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Abstract: Large-scale crop phenology monitoring is critical for agronomic planning and yield pre-
diction applications. Synthetic Aperture Radar (SAR) remote sensing is well-suited for crop growth
monitoring due to its nearly all-weather observation capability. Yet, the capability of the dual-
polarimetric SAR data for wheat phenology estimation has not been thoroughly investigated. Here,
we conducted a comprehensive evaluation of Sentinel-1 SAR polarimetric parameters’ sensibilities on
winter wheat’s key phenophases while considering the incidence angle. We extracted 12 polarimetric
parameters based on the covariance matrix and a dual-pol-version H-α decomposition. All parame-
ters were evaluated by their temporal profile and feature importance score of Gini impurity with a
decremental random forest classification process. A final wheat phenology classification model was
built using the best indicator combination. The result shows that the Normalized Shannon Entropy
(NSE), Degree of Linear Polarization (DoLP), and Stokes Parameter g2 were the three most important
indicators, while the Span, Average Alpha ( α2), and Backscatter Coefficient σ0

VH were the three least
important features in discriminating wheat phenology for all three incidence angle groups. The
smaller-incidence angle (30–35◦) SAR images are better suited for estimating wheat phenology. The
combination of NSE, DoLP, and two Stokes Parameters (g2 and g0) constitutes the most effective
indicator ensemble. For all eight key phenophases, the average Precision and Recall scores were
above 0.8. This study highlighted the potential of dual-polarimetric SAR data for wheat phenology
estimation. The feature importance evaluation results provide a reference for future phenology
estimation studies using dual-polarimetric SAR data in choosing better-informed indicators.

Keywords: dual-polarimetric SAR; wheat phenology; Sentinel-1; polarimetric parameters

1. Introduction

Timely monitoring of crop phenology is essential for precision agriculture, as it cru-
cially informs strategic planning and the implementation of agricultural practices such as
irrigation, fertilization, and disease control. Certain phenological stages allow for optimiz-
ing irrigation and fertilizer schedules [1,2], while others exhibit higher susceptibility to
pests and diseases [3]. Moreover, precise insight into crop phenology helps governmental
agencies provide accurate crop productivity forecasts and make well-informed agricul-
tural policy decisions. Wheat, as one of the most important crops worldwide, requires
large-scale phenology observation for agronomic planning and decision making. Some
agronomic measures are recommended according to phenological timing. For instance,
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winter wheat’s spring irrigation during regreening to heading is necessary to ensure the
water requirements due to the deficiency in precipitation [4]. Post-flowering irrigation may
elevate the risks of fungal diseases and lodging in wheat crops [5]. Under high-temperature
conditions, it is recommended to implement limited irrigation during the flowering period
to maximize yield [6].

Many attempts have been made for crop phenology monitoring, using satellite im-
ageries either from optical or microwave sensors. Some indicators derived from optical
remote sensing data are sensitive to crop growing stages, e.g., certain spectral bands, vege-
tation indices, and biophysical variables [7–9]. Some indicators derived from microwave
radar images also demonstrated sensibility on crop phenology, e.g., backscattering coeffi-
cient, polarization ratio (VV/VH), and polarization parameters [10–12]. It is challenging to
accomplish an ideal continuous phenology monitoring on the whole crop growing cycle
solely using optical images due to interruption by unfavorable weather conditions (cloud
cover, etc.). Microwave remote sensing is well-suited for crop growth monitoring due to its
almost weather-independent observation capability with short time intervals [13].

SAR backscattering coefficients from different polarizations and their ratios were
widely exploited to detect crop phenology, e.g., wheat, barley, and oil seed rape [14–16]
using Sentinel-1 (S-1) data. One limitation of these studies is that only a few phenophases
can be effectively detected with breakpoints of time series data. SAR backscattering
coefficient data represent the overall strength of the returned radar signal that provides
limited information about the surface characteristics of the target. Hence, they are often
used along with optical images for crop phenology monitoring [12]. Polarimetric SAR
(polSAR) data preserve information about polarization amplitude and the phase of the
ground target, which are critical to identifying the backscattering mechanism and wave
polarimetry. As crop growth progresses, there is not only an increase in backscatter but also
a rise in the unpredictability of scattering, along with a more significant contribution of
scattering from multiple/volume scattering [17]. Therefore, some polarimetric parameters
that are related to backscattering mechanisms or wave polarimetry are potentially sensitive
to crop phenology.

Several target decomposition approaches have been developed in the few past decades,
including eigenvector- and eigenvalue-based and model-based decompositions [18]. Cloude-
Pottier decomposition is an eigenvector- and eigenvalue-based decomposition method [19],
which calculates the entropy (H), alpha angle (α), and anisotropy (A), subsequently parti-
tioning the H-α plane into nine distinct zones relating to different scattering mechanisms.
Fully polarimetric SAR data were proven effective by many studies to estimate crop phenol-
ogy. For instance, RADARSAT-2 data were investigated for penology retrieval of wheat and
canola [17,20], rice [21], oat and barley [22], and multiple crops [23]; Uninhabited Aerial Ve-
hicle Synthetic Aperture Radar (UAVSAR) data were used for canola, corn, and wheat [24]
as well as a comparison between corn, sunflower, tomato, and permanent tree crops [25].
These crop phenology detection studies with polSAR data were based on several ap-
proaches. Some relied on coherence analysis across distinct polarimetric channels or phase
differences between polarimetric channels [26–28] and some more studies directly utilized
the parameters derived from various polarimetric decomposition algorithms [17,20,23,29]. In
most cases, phenology retrieval was approached as a classification problem using indicators
derived from polarimetric decomposition or other radar signal parameters. A tailored Cloude-
Pottier decomposition for dual-polarization (dual-pol) SAR data was developed [30] and
their ability to separate scattering mechanisms was assessed [31,32]. By testing on only
dual-pol data of several full-pol SAR sensors, Ji and Wu [31] suggest that only HH-VV SAR
can discriminate the three canonical scattering mechanisms; HH-HV or HV-VV cannot
effectively differentiate scattering mechanisms, primarily stemming from the absence of
co-polarization. While it is not possible to discriminate single scattering mechanisms using
only dual-pol data with S-1’s VV and VH polarization [27], extracted parameters such
as Wave Entropy and average alpha can still be valuable indicators in crop monitoring
applications [12,33,34]. Polarimetric parameters extracted from C-band S-1 data were
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employed to retrieve phenophases of wheat and rapeseed [12], winter wheat and winter
barley [35], and mustard and wheat [36]. Additionally, dual-pol X-band TerraSAR-X data
featuring co-polarization combinations of HH and VV were utilized for monitoring rice
phenology [37] and canola [38].

