
Citation: Wu, H.; Huang, Z.;

Zheng, W.; Bai, X.; Sun, L.; Pu, M.

SSGAM-Net: A Hybrid

Semi-Supervised and Supervised

Network for Robust Semantic

Segmentation Based on Drone LiDAR

Data. Remote Sens. 2024, 16, 92.

https://doi.org/10.3390/rs16010092

Academic Editor: Joaquín

Martínez-Sánchez

Received: 13 November 2023

Revised: 8 December 2023

Accepted: 20 December 2023

Published: 25 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

SSGAM-Net: A Hybrid Semi-Supervised and Supervised
Network for Robust Semantic Segmentation Based on Drone
LiDAR Data
Hua Wu †, Zhe Huang † , Wanhao Zheng, Xiaojing Bai ∗, Li Sun and Mengyang Pu

School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China;
wuhua@ncepu.edu.cn (H.W.); huangzhe@ncepu.edu.cn (Z.H.); wanhaozheng@ncepu.edu.cn (W.Z.);
ccesunli@ncepu.edu.cn (L.S.); mengyang.pu@ncepu.edu.cn (M.P.)
* Correspondence: baixiaojing@ncepu.edu.cn
† These authors contributed equally to this work.

Abstract: The semantic segmentation of drone LiDAR data is important in intelligent industrial
operation and maintenance. However, current methods are not effective in directly processing
airborne true-color point clouds that contain geometric and color noise. To overcome this challenge,
we propose a novel hybrid learning framework, named SSGAM-Net, which combines supervised
and semi-supervised modules for segmenting objects from airborne noisy point clouds. To the best
of our knowledge, we are the first to build a true-color industrial point cloud dataset, which is
obtained by drones and covers 90,000 m2. Secondly, we propose a plug-and-play module, named the
Global Adjacency Matrix (GAM), which utilizes only few labeled data to generate the pseudo-labels
and guide the network to learn spatial relationships between objects in semi-supervised settings.
Finally, we build our point cloud semantic segmentation network, SSGAM-Net, which combines
a semi-supervised GAM module and a supervised Encoder–Decoder module. To evaluate the
performance of our proposed method, we conduct experiments to compare our SSGAM-Net with
existing advanced methods on our expert-labeled dataset. The experimental results show that our
SSGAM-Net outperforms the current advanced methods, reaching 85.3% in mIoU, which ranges
from 4.2 to 58.0% higher than other methods, achieving a competitive level.

Keywords: semantic segmentation; hybrid learning; global contextual relationships; deep learning;
drone LiDAR data

1. Introduction

Semantic segmentation of airborne LiDAR point clouds plays a critical role in intelli-
gent industrial operation and maintenance (O&M). It automatically detects and classifies
equipment in industrial scenarios, helping to improve production efficiency and reduce
downtime [1,2]. For example, the semantic segmentation of airborne electrical substation
point clouds simplifies industrial defect detection and facilitates the development of digital
twins in the power sectors [3–6]. With the development of remote sensing technology, using
drones equipped with RGB cameras and LiDAR sensors to acquire remote sensing images
and airborne LiDAR point clouds offers an efficient way to acquire comprehensive scene
information [7,8], providing basic data for intelligent industrial O&M and applications of
building information modeling (BIM) model in various fields, such as cultural heritage
protection [9], smart cities [10,11], and energy [12].

With the development of 3D model reconstruction, it is possible to utilize drone remote
sensing images and airborne LiDAR point clouds to reconstruct true-color point clouds via
commercial softwares [13]. Compared with RGB images or LiDAR point clouds, the fused
true-color point clouds exhibit significant advantages. Primarily, true-color point clouds
provide an exhaustive description of the object geometry, capturing details often lost in
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two-dimensional representations [14]. Furthermore, they provide color details in addition
to 3D geometry. However, the imprecision of laser range measurements and the movement
of the aircraft introduce uncertainties and errors in the 3D coordinates of each point, so the
resulting true-color point clouds contain substantial geometric noise [15]. Additionally, the
registration errors of RGB images during the reconstruction cause color information shifts
of the true-color point clouds, drastically degrading the quality of the airborne true-color
point clouds [13], as shown in Figure 1b,d,f,h.

