].

Wind at 10 m height above the ground level (wind speed and wind direction are short
for WS10&WD10, respectively), and surface solar radiation downwards (SSRD) are sourced
from the European Centre for Medium-Range Weather Forecasts (ECMWF) Fifth-Generation
Atmospheric Reanalysis Data (ERA5), with a spatial resolution of 0.1◦ × 0.1◦.

2.2.3. Cyanobacteria-Emission-Related Data

Drawing on literature research [53], this study obtained the composition and relative
proportions of VOCs released by algae at different growth stages, as shown in Table 2.
VOC composition was determined through laboratory offline GC-FID/MS measurements,
conducted during the stable, senescent, and post-death phases of three typical algae life
stages [53]. As algae grow, the relative content of alkenes and oxygenated VOCs (OVOCs)
in the released VOCs gradually decreases, while alkanes and volatile sulfur organic com-
pounds (VSOCs) show an increasing trend. The study period is chosen during the rising
and relatively stable period of algal blooms from May to October [51,54], focusing solely
on VOCs released during the stable period.

The emission rate of VOCs is derived from a meticulous estimation of non-methane
total hydrocarbon emission rates as reported in the literature [53]. Yu et al. [53] conducted
site measurements, including the VOC emission rates and cyanobacterial cell densities at the
sampling points using static chambers. Utilizing empirical data, we posit a proportionality
between the release of non-methane total hydrocarbons and algal density. Given an area
of approximately 63.2 km2 of the Zhushan Bay region in Taihu Lake, the VOCs emission
rate, and the algal density given by [53], the emission rate of VOCs attributable to algal
proliferation during July 2019 was conservatively estimated to range between 0.36 and
0.42 tons per day.

Our postulation encompasses the notion that the VOC content released during the
stable phase of algal blooms exhibits a linear augmentation in tandem with the escalat-
ing cyanobacterial biomass concentration. The latter, in turn, is posited to be directly
proportional to chlorophyll concentration. Furthermore, chlorophyll concentration demon-
strates a positive correlation with various vegetation indices, including the EVI, within a
defined interval.

Upon ascertaining the VOC release rate emanating from algal blooms in ZhuShan Bay,
we integrated this information with the July 2019 distribution of algal blooms in Taihu Lake
obtained through MODIS data inversion. Leveraging the distribution and magnitude of
EVI values in Taihu Lake during July 2019, we extrapolated the VOC emission quantities
for the remaining months of that year. Analogously, we extended this analysis to calculate
the aggregate VOCs released from cyanobacterial water blooms in Taihu Lake spanning
the years 2001 to 2020.

http://www.geodata.cn/data/datadetails.html?dataguid=192891852410344&docid=941
http://www.geodata.cn/data/datadetails.html?dataguid=164304785536614&docid=946
http://www.geodata.cn/data/datadetails.html?dataguid=164304785536614&docid=946
http://www.geodata.cn
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Table 2. Released VOC components and relative proportions during the stable phase, senescence
phase, and apoptosis phase.

Category VOCs Components Relative Proportion of
Stable Periods

Relative Proportion of
Senescence

Relative Proportion of
Apoptotic Phase

Alkanes ETHANE CH3CH3 0.0414 0.0461 0.0434
Propane C3H8 0.0494 0.0703 0.0578

ISOBUTANE C4H10 0.0317 0.0419 0.0343
n-Butane C4H10 0.0422 0.0389 0.0327

Cyclopentane C5H10 0.0486 0.0259 0.0166
2-Methylbutane C5H12 0.0584 0.0401 0.0327