Among various SAR remote sensing data sources, S-1 data provide distinct advantages
for crop monitoring regarding revisit frequency, image resolution, and free access. However,
only a few parameters extracted from dual-pol S-1 data were evaluated and applied for
crop phenology monitoring. The capability of dual-pol parameters has not been thoroughly
investigated. Moreover, it is noted that the incidence angles of SAR images will impact
microwave scatterings [22,31]. The effects of the incidence angle of SAR images against the
phenology of vertically oriented crops, e.g., wheat, is still to be investigated. This study
aims to (1) conduct a comprehensive evaluation of sensibilities of polarimetric parameters
extracted from S-1 Single Look Complex (SLC) images on winter wheat’s phenology while
considering SAR images’ incidence angle; (2) investigate the best feature combination for
wheat phenology classification; and (3) build and evaluate a random forest classifier using
the best feature combination for estimating winter wheat phenology.

2. Materials and Methods
2.1. Study Area

We focus on the Huang-Huai-Hai Plain, located in North China, as the study area.
The Plain encompasses several critical wheat-growing provinces, yielding 80% of China’s
winter wheat production. In total, 167 of China’s national Agricultural Meteorology Stations
(AMS), which record meteorology data and crop phenology, are distributed in the Plain.
Overall, 67 of the stations are dedicated to winter wheat observation. We selected 17 stations
and their surrounding 1 × 1 km of square sub-sites as Areas of Interest (AOIs). The criteria
for selecting those AMSs was more frequent phenology records that coincided with time
series S-1 data coverage. Figure 1 illustrates the locations of the Huang-Huai-Hai Plain and
the AOIs are indicated by the AMSs.
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Figure 1. The location of the Huang-Huai-Hai Plain and the sub-sites of the study area are indicated
by Agricultural Meteorology Stations. Winter wheat pixels of the 2017–2018 growing season from
Dong, Wang, and Tian et al. [39] are shown in brown on the map.
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2.2. Data
2.2.1. In Situ Wheat Phenology Observation and Wheat Map

In situ wheat phenology observation records from the 17 AMSs of our AOIs were
acquired. Phenophases and observation dates were logged in a table. The records in-
clude 12 phenophases, i.e., emergence, three leaves, tillering, wintering period, regreening,
standing, jointing, booting, heading, flowering, milk ripening, and maturity. We focus on
phenophases of regreening and onwards that are critical for field management. Hence,
eight phenophases’ observations in 2018 after the regreening stage in each in situ record
were selected (Table 1). The phenology observations were taken on crop fields of the
AMS’ closely adjacent area and are locally representative, according to the AMS phenology
observation standard.

Table 1. Phenophases recorded by in situ wheat phenology observation and associated BBCH scale
(from regreening onwards).

Phenophase Description BBCH Scale

Regreening The wintering period ends and leaf turns green 25

Standing Wheat plants transit from growing horizontally
close to the ground to growing vertically upright 29

Jointing Beginning of stem elongation 32
Booting Flag leaf sheath extending 41

Heading Tip of inflorescence emerged from the sheath, the
first spikelet just visible 51

Flowering Beginning of flowering: first anthers visible 61

Milk ripening Watery ripe: first grains have reached half their
final size 71

Maturity Early dough 83

Additional phenology record attributes, including the AMS location and phenophase
development percentage, were also retrieved for later use. The location coordinates of
the AMSs were used to co-register the wheat fields. There was no fixed time interval on
observation for each AMS. The observation time of the eight phenophases ranges from
January to June. A total number of 98 phenology records were available for our AOIs.
Phenophase development percentage is a crucial metric to determine phenophases in the
BBCH code.

The winter wheat map provided by Dong, Wang, and Tian et al. [39] was used to
identify wheat pixels within the AOIs (Figure 1). The map data are in 30-m resolution and
has high accuracies based on assessment using survey samples.

2.2.2. Sentinel-1 SAR Imagery

We acquired the time series S-1 Single Look Complex (SLC) in Interferometric Wide
swath (IW) mode for the 17 AOIs. The S-1 A/B constellation provides C-band dual-pol
SAR data with a revisit time of approximately six days that is well-suited for time series
agricultural monitoring.

The S-1 SLC images of the AOIs on targeted dates were downloaded from NASA’s
Earth Observing System Data and Information System (EOSDIS, https://search.asf.alaska.
edu/). The SLC images are C-band SAR images with a dual-pol mode (VV+VH), capturing
amplitude and phase information. The IW mode acquires data at 5 m by 20 m spatial
resolution (single look). SLC images’ acquisition dates did not entirely coincide with the
AMS phenology observation dates. Therefore, the SLC images were selected based on the
principle of “closest date” to avoid large time shifts between in situ phenology observation
and selected SAR images. The date difference between the two observation sources was
less than four days. SLC images of 98 dates were obtained, whose incidence angles range
from 30.62 to 44.63 degrees.

https://search.asf.alaska.edu/
https://search.asf.alaska.edu/
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2.3. Methods

The workflow of this study contains two major parts (Figure 2). First, several pre-
processes are conducted to extract polarimetric parameters from the S-1 SLC images for
the AOIs. The extracted parameters are then associated with the phenology records before
splitting the dataset into training and test sets. We then conducted a wave polarimetry
analysis echoing winter wheat’s growing stages. Based on the wave polarimetry analysis,
we applied an interactive process involving feature importance analysis and phenology
classification modeling to find the best random forest (RF) classifier. Finally, we evaluated
the model’s performance in predicting winter wheat’s phenological stages on a test set. Con-
sidering the range of SLC images’ incidence angle, we carried out the feature importance
analysis and modeling in three groups, i.e., the smaller-incidence-angle group (30–35◦),
medium-incidence-angle group (35–40◦), and larger-incidence-angle group (40–45◦).
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2.3.1. SAR Data Processing and Polarimetric Decomposition

Polarimetric decomposition theories were initially developed for full-pol data and
aimed to identify different microwave scattering mechanisms [33]. Based on the pioneering
work of Cloude [30] and Cloude, et al. [40], we adopted their modified entropy/alpha
decomposition method for dual-pol data to extract S-1’s polarimetric parameters that are
analogous to full-pol decomposition.