(a) (b)

(c) (d)

(e) (f)

Figure 1. Cont.
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(g) (h)

Figure 1. Images of the electrical substations (a,c,e,g) and the corresponding airborne true-color point
clouds (b,d,f,h).

Therefore, noisy true-color point clouds present significant challenges for the semantic
segmentation of such point clouds. The inherent noise in such point clouds impairs the
efficacy of traditional algorithms, such as principal component analysis (PCA) and support
vector machines (SVM), in accurately capturing the geometric structure of the objects [5,16].
Recent advances in deep learning (DL) have facilitated the development of sophisticated
algorithms for point cloud semantic segmentation, leading to significant breakthroughs
in different domains such as industrial O&M [17,18], autonomous driving [19,20], and
smart cities [21,22]. The DL-based semantic segmentation methods for point clouds can
be roughly divided into four categories: projection-based [23–27], voxel-based [28–31],
point-wise multilayer perceptron (MLP) [32–36], and point convolution methods [37–40].
All of these methods perform 3D semantic learning in supervised settings, relying on the
geometric structure and color information within the point clouds. Therefore, when both
pieces of information are severely distorted (e.g., noisy true-color point clouds), as depicted
in Figure 1, these methods become ineffective.

Based on the aforementioned four categories of methods, various researchers have
engaged in research concerning the semantic segmentation of drone LiDAR data in recent
years. Zeng et al. [41] introduced RRDAN for the semantic segmentation of airborne LiDAR
point clouds. They refined KPConv [40] by integrating attention mechanisms and recurrent
residual learning. The effectiveness of RRDAN was validated on an artificially noisy airborne
point cloud dataset without color information. In addition, a more previous approach, called
LGENet [42], was proposed for the semantic segmentation of airborne LiDAR point clouds.
It fused a combination of KPConv and SegECC blocks, enhanced with a spatial-channel
attention mechanism. LGENet’s effectiveness was also demonstrated in a synthetic noisy
airborne point cloud dataset that lacked color information. Therefore, we chose RRDAN,
a more up-to-date method, for the comparative experiments. It should be noted that both
researchers artificially added noise into the airborne point cloud to test the robustness of their
methods in noisy point clouds. However, the added noise is not able to fit the actual noise
distribution caused by aircraft movement, imprecise laser range measurements, and point
cloud fusion during post-processing. As a result, significant challenges are posed by adopting
these methods on airborne noisy true-color point clouds acquired by drones.

The objective of this study is to develop a hybrid learning-based semantic segmen-
tation network capable of accurately segmenting industrial objects from airborne noisy
true-color point clouds. In this study, we propose a plug-and-play module, named the
Global Adjacency Matrix (GAM), to guide the network to learn global contextual rela-
tionships within true-color point clouds under semi-supervised settings. Additionally,
as the spatial pyramid pooling (SPP) structure offers a significant advantage in feature
extraction [43], a Encoder–Decoder module that adopts SPP is used for learning multi-scale
features in supervised settings. Then, we propose a novel hybrid learning-based network,
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named SSGAM-Net, which consists of the GAM module and Encoder–Decoder module. It
is an elegant pipeline, with no need for redundant pre-processing or post-processing. Due
to the lack of airborne true-color point cloud datasets, we employ multiple raw airborne
true-color point clouds, accompanied by precise annotations, to construct a real-world
airborne true-color point cloud dataset for our research.

The main contributions of this paper are summarized as follows:

1. This study proposes a plug-and-play module, named GAM, which utilizes few sam-
ples to generate the pseudo-labels for guiding the network to learn complex global
contextual relationships within noisy point clouds, so as to improve the anti-noise
performance of our method.

2. Based on the GAM module, we construct a novel loss function that augments the
network’s ability to perceive global contextual relationships in noisy true-color point
clouds, thus solving the issue of distorted geometric structure and color
information shift.

3. We build an airborne true-color point cloud dataset with precise annotations for 3D
semantic learning.

4. We present a novel hybrid learning-based network for semantic segmentation of noisy
true-color point clouds, which integrates the GAM module and Encoder–Decoder
Module to improve the segmentation performance.