Pentane C5H12 0.0622 0.0486 0.0473
2,2-Dimethylbutane C6H14 0.0113 0.0078 0.0000

3-METHYLPENTANE C6H14 0.0286 0.0235 0.0540
Heptane C7H16 0.0249 0.0320 0.0385

N-NONANE C9H20 0.0301 0.0350 0.0205
Alkenes ETHYLENE C2H4 0.0622 0.0498 0.0368

PROPYLENE C3H6 0.0494 0.0473 0.0412
2-BUTENE C4H8 0.0188 0.0115 0.0138
1-BUTENE C4H8 0.0339 0.0199 0.0188

CIS-2-BUTENE C4H8 0.0181 0.0386 0.0111
1,3-Butadiene C4H6 0.0098 0.0048 0.0133

1-Pentene C5H10 0.0301 0.0181 0.0243
trans-2-Pentene C5H10 0.0128 0.0109 0.0188

Isoprene C5H8 0.0870 0.0395 0.0327
CIS-2-PENTENE C5H10 0.0249 0.0103 0.0155

1-Hexene C6H12 0.0279 0.0139 0.0440
OVOCs Acrolein C3H4O 0.0264 0.0476 0.0166

Acetone C3H6O 0.0795 0.0576 0.0407
2-Butanone C4H8O 0.0430 0.0350 0.0473

VSOCs Carbon disulfide CS2 0.0475 0.0157 0.0445
Dimethyl sulfide C2H6S 0.0000 0.0350 0.0232

1,1′-Thiobisethane C4H10S 0.0000 0.0455 0.0457
Dimethyl disulfide C2H6S2 0.0000 0.0259 0.0368

Methyl propyl disulfide
C4H10S2

0.0000 0.0407 0.0490

Dimethyl trisulfide C2H6S3 0.0000 0.0000 0.0183
ISOPROPYL DISULFIDE

C6H14S2

0.0000 0.0223 0.0299

2.2.4. Machine Learning Model and SHapley Additive exPlanations (SHAP) Approach

In order to determine the relative importance of various meteorological factors on
algal blooms and the release of VOCs associated with these blooms, we utilized machine
learning methods. The Light Gradient Boosting Machine (LightGBM) is a gradient-boosting
framework utilizing tree-based learning algorithms [55]. Traditional implementations of
gradient-boosting decision trees face challenges in balancing accuracy and efficiency, par-
ticularly with high feature dimensions and large datasets. To address this, LightGBM
incorporates gradient-based one-side sampling and exclusive feature bundling, reducing
training time and memory usage while maintaining accuracy [55,56]. In this study, the
LightGBM model is employed to simulate the impact of meteorological factors on cyanobac-
terial blooms using the EVI values and corresponding meteorological factors. Each lake
area is individually modeled for independence. Invalid values (EVI < 0) are filtered, and
data is randomly split (80% training, 20% testing). Functions “extra trees” and “early stop
rounds” of LightGBM were used to prevent overfitting.

In this study, the SHAP approach was employed to measure the impact of input
features on the final model simulation, utilizing coalitional game theory. In essence, the
contribution of each input feature is determined through its marginal impact. For a
simulated sample xi with K input features producing a simulated value f (xi) at a given
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time, the explanatory model f is expressed as a linear function of feature attribution
(Equation (2)).

f (xi) = ∅o( f , x) + ∑K
j=1 ∅j( f , xi) (2)

where ∅j( f , xi) is the SHAP value representing the contribution of input feature j on the
simulation of model f for the simulated sample xi. The base value, ∅o( f , x) = E [ f (x)], is
the expected value of the model output over the data set.

The SHAP value ∅j( f , x) is the weighted average of ∅j values across all possible
feature subset combinations.

∅j( f , x) = ∑S⊆Kr{j}
|S|!(K−|S|−1)!

K!
[ fx(S ∪ {j})− fx(S)] (3)

where S ⊆ {0, 1}K and K is the set of all K input features. |S| is the cardinality of the set S or
the number of elements in the set S.

Here, if ∅j( f , x) > 0 (or <0), it refers to the positive (negative) effect of the feature
j that increases (decreases) the simulation above (below) the base value. The higher the
absolute SHAP value of the input feature, the more distinct the impact of that feature on
the model simulations.