We extracted 12 SAR parameters from S-1 SLC images as listed in Table 2. The SAR
parameters were derived from the 2 × 2 wave covariance matrix C2. Due to speckle, the
C2 matrix was generated from the S-1 vertical transmit (V) and dual-pol receive (V and H)
data by means of spatial averaging, which is given by Equation (1).

C2 =

[
C11 C12
C21 C22

]
=

 〈
|SVV |2

〉 〈
SVVS*

VH
〉〈

SVHS*
VV

〉 〈
|SVH |2

〉  (1)

where superscript ∗ denotes the complex conjugate and ⟨· · · ⟩ denotes the spatial average
over a moving window. The Backscatter Coefficients for the VV and VH polarizations were
obtained as the diagonal elements of the C2 matrix.
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Table 2. Parameters extracted from Sentinel-1 SLC images.

Indicators Details Equations

Stokes parameters
The partial polarization state of
an electromagnetic (EM) wave (g0,
g1, g2, g3)

See Equation (2)

Degree Of Linear
Polarization (DoLP)

DoLP measures the proportion of
linearly polarized components in
the total signal received by
the radar.

DoLP =

√
g1

2 + g2
2

g0

Linear Polar Ratio (LPR) The ratio of VV and VH
intensities LPR =

g0 − g1
g0 + g1

Wave Entropy (H2)
A measure of the uncertainty in
the polarization of the
received wave

See Equations (3)–(5)

Average Alpha (α2)

Represents the angular separation,
on the Poincaré sphere, between
the polarization state of the
transmitted wave and
received wave

See Equations (3)–(5)

Normalized Shannon Entropy
(NSE)

NSE characterizes the diversity or
randomness of polarimetric
backscattering. The sum of total
backscatter power and the
Barakat degree of polarization,
normalized to between 0 and 1

See Equations (6) and (7)

Backscattering coefficient (σ0)

Sigma naught VV and VH
intensity. The measure of the
radar return from a distributed
target, defined as per unit area on
the ground

Span The total intensity (VH + VV)
received

The two key data processing steps include preprocessing of SLC images to gener-
ate noise-free covariance matrix C2 and extracting polarization parameters, as shown in
Figure 3.
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Before generating the noise-free C2 matrix, the SLC images underwent several calibra-
tion, correction, and noise removal procedures using the ESA SNAP tool with a processing
graph. These preprocessing steps include applying the orbit file, TOPS Split, thermal noise
removal, radiometric calibration, TOPS deburst, polarimetric speckle filter, and terrain
correction, followed by exporting the C2 matrix to the PolSARpro format. Figure 3 illus-
trates the complete data processing flow. It should be noted that thermal noise removal
is an indispensable step for applying dual-pol S-1 SLC data. Simply applying SNAP’s
ThermalNoiseRemoval without correcting for the off-diagonal entries of noisy C2 would
be erroneous. We applied the thermal noise removal proposed by Mascolo et al. [41]. This
method exploits SNAP’s ThermalNoiseRemoval module to remove thermal noise from the
C2 matrix and it can be implemented with SNAP’s processing graph.

The following step was extracting SAR parameters with the PolSARpro tool. Extracted
parameters (Table 2) include six Stokes-related parameters (four Stokes Parameters, De-
gree of Linear Polarization, and Linear Polar Ratio), three polarimetric decomposition
parameters (Wave Entropy, Average Alpha, and Normalized Shannon Entropy), and three
backscatter intensity indicators (VV and VH backscattering coefficient, Span). All processed
images are exported in 10 m pixel spacing and clipped to AOIs for later analysis.

(1) Stokes Parameters

Stokes Parameters describe the scattering from a partially polarized EM field that
contains all the polarimetric information. The four Stokes Parameters are defined as follows:

g0
g1
g2
g3

 =


|EH|2 + |EV|2

|EH|2 − |EV|2
2|EH||EV|cos∅HV
2|EH||EV|sin∅HV

 =


C11 + C22
C11 − C22
2Re(C12)
2Im(C12)

 (2)

where |E| is the amplitude of the EM wave and ϕHV is the phase difference between H and
V. Re and Im denote the real part and imaginary part of the complex number, respectively.
The first Stokes Parameter (g0) indicates the total intensity of the radar backscatter (polar-
ized and unpolarized), which is the sum of the powers of the two orthogonally polarized
received waves. The other three parameters (g1, g2, and g3) describe the properties of the
polarized portion of the electromagnetic field.

Based on the four Stokes Parameters, several supplementary parameters that char-
acterize the condition of the scattered EM field can be derived, including the Degree Of
Linear Polarization (DoLP) and the linear polarization ratio (LPR).

(2) H-α decomposition for dual-polarimetric SAR data

We adopted the dual-pol version of entropy/alpha decomposition [30] to derive Wave
Entropy (H2) and Average Alpha (α2). In the dual-pol case, the physical interpretation of
H2 and α2 are different from that of entropy and alpha of the full-pol case. H2 describes the
uncertainty in the polarization of the received wave. α2 is the average angular separation
between the polarization state of the transmitted wave and the received one.