2. Related Work
2.1. Accuracy Assessment

The drone LiDAR precision is influenced by three factors: (1) systematic errors induced
by design and manufacture; (2) measurement errors induced by variations in light, tem-
perature, and platform instability; and (3) data-processing errors induced by filtering and
registration. Currently, drones have gained widespread adoption in various fields, such
as mapping, construction, and satellite remote sensing, with applications including urban
building measurement of mountainous terrain and waterway mapping. Therefore, numerous
researchers have investigated the precision of drone LiDAR point clouds. Dharmadas et al. [44]
tested the accuracy of the unmanned aerial vehicle (UAV) LiDAR in agricultural landscapes,
evaluated the accuracy in the vertical direction, and showed that the absolute accuracy and
relative accuracy of the UAV LiDAR point cloud in the vertical direction were 5 cm and 7 cm.
Kim et al. [45] systematically assessed the absolute errors in both horizontal and vertical
directions of UAV LiDAR point clouds, using amorphous natural objects as references. Be-
sides the assessment of geometric errors, some researchers have studied the accuracy of color
information in true-color point clouds acquired by drones. Štroner et al. [13] comprehensively
evaluated the color information accuracy of airborne true-color point clouds in different flights,
and showed that the total color information shift of the fused true-color point clouds is 20 cm.

2.2. Point Cloud Semantic Segmentation

In recent years, numerous advances have been made in DL-based point cloud semantic
segmentation. These methods can be categorized into several classes: projection-based
methods; voxel-based methods; point-wise MLP methods; and point convolution methods.

2.2.1. Projection-Based Methods

The projection-based approach is inspired by conventional image semantic segmentation.
It aims to project point cloud data onto multiple 2D planes, conduct semantic segmentation
on each plane, and combine the initial segmentation results across multiple planes to produce
the final results. For example, Tatarchenko et al. [23] introduced tangent convolutions for
dense point cloud segmentation, which map the local surface geometry around each point to
a virtual tangent plane. These methods exhibit notable efficacy in processing high-resolution
point clouds, primarily because the intricate details of surface geometry are essential for
accurate segmentation. However, the implementation of projection-based algorithms such
as TangentConv [23] in the semantic segmentation of noisy point clouds introduces certain
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limitations. Consider the case of TangentConv: primarily, its performance is contingent
upon the quality of the surface geometry represented within the point cloud. However, the
presence of noise, which is particularly prevalent in airborne point clouds, can distort the
surface geometry, resulting in inaccurate tangent plane estimations. Moreover, TangentConv
presupposes that the data are sampled from locally Euclidean surfaces, and requires the
estimation of approximate normal vectors. The presence of noise in airborne point clouds
inevitably leads to erroneous normal vector estimations, adversely affecting the orientation
of tangent planes and the convolution process. These limitations significantly impede the
applicability of the method in processing noisy airborne point clouds.

2.2.2. Voxel-Based Methods

The voxel-based methods offer an approach to process and analyze point clouds by
discretizing the 3D space into equally sized cubic cells, which are named voxels. This ap-
proach comprises two steps: voxelization and voxel classification. Voxelization represents
point clouds as a collection of discrete voxels, while voxel classification employs neural
networks to classify each voxel, as exemplified by VoxelNet [28] and VV-Net [30]. While
this method introduces certain benefits, especially in terms of computational efficiency and
consistent data structures, there a main limitation when it comes to handling noisy airborne
point clouds. In voxel-based methods, point cloud segmentation is highly dependent on
the user-defined voxel size. Given the challenges of noisy airborne point clouds, a larger
voxel size can result in a loss of spatial details, whereas smaller voxels are susceptible to
noise. Consequently, the applicability of this method in handling and analyzing noisy
drone LiDAR point clouds is limited.

2.2.3. Point-Wise MLP Methods

Point-wise MLP-based methods use raw point clouds as input to the network and
employ MLP to extract features and classify each point. Representative works in this cate-
gory include PointNet [32] and PointNet++ [33], which utilize symmetric functions to solve
the disorder in point clouds while extracting global features. In recent years, significant
progress has been made in this area; for example, Hu et al. [36] proposed RandLA-Net.
It uses random sampling to reduce computational complexity and local perception to
improve the neighborhood information of each point. Qiu et al. [46] introduced BAAF-Net,
which improves the representation of the features and classification performance through
bilateral augmentation and adaptive fusion. These methods are characterized by their
simplicity and efficiency. Therefore, these algorithms demonstrate superiority in handling
large-scale point clouds. Nevertheless, their inability to learn spatial relationships between
objects via deep neural networks results in a constrained capability to capture global con-
textual relationships. Consequently, there will be potential improvements when applying
these methods to noisy airborne point clouds.