3. Results
3.1. Long-Term Spatiotemporal Characteristics of EVI

Figure 2 illustrates the multi-year temporal and spatial variations in annual mean
cyanobacterial-bloom-associated EVI from 2001 to 2020. Significant interannual variations
in the coverage of cyanobacterial blooms can be observed during the 20 years, indicating
strong variations in affecting factors. Overall, cyanobacterial blooms in Taihu Lake were
not particularly severe in the early 21st century (first row in Figure 2). However, cyanobac-
terial blooms in Taihu Lake became significantly worse starting in 2006. Examining the
distribution of EVI during the annual bloom periods on the grid, from 2001 to 2005, blooms
were mainly concentrated in Zhushan Bay in the northern part of Taihu Lake, as well as in
Meiliang Bay. East Taihu Bay is dominated by aquatic vegetation, resulting in consistently
high EVI levels.

Starting in 2006, there was a sudden increase in the coverage of cyanobacterial blooms.
During these two years, Taihu Lake as a whole experienced a severe level of cyanobacterial
blooms, coinciding with the water crisis affecting millions of people in Wuxi in 2007. After
2008, the coverage of blooms decreased, and by 2011, it had returned to the levels seen
before 2006. In the decade from 2011 to 2020, the Northwest and Meiliang Bay were consis-
tently covered by cyanobacterial blooms. By 2020, these two areas were almost completely
covered and approximately two-thirds of the central region experienced cyanobacterial-
bloom coverage. The southwestern region had relatively low coverage in 2014, but in other
years, it was comparable to the levels seen in 2006 and 2007. In 2019 and 2020, the coverage
reached a significant extent.

In summary, the coverage of cyanobacterial blooms in Taihu Lake from 2001 to 2020
exhibits an M-shaped trend with two peaks. The first peak occurred in 2006 and 2007,
followed by a slow decrease. However, the reduction was not substantial, and after 2011,
there was an upward trend again, reaching the second peak in 2020, which is the highest in
20 years. This trend aligns with the findings of other scholars [57].

We further compared the annual mean EVI values, the annual averaged number of
grids that are covered with cyanobacterial blooms, and the month of maximum EVI of Taihu
Lake and its five subregions (Northwest, Meiliang Bay, Gonghu Bay, Central, Southwest)
from 2001 to 2020.
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Figure 2. Annual average EVI distribution in Taihu Lake from 2001 to 2020 (Red line marks the
boundary of the subareas shown in Figure 1).

The fitting curve of the annual mean EVI in Figure 3a shows an increasing trend from
2001 to 2020, with the average EVI values consistently below 0.12 in Taihu Lake. The
year 2006 witnessed the most rapid increase, and although there were slight decreases in
the subsequent years, they did not return to the levels before 2003. In 2019, Taihu Lake
reached its maximum average EVI value. This suggests that despite efforts to control and
mitigate cyanobacterial blooms, Taihu Lake has not eliminated the increasing trend of
cyanobacterial blooms. The number of grid cells covered by cyanobacterial blooms in Taihu
Lake was below 1.05 × 104 (22.7% of the Taihu Lake area) before 2005. It surged to around
1.6 × 104 (monthly average coverage area of 35.8%) in 2006, with a slight increase in
2007. In the following three years, the coverage area of blooms continued to decrease,
indicating the apparent effectiveness of artificial intervention. By 2010, the coverage
area had even returned to the 2005 level. However, the subsequent years witnessed
fluctuations, persisting until 2020 when the coverage area reached its 20-year peak, with
approximately 2.01 × 104 grids (monthly average coverage area of 46.8%) covered by
cyanobacterial blooms.
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In terms of each subregion of Taihu Lake, it can be observed that, except for the Central
region, the annual mean EVI in each subregion shows an upward trend. However, the
variability in EVI, and the years with the highest average EVIs, exhibit notable differences
among the regions. Based on the bar charts and their fitted curves, Northwest, Meiliang Bay,
and Southwest display a unimodal trend characterized by an initial increase, followed by a
decrease, and then another increase. Gonghu Bay exhibits a bimodal trend, while Central
shows a unimodal variation. Figure 3 also reveals that the annual average number of grids
of algal blooms from May to October each year is generally consistent with the overall EVI
trends, with some exceptions. For example, in Figure 3e, although the average EVI level
for Central in 2020 was not the highest in recent years, the annual average grid coverage
of algal blooms in the Central area was the highest in 20 years, covering approximately
46.5% of the lake area. The months with the most severe EVI values are September and
October, followed by July, August, and May. The relatively low frequency of peak EVI in
June may be associated with the Meiyu System in Jiangsu province, which is characterized
by large rainfall.