For S-1 dual-pol data (VV and VH modes), the following forms of the 2 × 2 wave
coherency matrix [JV ] are estimated via local averaging:

[JV ] =

[ 〈
SVVS*

VV
〉 〈

SVVS*
VH

〉〈
SVHS*

VV
〉 〈

SVHS*
VH

〉 ]
(3)

Based on the interpretation of normalized eigenvalues as probabilities Pi and consider-
ing 2 × 2 coherency matrix problems according to Cloude [30], we can derive the second
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eigenvector entirely from the principal vector using orthogonality. The entropy/alpha
parameterization of the wave coherency matrix [J] is obtained with Equation (4).

[J] =
[

Jxx Jxy
J*
xy Jyy

]
⇒


[U2] =

[
cos α − sin αe−iδ

sin αeiδ cos α

]
[D] = (λ1 + λ2)

[
P1 0
0 P2

]
⇒


α2 = P1α + P2

(
π
2 − α

)
= α(P1 − P2) + P2

π
2

H2 =
2
∑

i=1
Pi log2 Pi

(4)

α = cos−1(|e1|) 0 ≤ α ≤ 90◦ (5)

where Pi denotes probabilities of the statistically independent polarized states by normal-
izing the eigenvalues to the unit sum of λ1 and λ2. α denotes the scattering mechanism
selected for the principal eigenvector e1.

(3) Normalized Shannon Entropy

Normalized Shannon Entropy (NSE) is a parameter to characterize the diversity or
randomness of polarimetric backscattering. It is based on the concept of Shannon Entropy,
which measures the uncertainty or information content in a random variable.

The normalized Shannon Entropy (NSE) is computed as follows:

NSE =
SE

SEmax
(6)

SE = log
(

π2e2|C2|
)

(7)

where SE is the Shannon Entropy and Hmax is the maximum Shannon Entropy, which
occurs when the energy is uniformly distributed among all polarization states. C2 is the
2 × 2 covariance matrix extracted from the scattering matrix S. The NSE ranges from 0 to
1, where 0 indicates a fully polarized scenario and 1 indicates complete depolarization
or randomness.

2.3.2. Outlier Detection on Wheat Cropping Pixels

To minimize noise data in wheat pixels, we carried out an outlier detection proce-
dure using the Isolation Forest outlier detection model with derived polarimetric SAR
parameters. The Isolation Forest model employs a tree-based approach to isolate anomalies
efficiently by randomly selecting features and constructing isolation trees, enabling the
identification of outliers as instances that require fewer splits to be isolated within the tree
structure. We refer to Dong, Fu, and Wang et al. [39] for mathematical details of the model.
The number of base estimators was set to 100. Outlying pixels were removed through the
Isolation Forest filtering process as misclassified wheat pixels by fitting and running the
model on each AOI.

2.3.3. Feature Importance Evaluation and Decremental Classification of Phenophase

We designed an iterative process to decide the importance of indicators and find the
best feature combination for phenology classification interactively based on the random
forest classifier (see Figure 4). First, samples were split into 85% training and 15% testing
sets for each incidence angle group. With the training set, we adopted a five-fold cross-
validation strategy to train random forest classifiers using Gini impurity as a criterion for
the tree-building process. The random forest classifier was set to a default parameterization
(trees = 100). The mean Kappa for the five folds was calculated as the model performance
metric. For each training fold, feature importance was evaluated by sorting their Gini
importance score. The importance ranking for each feature was determined by the five-fold
average Gini importance values. The feature that ranks as least important was then omitted.
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The above five-fold cross-validation process was repeated with the remaining indicators
until the last feature was left. The most important indicators for winter wheat phenophase
classification were hereby determined as those leading to the highest mean validating
Kappa score. We define this modeling process as a decremental classification.
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With the most important indicators, we retrained the random forest classifier with
different model parameter combinations to find the best parameterization using a 5-fold
cross-validating strategy. Model performance was finally evaluated with the test set.

3. Results
3.1. Backscattered Wave Polarimetry Analysis

We aggregated each AOI’s pixel-wise polarimetric parameters by averaging them
to form an AOI-level sample set containing mean polarimetric parameter values and
phenophase records. Phenology records were plotted to examine how polarimetric pa-
rameters change against phenology development (Figures 5–7). It can be observed that
most parameters, including H2, α2, LPR, NSE, DoLP, Span, σ0

VV , g0, g1, and g2, show evi-
dent sensitivity to wheat phenophase. The underlying explanation contributes to the fact
that biomass accumulates and the canopy structure and water content change as the crop
matures. As a result, the polarimetry of the received wave varies as phenophase progresses.



Remote Sens. 2024, 16, 1659 10 of 18

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 19 
 

 

the booting stage, respectively, as shown in (a) and 5 (b) in Figures 5–7. The 𝜎  contin-
ued the decrease in the jointing and booting stages. The decrease is mainly due to the 
vegetation attenuation effect, caused by the vertical elongation development of stems and 
leaves in these phases, which leads to attenuation in radar backscatter. Although the veg-
etation scattering and attenuation effects are coupled, the impact of vegetation attenuation 
on the soil contribution is more significant for narrow-leaf crops like wheat during its 
early phenological stages [23,44]. 𝜎  , DoLP, Span, 𝑔  , and 𝑔   continued decreasing. 
LPR reached its peak and then started declining during jointing and booting. 

 
Figure 5. Scatter plots of polarimetric parameters against winter wheat phenophase in the BBCH 
scale for the smaller-incidence-angle group (30–35°). Subfigures are BBCH against 𝐻  (a), 𝛼  (b), 
Normalized Shannon Entropy (c), Span (d), DoLP (e), LPR (f), g0 (g), g1 (h), g2 (i), g3 (j), 𝜎  (k), 
and 𝜎  (l), respectively. 