2.2.4. Point Convolution Methods

Point convolution methods, such as PointCNN [37] and PointConv [47], involve direct
convolution operations on point clouds, preserving the original information and details
in the point cloud and avoiding data distortion and redundancy. These methods adapt to
non-uniform point clouds by adjusting the convolution kernels. Mao et al. [48] proposed
InterpCNNs, which use interpolation convolution operations (InterpConv) to perform
interpolation on each point and obtain feature representations. To enhance the flexibility
and expressiveness of the model, Thomas et al. [40] introduced a point cloud semantic
segmentation network called KPConv by defining deformable kernel points in Euclidean
space. Additionally, KPConv employs the Ball query to collect neighborhood points
instead of k-nearest neighbors (KNN), which enhances its ability to extract local features.
However, this approach does not consider the implementation of adjacency relationships
between objects, leading to a significant decrease in its effectiveness when the geometric
structure in point clouds is severely distorted.
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2.3. Point Cloud Datasets

The number of existing point cloud datasets is less than the image datasets.
Commonly used point cloud datasets include the following: (1) indoor datasets: S3DIS [49]
and ScanNet [50]; (2) individual object datasets: ModelNet [51]; (3) outdoor datasets: Se-
manticKITTI [52] and Semantic3D [53]. The aforementioned point cloud datasets are all
based on terrestrial laser scanning, characterized by high accuracy and low noise, but with
high costs [54]. Currently, there is a lack of low-cost airborne industrial point cloud datasets,
which limits the widespread application of this technology and our research.

3. Methodology
3.1. Building an Airborne True-Color Point Cloud Dataset

In this study, we built a true-color industrial point cloud dataset, called VoltCloud Data
(VCD), which is obtained by drones. VCD, which comprises approximately 900 million
points, contains various objects related to power scenarios. Due to the complex and
diverse equipment found in the electricity infrastructure, the VCD is representative of
industrial point cloud datasets. This dataset has been precisely annotated for the research
presented in this paper and future study. The dataset particulars are expounded in the
subsequent subsections.

3.1.1. Data Collection And Processing

There are three main advantages of using drones for data collection: (1) high efficiency:
completing large-scale area scanning in a short time; (2) low cost: fewer device costs;
(3) wide application range: applying to dangerous areas such as high-voltage substations,
mountainous regions, deserts, and polar regions.

We acquired raw LiDAR point clouds and RGB imagery through airborne remote sensing
from four electrical substations. This data collection was facilitated using an industrial-grade
UAV equipped with a cost-effective aerial laser scanner. The system accuracy of the scanner is
10 cm in the horizontal direction and 5 cm in the vertical direction. We then utilized DJI Terra
software to generate airborne true-color point clouds through the fusion of RGB imagery and
LiDAR point clouds. Figure 2 displays each of the scanned scenarios. An example of both the
original and the annotated point cloud is depicted in Figure 3. Table 1 presents a summary of
the number of points corresponding to each semantic category within our dataset.

(a) (b)

Figure 2. Cont.
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(c) (d)

Figure 2. Overview of four airborne laser-scanned scenes, primarily consisting of insulators, electric
wires, bus structures, transformers, and other electrical power equipment. (a–d) represents four
different electrical substations.

Figure 3. An example of the original point cloud and the annotated point cloud, where different
colors represent different semantic categories.

Table 1. The number of points of each category within our dataset: Total indicates the number of points
of the fifteen categories, while Total* represents the original number of points. M indicates million.
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The VCD covers a total area of approximately 90,000 m2. In the true-color point
clouds, each point is represented by a six-dimensional vector. This vector integrates spatial
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information through three dimensions and color information via another three dimensions.
Notably, each dimension is susceptible to differing degrees of noise, represented as X′, Y′,
Z′, R′, G′, B′. Given that p ∈ R6 represents a point within a noisy true-color point cloud,
p is defined by Equation (1):

p =



X′

Y′

Z′

R′

G′

B′

 (1)

Additionally, the VCD includes a wide array of electrical power equipment commonly
found in electrical substations, such as insulators, electric wires, inductors, capacitor banks,
distribution rooms, transformers, etc. As shown in Figure 4, there are some geometrically
similar objects that belong to different categories. Coupled with the noise introduced by
airborne laser scanning (ALS) and the registration of images, these similar objects are
difficult to distinguish. Therefore, processing the noisy airborne point clouds is fraught
with difficulties.