Significant disparities are also evident in the average EVI values among the lake
regions. Northwest, with the highest average EVI level, surpassed 0.07 in 2001, and doubled
to 0.149 in 2006, surpassing all other regions during that period. In 2012, Northwest’s
average EVI further rose to around 0.2, two to three times higher than the average EVI of
other regions during the same period. Conversely, Gonghu Bay, with the lowest average
EVI level, had an average EVI of only 0.036 in 2001. Its two peak values occurred in 2006
(0.114) and 2015 (0.101).

Based on the above analysis, ranking the severity of algal blooms in the five subregions
relative to Taihu Lake as a whole, the order is Northwest > Meiliang Bay > Central > Southwest
> Gonghu Bay. The seasonal threat level is roughly similar between summer and autumn
but is greater than in spring.

3.2. Impacts of Meteorological Factors
3.2.1. The Spatiotemporal Variations of Meteorological Factors

In the context of global warming, meteorological factors that significantly influence
algal-bloom growth have undergone changes. Based on prior research, we have selected
T2, precipitation, WS10, WD10, and SSRD as the key variables for our investigation due to
their discernible impacts on algal-bloom development. Figure 4 illustrates the variations in
WS10, SSRD, T2, and precipitation in Taihu Lake from 2001 to 2020.

The trends in variations of SSRD and T2 exhibit a notable consistency. This observation
aligns with our common understanding that solar radiation serves as the primary source
of energy. Years with severe cyanobacterial blooms align predominantly with periods of
elevated temperatures (The average from 2001–2005 was 23.82◦, the average in 2006, 2007,
2019, and 2020 was 24.24◦). The significant algal-bloom events in 2006 and 2007 coincided
with a gradual warming trend since the early 21st century, with the annual average tem-
perature reaching a peak in 2007, underscoring the irreplaceable role of climate-induced
warming in the occurrence of large-scale cyanobacterial blooms. Similarly, the sustained
warming trend post-2014 may contribute to the substantial increase in cyanobacterial-bloom
areas in recent years.

Due to the vast expanse of Taihu Lake, diverse water movements, and variations
in depth, coupled with urban heat island effects, temperature disparities across different
regions of the lake are evident. Using the year 2020, characterized by the highest VOC
emissions, as an example, as shown in Figure 5a,c, it is evident that temperatures near the
lake shore are notably higher than those in the distant offshore areas, sometimes exceeding
a difference of 1 degree Celsius. In contrast, solar radiation variations in the Taihu Lake
region are not as pronounced. When considering factors excluding nutrient enrichment,
the relatively higher temperatures near the lake shore to some extent account for the
increased algal density in these areas. The multi-year annual precipitation in Taihu Lake
exhibits notable fluctuations. The minimal precipitation occurred in 2003 and 2004, with
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monthly precipitation falling below 90 mm from May to October. In contrast, the zenith
of precipitation was recorded in 2020, reaching 161 mm per month. Despite the paucity
of precipitation in 2003 and 2004, no widespread algal blooms were observed, whereas
2020 witnessed the onset of severe algal-bloom events. This indicates that, to some extent,
increased precipitation promotes the spread of algal blooms. For instance, the years 2001
and 2002 experienced more rainfall than 2006 and 2007, yet the algal-bloom situations were
reversed. We speculate that this discrepancy may be related to the spatial distribution
of rainfall. If rainfall is more prevalent upstream, it could accelerate the accumulation of
nutrient-rich substances from upstream into the lake, creating favorable conditions for algal-
bloom outbreaks. Conversely, it may lead to an increase in lake-water levels, disrupting
nutrient-rich conditions, lowering water temperatures, and weakening photosynthesis
due to reduced solar radiation, coupled with increased wind strength—factors that are
unfavorable for algal growth. The spatial distribution of precipitation in Taihu Lake during
2020 is depicted in Figure 5b. It is discerned that the southwest region experiences higher
precipitation, while the southeast region encounters lower precipitation. The rainfall
distribution in 2003 and 2004 closely resembles that of 2020. However, even from the
perspective of spatial distribution, disentangling the relationship between precipitation
patterns and the occurrence of algal blooms remains challenging.
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Figure 5. Annual average T2 (a), pre (b), SSRD (c), and wind field (d) diagram of Taihu Lake in 2020.