During the heading stage (BBCH 50–60), the wheat spike (ear) began to emerge from 
the leaf sheath of the flag leaf after the uppermost leaf swelled into a flag, enclosing the 
spike within it. At this stage, biomass, Leaf Area Index (LAI), and plant height commonly 
reach their maximum values, leading to a more diverse appearance of the entire field, 
notably impacting the SAR signal [15]. Meanwhile, the vegetation attenuation effect 
reaches its maximum, leading to radar backscatter 𝜎  at its lowest level. Then, the radar 
backscatter rises with increasing biomass, given that the dominant factor is the vegetation 
scattering effect rather than the attenuation effect. 𝐻  and 𝛼  values during and after the 
heading stage experienced a decline. This indicates the ongoing desiccation of the plants 
and an increased soil contribution to the signal. Surface scattering of the soil regained sig-
nificance, while the proportion of volume scattering from vegetation declined, as 

Figure 5. Scatter plots of polarimetric parameters against winter wheat phenophase in the BBCH
scale for the smaller-incidence-angle group (30–35◦). Subfigures are BBCH against H2 (a), α2 (b),
Normalized Shannon Entropy (c), Span (d), DoLP (e), LPR (f), g0 (g), g1 (h), g2 (i), g3 (j), σ0

VV (k),
and σ0

VH (l), respectively.

Before the regreening stage, the wheat canopy was in its initial seedling state. The
SAR response was dominated by bare soil. From the regreening stage to the standing
stage (BBCH 25–30), the wheat canopy starts to develop again while plant height is low.
Bare soil between crop rows leads to the majority contribution of soil to the SAR response.
Surface scattering dominates during these stages. H2 and α2 were relatively low ((a) and
(b) in Figures 5–7). Backscatter energy σ0

VV ((m) in Figures 5–7) began to decrease from the
regreening to the standing stage due to vertical development of the wheat plant. So did the
DoLP ((e) in Figures 5–7), Span ((d) in Figures 5–7), g0 ((g) in Figures 5–7), and g1 ((h) in
Figures 5–7). On the other hand, LPR ((f) in Figures 5–7) increases during this stage.
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Figure 6. Scatter plots of polarimetric parameters against winter wheat phenophase in the BBCH
scale for the median-incidence-angle group (35–40◦). Subfigures are BBCH against H2 (a), α2 (b),
Normalized Shannon Entropy (c), Span (d), DoLP (e), LPR (f), g0 (g), g1 (h), g2 (i), g3 (j), σ0

VV (k),
and σ0

VH (l), respectively.

During jointing (BBCH 30–39) and booting (BBCH 41–49), crop stems begin to develop
and leaves grow longer and thicker. Meanwhile, flag leaves develop rapidly, crop height
grows, and canopy coverage reaches maximum. As plant growth progresses, the soil’s
contribution to surface scattering diminishes while volume scattering by plants becomes
more prominent. Additionally, the radar signal’s complexity grows due to the enhanced
depolarization caused by the vegetation. This depolarization stems from the multiple-
point scatterers, in contrast to a single equivalent point scatterer [42,43]. As a result, H2
and α2 values reached maximum values of around 0.8–0.85 and approximately 28◦ in the
booting stage, respectively, as shown in (a) and (b) in Figures 5–7. The σ0

VV continued the
decrease in the jointing and booting stages. The decrease is mainly due to the vegetation
attenuation effect, caused by the vertical elongation development of stems and leaves in
these phases, which leads to attenuation in radar backscatter. Although the vegetation
scattering and attenuation effects are coupled, the impact of vegetation attenuation on
the soil contribution is more significant for narrow-leaf crops like wheat during its early
phenological stages [23,44]. σ0

VV , DoLP, Span, g0, and g1 continued decreasing. LPR reached
its peak and then started declining during jointing and booting.
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Figure 7. Scatter plots of polarimetric parameters against winter wheat phenophase in the BBCH scale
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Shannon Entropy (c), Span (d), DoLP (e), LPR (f), g0 (g), g1 (h), g2 (i), g3 (j), σ0

VV (k), and σ0
VH (l),

respectively.

During the heading stage (BBCH 50–60), the wheat spike (ear) began to emerge from
the leaf sheath of the flag leaf after the uppermost leaf swelled into a flag, enclosing the spike
within it. At this stage, biomass, Leaf Area Index (LAI), and plant height commonly reach
their maximum values, leading to a more diverse appearance of the entire field, notably
impacting the SAR signal [15]. Meanwhile, the vegetation attenuation effect reaches its
maximum, leading to radar backscatter σ0

VV at its lowest level. Then, the radar backscatter
rises with increasing biomass, given that the dominant factor is the vegetation scattering
effect rather than the attenuation effect. H2 and α2 values during and after the heading stage
experienced a decline. This indicates the ongoing desiccation of the plants and an increased
soil contribution to the signal. Surface scattering of the soil regained significance, while
the proportion of volume scattering from vegetation declined, as evidenced by decreasing
alpha values. DoLP, g0, and g1 started increasing in the heading stage. LPR showed litter
variation in this stage.

Flowering (BBCH 61–70) and the milk ripening stage (BBCH 71–87) are vital phases for
fruit development. The plant exhibits consistent or slightly decreasing biomass and height
values at the flowering stage. The water content of the entire plant and the grains begins to
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fall, followed by a significant reduction in vegetation water content in the ripening stage.
The leaf color transitioned from green to yellow. During this period, LAI decreases and the
soil likely has a growing impact on the radar signal once again [35]. During flowing and
milk ripening, σ0

VV increased from around 0.05 to 0.15. LPR, Span, g0, and g1 decreased
to a local minimum and then increased sharply during the flowering and ripening stages.
Meanwhile, DoLP showed a reverse pattern.

At the Mature and Senescence Stages (BBCH 88–100), LAI, biomass, and plant water
content decrease dramatically, resulting in smaller crop coverage. The soil likely has
a growing impact on the radar signal once again. The vegetation scattering effect is
weakened. Hence, the σ0

VV decreases. The depolarization of the wave by vegetation was
further attenuated due to the decreasing biomass, resulting in declining H2 values. Also,
the wave polarimetry change can be linked to changes in vegetation water content during
maturity and senescence. An increase in crop absorption of wave energy occurred during
wet vegetation conditions and a decrease in drying conditions [45].