The multi-year wind speed presented in Figure 4 indicates a relatively stable pattern.
The annual average wind speed primarily oscillates within the range of 2–3 m/s. The domi-
nant wind directions in Taihu Lake from May to October are illustrated in Figure 5d. During
this period, the prevailing wind direction is east-southeast, with relatively low average
wind speeds. This pattern facilitates the accumulation of cyanobacterial blooms towards
the northwest shore of Taihu Lake. The central region of the lake, being more open without
topographical obstacles, experiences higher wind speeds compared to the shoreline. This
phenomenon contributes, to some extent, to the heightened occurrence of cyanobacterial
blooms in the Northwest, Meiliang Bay, and Southwest regions of Taihu Lake.

3.2.2. The Relative Importance of Meteorological Factors

The aforementioned analysis underscores the interplay of various meteorological
factors in influencing cyanobacterial blooms. However, these insights are contingent upon
controlling variables. In the actual Taihu Lake ecosystem, the formation of cyanobacterial
blooms is intricately linked to these meteorological factors, making it impractical to consider
individual variables. The relative importance of each meteorological factor is seldom
explored in existing research and is challenging to determine. Consequently, it is necessary
to further elucidate the relative importance of each meteorological factor.

Modeling was conducted for each region. Figure 6 illustrates the influence of various
meteorological factors on EVI values based on the SHAP method in different lake regions
of Taihu Lake. We observed that, across all lake regions, T2 has the highest sensitivity to
the severity of cyanobacterial blooms (EVI values), accounting for over 30% of the total
contribution. The sensitivity of rainfall remains relatively stable. The contribution of
wind speed is consistently 4–7% lower in the two western lake regions, Northwest and
Southwest, in comparison to other lake regions. We hypothesize that this discrepancy may
be attributed to the hindered transport of algae to other areas by wind. Interestingly, in
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Meiliang Bay, where there is minimal SSRD, a distinct low sensitivity is observed. However,
at present, a comprehensive and scientifically sound explanation for this phenomenon
remains elusive.
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To better comprehend the impact of meteorological elements on the generation of
cyanobacterial blooms, we examined the SHAP values for Taihu Lake concerning the varia-
tions in meteorological elements. As shown in Figure 7, in Taihu Lake, only temperature
exhibits a distinct linear trend, with the inflection point at 20.5 ◦C where temperatures
below hinder cyanobacterial growth, while those above favor it. Precipitation does not
show clear relationships, but it can be observed that monthly precipitation exceeding
250 mm significantly increases the SHAP values of precipitation, indicating an increase in
EVI values and consequently higher cyanobacterial concentrations. Similarly, an increase in
SSRD values enlarges cyanobacterial concentrations, though it does not necessarily increase
the bloom area. In terms of monthly mean wind speed, the SHAP values visibly decrease
when the wind speed exceeds approximately 3 m/s.
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3.3. Spatiotemporal Characteristics of Retrieved VOCs Emission

In accordance with the data introduced earlier, the emission rate of VOCs in Taihu
Lake was determined. Our calculations exclusively consider the months from May to
October. Figure 8 illustrates the estimated annual maximum aggregate emissions of VOCs
associated with cyanobacterial blooms in Taihu Lake, as well as the range of emissions of
each grid (illustrated as a boxplot), during the period 2001–2020.

The trends in the overall VOC emission from cyanobacterial blooms exhibit a fluctuat-
ing increasing pattern. In the year 2001, the maximum estimated amount of VOC content
released from Taihu Lake’s cyanobacterial blooms was 347,523.5 kg. A significant surge
occurred in 2006 and 2007, resulting in a nearly threefold increase in the total VOC emission.
A consistent decline in VOC emissions was observed from 2006 to 2010. Notably, around
2018, the VOCs released from cyanobacterial blooms in Taihu Lake rebounded to levels
reminiscent of a decade earlier but with larger variations. In 2020, the total VOC emission
from cyanobacterial blooms in Taihu Lake was 5.35 times higher than that in 2001 and
1.71 times higher than that in 2006. We also calculated the biogenic and anthropogenic VOC
emissions of the surrounding cities of Taihu Lake to investigate the potential impact of the
VOCs emitted from Taihu Lake in July 2019. The biogenic VOC emissions were calculated
using the Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1) coupled
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with the Weather Research and Forecasting (WRF) system [58] and the anthropogenic VOC
emissions were derived from the Multi-resolution Emission Inventory model for Climate
and Air Pollution Research (MEIC v1.4) [59,60]. In July 2019, the VOCs emitted by Taihu
algal blooms (212 t) were approximately 11% of the natural VOC emissions (1923 t) and
1.6% of the anthropogenic emissions (13,108 t) within the 10 km outside Taihu Lake. In the
northwestern region of Taihu, where algal-bloom activity is more frequent and severe, the
VOCs from algal blooms over the northwestern of Taihu reached 29.9% of the surrounding
natural sources (386 t) and 3.2% of the anthropogenic sources (3565 t). Such results indicate
that VOCs from algal blooms cannot be ignored.
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According to Table 2, we observe that isoprene is the organic compound with the
highest release proportion during the stable phase of algal blooms. It is also the most
abundant non-methane volatile organic compound emitted globally, exhibiting strong
reactivity in atmospheric chemical reactions. Isoprene serves as a primary precursor to
secondary organic aerosols and ozone on a global scale [61]. Figure 9 illustrates the spatial
distribution of estimated isoprene released during cyanobacterial blooms in Taihu Lake
over multiple years based on the proportion of isoprene given by Table 2 and the spatial
distribution of EVI.

East Taihu Lake Bay, characterized by perennial aquatic vegetation cover, consistently
exhibits higher EVI values, resulting in larger emission amounts each year. Figure 9 clearly
indicates that the western and northern regions of Taihu Lake are considerably more
affected than the eastern and southern regions. The most pronounced release of isoprene
from cyanobacterial blooms occurred in 2020, with the highest emission point located at
the outlet of Zhushan Bay in the Northwest region, at a certain distance from the shore, as
well as in the northeastern region of Meiliang Bay and a small part of the northern region
of Gonghu Bay. This emission pattern shows a tendency to spread toward Central.
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From 2001 to 2005, isoprene emissions were mainly concentrated in Zhushan Bay in
the Northwest and Meiliang Bay, predominantly near the shore. In 2006, the widespread
outbreak of cyanobacterial blooms led to a sharp increase in VOC emissions, with the most
affected areas being the Northwest, the northern part of Meiliang Bay, and the coastal areas
in the eastern and southern parts of Gonghu Bay. After 2011, emissions from the western
region and Meiliang Bay began to increase again, reaching another high-value year similar
to 2006. The emissions continued to approach the Southwest and Central regions, and there
was no sustained decrease similar to the post-2006 period. Conversely, a notable upsurge
persisted in 2019 and culminated in 2020, where almost half of Taihu Lake was shrouded in
cyanobacterial blooms. The release of isoprene from these blooms, surpassing the threshold
of 10 kg per grid annually, exerts discernible impacts on both the ecological milieu of Taihu
Lake and the surrounding atmospheric environment.

4. Discussion

The causes of cyanobacterial blooms, the mechanisms influencing their growth, the
resulting harm, and preventive measures have garnered significant attention. However,
recent findings from the retrospective inversion of algal blooms in Taihu Lake underscore
the need for further research into this phenomenon. Climate change, a factor leading to
increased instability in Taihu Lake’s cyanobacterial blooms, especially in the context of a
stable nitrogen–phosphorus ratio, is identified as one contributing factor. Statistical results
on the climate conditions in Taihu Lake from this study show that algal-bloom disasters
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in years like 2006 and 2007 were indeed associated with abnormal temperature increases
and changes in solar radiation, promoting the occurrence of algal blooms. Additionally,
the emission of VOCs during these years was high, posing a significant threat to the air
quality in nearby cities. Meteorological factors intertwine with various elements, making it
challenging to determine their impact on cyanobacterial blooms. Interpretable machine
learning reveals the relative importance of meteorological factors, aiding our understanding
of lake dynamics and ecological mechanisms.