3.2. SAR Parameters’ Sensitivity to Phenological Stages

The feature importance of the 12 SAR parameters was recursively updated for the
selection of the most important indicators for the three incidence angle groups. Figure 8
illustrates the cross-validating performance of the phenophase classification by Kappa
score against the number of indicators. Four indicators were identified as the best feature
combinations for phenophase classification for all three incidence angle groups. NSE, DoLP,
and g2 were among the most important indicators for all three incidence angle groups.
For the smaller-incidence-angle group and larger-incidence-angle group, the four most
important indicators were NSE, DoLP, g2, and g0 in descending order of importance and
NSE, DoLP, g2, and Wave Entropy for the medium-incidence-angle group. SAR parameters
derived from smaller-incidence-angle images were generally more sensitive to phenological
development, as evidenced by a larger Kappa score curve in Figure 8. As for the least
important features, we observed that Span, α2, and σ0

VH were the three least important
features to discriminate wheat phenology for all incidence angle groups.
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3.3. Phenophase Classification Models

The best model parameters were determined for each incidence angle group using a
cross-validated grid-search strategy. The best parameters were set to that minimal sample
leaf equals 1, minimal sample split equals 2, number of trees equals 200, and Gini impurity
as the classification criterion. Table 3 lists model evaluation metrics for the three incidence
angle groups. In general, the classification model with smaller-incident-angle images had
the highest performance in terms of weighted average precision (0.835), weighted average
recall (0.834), and Kappa (0.799), followed by the larger-incident-angle group (Kappa 0.785)
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and the median-incidence-angle group (Kappa 0.783) with similar performance. The
performance disparities among the three models are not distinctly evident.

Table 3. Model performance of the random forest phenophase classification models.

Random Forest Classifier Models

Performance Metrics

Weighted Average
Precision

Weighted Average
Recall Kappa

Smaller incidence angle (30–35◦) 0.835 0.834 0.799

Medium incidence angle (35–40◦) 0.811 0.812 0.783

Larger incidence angle (40–45◦) 0.815 0.815 0.785

Figure 9 compares the phenophase identification capability (F1 score) of the three
classification models concerning each phenophase. The classification model with smaller-
incident-angle images outperforms the other two for most phenophases, except for jointing,
booting, and milk ripening. For the smaller-incident-angle group, the model exhibited
the highest F1 scores for regreening (0.81), standing (0.85), heading (0.81), following (0.83),
and maturity (0.94) stages. Meanwhile, the phenophases with the highest F1 score for the
medium-incidence-angle group were jointing (0.85) and booting (0.86). In comparison, the
milk ripening stage witnessed the highest F1 score for the higher-incidence-angle group.
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4. Discussion
4.1. Wave Polarimetry

SAR scattering mechanisms for full-pol SAR data at different phenophases of many
crops, including wheat, have been extensively discussed [15,23,42,43,46]. The scattering
mechanisms of full-pol SAR at different phenophases were determined as the crop de-
veloped. However, how the parameters extracted from dual-pol SAR data reflect wheat
growing stages remains to be thoroughly investigated. We elaborated temporal profiles of
the 12 indicators extracted from the dual-pol H-α decomposition and Stokes Parameters.
The wave polarimetry analysis reveals that regardless of the incidence angle, H2, α2, NSE,
LPR, DoLP, Span, σ0

VV , g0, g1, and g2 showed evident sensitivity to key wheat phenophases.
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The interpretation of polarimetric features in relation to a target can pose challenges.
For vertically oriented crops like wheat, most ambient waves, and those that undergo
scattering within a distributed target like a crop canopy are typically only partially po-
larized. Firstly, the backscatter intensities of different polarization and their ratio were
essential indicators as crop canopy develops. As the crop canopy develops a more complex
structure, multiple scattering events lead to unequal phase and intensity of the horizontal
(H) and vertical (V) components of the EM wave. Consequently, σ0

VV , σ0
VH , and LPR are

theoretically correlated with phenology progress. However, in the early growing stages,
bare soil between crop rows leads to the majority contribution of soil to the SAR response
while plant height is low. Consequently, cross-polarized scattering kept low; hence, σ0

VH
was significantly lower that σ0

VV and relatively constant from BBCH 20–40. σ0
VV was a

better phenology indicator than σ0
VH . Meanwhile, Stokes components and their related

parameters (DoLP and Span) were also affected by this underlying cause.
Shannon Entropy (SE) is a measure that is composed of two elements that are asso-

ciated with the total backscatter power and the degree of polarization. SE incorporates a
component of total power. It is possible that early in the season, the soil’s contributions,
particularly due to soil moisture, might be affecting SE. Once the canopy forms, SE was
closely related to crop structure and water content as a strong indicator of phenology from
BBCH 40–90.

It should be noted that some of the parameters were correlated and should be distin-
guished for future phenology classification tasks. The temporal profiles of the extracted
parameters reveal that H2 and α2, Span and g0, and DoLP and g1 are positively correlated,
respectively. LPR was negatively correlated with DoLP. The redundant features could
lead to unnecessary computational costs and higher overfitting risk for classification or
regression tasks. This justifies the need for feature importance evaluation and feature
selection procedures prior to phenology classification modeling.

4.2. Feature Importance

Feature importance analysis showed that NSE, DoLP, and g2 are the three most
important indicators for all three incidence angle groups. This conclusion provides a
reference for selecting indicators in building wheat phenology classifiers using dual-pol
SAR data. However, we should note that the feature importance evaluation was based
on the Gini impurity in fitting a random forest classifier. The feature importance result
does not denote an absolute importance for estimating wheat phenology. Other indicators,
e.g., H2, α2, σ0

VV , and Span, also showed variations against phenology development. The
temporal profile of σ0

VV showed a prominent variance as wheat growth advanced. Other
studies also suggested that S-1’s Backscatter Coefficients can be related to wheat phenology.
For example, Nasrallah, Baghdadi, and El Hajj et al. [16] claimed that σ0

VV and σ0
VH and

their ratio can estimate certain wheat phenophase at certain incidence angel levels based
on local extrema and breakpoints. Other studies also verified that σ0

VV is sensitive to
vegetation wetness and peaks at the wheat stem elongation stage [47]. However, σ0