Furthermore, our focus on the harm caused by cyanobacterial blooms in Taihu Lake
has shifted to the VOCs they release, which have not been comprehensively studied. Recent
studies indicate that these VOCs, acting as precursors, can impact ozone levels in large
water bodies and adjacent urban areas, indirectly affecting the atmospheric environment.
Existing methods for estimating VOCs rely on experiments or online instruments, limited to
small-scale applications. This study addresses this limitation by establishing a relationship
between algal blooms and volatile organic compounds, employing satellite remote sensing
to indirectly assess the status of these compounds in large water bodies. This approach
contributes to estimating the potential threat of ozone outbreaks in large water bodies and
their surrounding areas, providing crucial insights for warning against such events. It is
worth noting that we assumed the detected aquatic vegetation in Taihu Lake during the
cyanobacteria seasons is only cyanobacteria, which could be a source of error. For example,
East Taihu Lake is dominated by submerged vegetation which surely have different VOC
emission characteristics.

While this approach can be extended to explore the relative importance of other
influencing factors, there are limitations to this study. For example, only one vegetation
index, the EVI, was used to represent the spatiotemporal-intensity distribution of algal
blooms. Other indexes, such as the floating algae index with better representativeness
of algal blooms, could be further investigated. Fixed emission ratios were chosen when
considering VOC components, yet variations in the types and relative proportions of VOCs
released by algal blooms may occur under different growth conditions and stages. It is
imperative for future research to clarify the relative proportions of algal blooms at different
stages and the types and proportions of VOCs released. Additionally, the low temporal
resolution of MODIS product data and potential data gaps may affect the calculation of
average EVI, a consideration that should be factored into the interpretation of study results
and conclusions. Furthermore, a follow-up study of the impact of the released VOCs on
the surrounding atmospheric environment is needed.

5. Conclusions

This study focuses on explaining the extent of meteorological influence on cyanobacte-
rial blooms in Taihu Lake based on a deep-learning approach and attempting to construct
an inventory of VOC emissions from these blooms against the backdrop of increasing algal
blooms. Using MODIS EVI data from 2001 to 2020, we inferred the spatiotemporal dis-
tribution characteristics of cyanobacterial blooms in Taihu Lake. The LightGBM machine
learning method and the SHapley Additive exPlanations approach for interpretability
were constructed to calculate the relative influence of various meteorological factors on
cyanobacterial growth. Based on existing experimental data and satellite remote sensing,
we constructed the first inventory of VOC emissions from cyanobacterial blooms in Taihu
Lake. This inventory records the distribution of various VOCs released by cyanobacterial
blooms in Taihu Lake over the past two decades. The conclusions are as follows:

(1) Cyanobacterial blooms in Taihu Lake are primarily distributed in the Northwest and
Meiliang Bay areas, where VOCs are released. The EVI index exhibits a fluctuating
upward trend, with explosive growth during the outbreak periods in 2006 and 2007. In
2020, the EVI reached the highest level, 1.71 times that of 2006, indicating a sustained
deterioration trend in cyanobacterial blooms in Taihu Lake.
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(2) In all regions of Taihu Lake, temperature is the most significant meteorological factor
influencing cyanobacterial blooms. Wind speed and direction usually affect the trans-
portation and accumulation of cyanobacterial blooms in the northwestern regions.

(3) Isoprene is the predominant component among the VOCs released by cyanobac-
terial blooms. The distribution of VOCs closely aligns with the concentration of
cyanobacterial blooms, emphasizing the need to pay attention to air pollution, such
as ozone increase and aerosol augmentation, in regions where cyanobacterial blooms
are concentrated.

Further studies on the impact of the released VOCs on the air quality of the surround-
ing cities will be carried out using the latest three-dimensional atmospheric transport and
chemical models.
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