VV ,
σ0

VH , and their ratio failed to estimate the phenophases of the whole growing circle. In
our case, σ0

VV was not included in the best feature set for phenology classification. Its
importance ranks were 6th, 10th, and 9th for smaller, medium, and larger incidence angles,
respectively. The underlying reason is that σ0

VV fluctuates more frequently compared to
Entropy and Stokes Parameters during the whole growth circle. Therefore, σ0

VV is not an
ideal feature in forming a rational criterion for the decision trees in the classifier. It should
be noted that our model did not involve temporal indicators and could not learn indicators’
fluctuation patterns. If combined with temporal information, e.g., DOY (day of the year)
or accumulated temperature, indicators like LPR, DoLP, and σ0

VV could be significant for
estimating wheat phonology.
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4.3. Phenology Classification Results

Model evaluation with a test set shows that the SAR images of smaller incidence angles
are better suited for estimating wheat phenology. The model with smaller-incidence-angle
data achieved a better-estimating precision for all phenophases. The standing, following,
and maturity stages witnessed the highest predicting score. This could be related to the
indicators NSE, DoLP, g2, and g0, which were at their local extremes in those stages.

The reason that smaller-incidence-angle images outperformed the other two groups is
related to the backscatter response, shadowing, and canopy structure of the crop. The SAR
backscatter response from vegetation varies with the incidence angle. At smaller incidence
angles, more energy penetrates the canopy, resulting in stronger backscatter signals. At
larger angles, the radar signal interacts more with the top layers of vegetation, which may
lead to more complex scattering behavior due to multiple scattering effects. At larger
incidence angles, vegetation can cast shadows on the ground, affecting the radar signal
received by the sensor. This can result in areas of reduced backscatter intensity or signal
attenuation, particularly in dense vegetation. Different vegetation types and canopy struc-
tures respond differently to changes in incidence angle. Some vegetation types may exhibit
stronger backscatter signals at certain angles due to their canopy structure and orientation
relative to the radar beam [48,49]. In our case, smaller incidence angles provide better
penetration into the vertically oriented wheat canopy and result in stronger backscatter
signals, particularly for middle and late phenology stages featured by dense vegetation.

5. Conclusions

This study evaluated 12 parameters extracted from dual-pol S-1 data for wheat phe-
nology classification while considering incidence angles of image acquisition. Feature
importance evaluation and phenology classification results showed that

• NSE, DoLP, and g2 are the three most important indicators for all three incidence angle
groups. The three indicators of least importance for all three groups were Span, α2,
and σ0

VH ;
• For the smaller-incidence-angle group (30◦–35◦) and larger-incidence-angle group

(40◦–45◦), the four most important indicators were NSE, g0, H2, and g1 in descending
order of importance. The four most important indicators for the medium-incidence-
angle group were NSE, DoLP, g2, and H2;

• Dual-pol SAR indicators are capable of estimating wheat phenology at a good precision.
For all eight key phenophases, the average Precision and Recall were both above 0.8;

• Classification models trained on smaller-incidence-angle SAR images had better per-
formance. The smaller-incidence-angle SAR images are better suited for estimating
wheat phenology.

Overall, this study highlighted the potential of dual-pol SAR data for wheat phenology
estimation. The results provide a reference for other phenology estimation studies using
dual-pol SAR data in choosing better-informed indicators.
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28. Küçük, Ç.; Taşkın, G.; Erten, E. Paddy-rice phenology classification based on machine-learning methods using multitemporal
co-polar X-band SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2509–2519. [CrossRef]

https://doi.org/10.1007/s13593-016-0371-0
https://doi.org/10.1016/j.rse.2005.03.008
https://doi.org/10.3390/rs10091396
https://doi.org/10.1016/j.ecolecon.2015.11.004
https://doi.org/10.1016/j.cropro.2015.02.025
https://doi.org/10.1016/j.fcr.2013.01.021
https://doi.org/10.1016/j.jag.2014.08.011
https://doi.org/10.1016/j.biosystemseng.2012.08.009
https://doi.org/10.1016/j.rse.2010.08.003
https://doi.org/10.1117/1.JRS.10.026020
https://doi.org/10.1117/1.JRS.14.014518
https://doi.org/10.1109/JSTARS.2016.2639043
https://doi.org/10.1016/j.rse.2020.111814
https://doi.org/10.3390/rs11131569
https://doi.org/10.3390/rs11192228
https://doi.org/10.1016/j.rse.2018.10.012
https://doi.org/10.1109/MGRS.2013.2248301
https://doi.org/10.1109/36.551935
https://doi.org/10.1016/j.rse.2017.07.031
https://doi.org/10.3390/rs10020340
https://doi.org/10.1109/TGRS.2016.2585744
https://doi.org/10.1016/j.rse.2019.111234
https://doi.org/10.1109/LGRS.2016.2551377
https://doi.org/10.1016/j.jag.2018.08.024
https://doi.org/10.1109/TGRS.2013.2268319
https://doi.org/10.1109/LGRS.2013.2286214
https://doi.org/10.1109/JSTARS.2016.2547843


Remote Sens. 2024, 16, 1659 18 of 18

29. Yang, Z.; Shao, Y.; Li, K.; Liu, Q.; Liu, L.; Brisco, B. An improved scheme for rice phenology estimation based on time-series
multispectral HJ-1A/B and polarimetric RADARSAT-2 data. Remote Sens. Environ. 2017, 195, 184–201. [CrossRef]

30. Cloude, S. The dual polarization entropy/alpha decomposition: A PALSAR case study. Sci. Appl. SAR Polarim. Polarim. Interferom.
2007, 644, 2.

31. Ji, K.; Wu, Y. Scattering mechanism extraction by a modified Cloude-Pottier decomposition for dual polarization SAR. Remote
Sens. 2015, 7, 7447–7470. [CrossRef]

32. Shan, Z.; Wang, C.; Zhang, H.; Chen, J. H-alpha decomposition and alternative parameters for dual Polarization SAR data. PIERS
Suzhou China 2011, 4, 1386–1390.

33. Harfenmeister, K.; Itzerott, S.; Weltzien, C.; Spengler, D. Agricultural monitoring using polarimetric decomposition parameters of
sentinel-1 data. Remote Sens. 2021, 13, 575. [CrossRef]

34. Dey, S.; Bhogapurapu, N.; Homayouni, S.; Bhattacharya, A.; McNairn, H. Unsupervised classification of crop growth stages with
scattering parameters from dual-pol sentinel-1 SAR data. Remote Sens. 2021, 13, 4412. [CrossRef]

35. Harfenmeister, K.; Itzerott, S.; Weltzien, C.; Spengler, D. Detecting phenological development of winter wheat and winter barley
using time series of sentinel-1 and sentinel-2. Remote Sens. 2021, 13, 5036. [CrossRef]

36. Haldar, D.; Verma, A.; Kumar, S.; Chauhan, P. Estimation of mustard and wheat phenology using multi-date Shannon entropy
and Radar Vegetation Index from polarimetric Sentinel-1. Geocarto Int. 2022, 37, 5935–5962. [CrossRef]

37. Lopez-Sanchez, J.M.; Cloude, S.R.; Ballester-Berman, J.D. Rice phenology monitoring by means of SAR polarimetry at X-band.
IEEE Trans. Geosci. Remote Sens. 2011, 50, 2695–2709. [CrossRef]

38. Pacheco, A.; McNairn, H.; Li, Y.; Lampropoulos, G.; Powers, J. Using RADARSAT-2 and TerraSAR-X satellite data for the
identification of canola crop phenology. In Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII; SPIE: Edinburgh, UK,
2016; p. 999802.

39. Dong, J.; Fu, Y.; Wang, J.; Tian, H.; Fu, S.; Niu, Z.; Han, W.; Zheng, Y.; Huang, J.; Yuan, W. Early-season mapping of winter wheat
in China based on Landsat and Sentinel images. Earth Syst. Sci. Data 2020, 12, 3081–3095. [CrossRef]

40. Cloude, S.R.; Goodenough, D.G.; Chen, H. Compact polarimetry for C-band land-use classification: A pre-study for the Canadian
Radar Constellation Mission (RCM). In Sar Image Analysis, Modeling, and Techniques XII; SPIE: Edinburgh, UK, 2011; pp. 36–49.

41. Mascolo, L.; Lopez-Sanchez, J.M.; Cloude, S.R. Thermal noise removal from polarimetric Sentinel-1 data. IEEE Geosci. Remote
Sens. Lett. 2021, 19, 1–5. [CrossRef]

42. Chauhan, S.; Darvishzadeh, R.; Boschetti, M.; Nelson, A. Discriminant analysis for lodging severity classification in wheat using
RADARSAT-2 and Sentinel-1 data. ISPRS J. Photogramm. Remote Sens. 2020, 164, 138–151. [CrossRef]

43. Lee, J.-S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2017.
44. Hajj, M.E.; Baghdadi, N.; Belaud, G.; Zribi, M.; Cheviron, B.; Courault, D.; Hagolle, O.; Charron, F. Irrigated grassland monitoring

using a time series of terraSAR-X and COSMO-skyMed X-Band SAR Data. Remote Sens. 2014, 6, 10002–10032. [CrossRef]
45. Cookmartin, G.; Saich, P.; Quegan, S.; Cordey, R.; Burgess-Allen, P.; Sowter, A. Modeling microwave interactions with crops and

comparison with ERS-2 SAR observations. IEEE Trans. Geosci. Remote Sens. 2000, 38, 658–670. [CrossRef]
46. Wang, H.; Magagi, R.; Goïta, K. Potential of a two-component polarimetric decomposition at C-band for soil moisture retrieval

over agricultural fields. Remote Sens. Environ. 2018, 217, 38–51. [CrossRef]
47. Fieuzal, R.; Baup, F.; Marais-Sicre, C. Monitoring wheat and rapeseed by using synchronous optical and radar satellite data—From

temporal signatures to crop parameters estimation. Adv. Remote Sens. 2013, 2, 33222. [CrossRef]
48. Mattia, F.; Le Toan, T.; Picard, G.; Posa, F.I.; D’Alessio, A.; Notarnicola, C.; Gatti, A.M.; Rinaldi, M.; Satalino, G.; Pasquariello, G.

Multitemporal C-band radar measurements on wheat fields. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1551–1560. [CrossRef]
49. Balenzano, A.; Mattia, F.; Satalino, G.; Davidson, M.W. Dense temporal series of C-and L-band SAR data for soil moisture retrieval

over agricultural crops. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 4, 439–450. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.rse.2017.04.016
https://doi.org/10.3390/rs70607447
https://doi.org/10.3390/rs13040575
https://doi.org/10.3390/rs13214412
https://doi.org/10.3390/rs13245036
https://doi.org/10.1080/10106049.2021.1926554
https://doi.org/10.1109/TGRS.2011.2176740
https://doi.org/10.5194/essd-12-3081-2020
https://doi.org/10.1109/LGRS.2021.3050921
https://doi.org/10.1016/j.isprsjprs.2020.04.012
https://doi.org/10.3390/rs61010002
https://doi.org/10.1109/36.841996
https://doi.org/10.1016/j.rse.2018.08.003
https://doi.org/10.4236/ars.2013.22020
https://doi.org/10.1109/TGRS.2003.813531
https://doi.org/10.1109/JSTARS.2010.2052916

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	In Situ Wheat Phenology Observation and Wheat Map 
	Sentinel-1 SAR Imagery 

	Methods 
	SAR Data Processing and Polarimetric Decomposition 
	Outlier Detection on Wheat Cropping Pixels 
	Feature Importance Evaluation and Decremental Classification of Phenophase 


	Results 
	Backscattered Wave Polarimetry Analysis 
	SAR Parameters’ Sensitivity to Phenological Stages 
	Phenophase Classification Models 

	Discussion 
	Wave Polarimetry 
	Feature Importance 
	Phenology Classification Results 

	Conclusions 
	References