3.1.2. Data Annotation

The VCD dataset consists of four large-scale electrical substations and includes 15 cat-
egories of important infrastructure within the substations, as shown in Figure 2. Figure 4
displays several annotated samples. Obviously, the use of ALS and the registration of
images introduce a significant amount of noise. Furthermore, there are notable geometric
differences even among objects of the same label, which poses challenges for the semantic
segmentation of such point clouds.

Our point cloud data annotation includes the following steps:

1. Spatial Decomposition: we partition each scene into subregions to eliminate irrelevant
surrounding objects near the substations, thereby improving processing efficiency.

2. Object extraction: substation experts used the advanced point cloud processing soft-
ware, CloudCompare, to manually extract individual objects within each subregion
according to their functional attributes. Subsequently, these segmented objects were
stored as distinct files.

3. Data quality check: The annotation results are checked by human experts to ensure
the high quality and consistency of the annotation of the point cloud data.

(a) (b) (c)

Figure 4. Cont.
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(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4. (a–c): bus structure, (d–f): insulator, (g–i): ground stake, (j–l): electric wire. To better
demonstrate the noise and inhomogeneity present in airborne true-color point cloud data, we have
modified the RGB coloration of the point cloud to display in white. As shown in figure, objects
belonging to the same category exhibit differences in geometric structures (e.g., (a–c)).

3.2. Proposed Novel SSGAM-Net

We present an innovative hybrid learning-based network for semantic segmentation
of noisy true-color point clouds, named SSGAM-Net. It consists of two primary modules:
(1) a GAM module for guiding the network to learn global contextual relationships by
generating the pseudo-labels; and (2) an ED module for the extraction of multi-scale features
through point convolution. An overview of our proposed SSGAM-Net is presented in
Figure 5. As demonstrated by the experimental results in Section IV, the network exhibits
better performance on noisy true-color point clouds obtained by drones.
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Figure 5. SSGAM-Net overview.

3.2.1. Semi-Supervised GAM Module

Based on the adjacency relationships between objects, we propose the GAM module,
which consists of two parts: (1) the adjacency probability between all pairs of categories;
(2) the storage of adjacency probability as an adjacency matrix. The GAM module has
demonstrated feasibility, reliability, and interpretability in enhancing the segmentation
accuracy of noisy airborne point clouds. In terms of feasibility, adjacency relationships
between objects within the point clouds can be measured and calculated through the
Euclidean distance or KNN. Regarding reliability, adjacency relationships provide the
neural network with global contextual relationships, enhancing the segmentation accuracy
of noisy airborne point clouds. In addition, in terms of interpretability, the adjacency
relationships between objects enhance the trustworthiness of the network, and the concept
of adjacency relationships among objects encapsulates their spatial relationships. Taking
the indoor scene as an example, the chair exhibits pronounced spatial relationships with the
floor, as opposed to its relatively weaker spatial relationships with the ceiling. In contexts
where distinguishing between the ceiling and floor presents a challenge, the spatial contact
of the chair with the floor serves as a reference for differentiating against the ceiling. More
importantly, the adjacency relationships between objects can be obtained only with a few
labeled samples, which allows us to use semi-supervised learning to accelerate the training.

The adjacency relationships between objects are represented as an adjacency ma-
trix M, where each element indicates the adjacency probability between two categories.
Specifically, if two categories are adjacent, the corresponding element value in the adjacency
matrix will be non-zero; otherwise, it will be zero. As depicted in the GAM module in
Figure 6, we use only a few points N to infer global contextual relationships, with each
point Ni featuring a three-dimensional coordinate and label Ci in {1, 2, . . . , C}, where C
represents the total number of semantic categories. To obtain the adjacency matrix M, each
category label is processed sequentially.
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Figure 6. GAM module.

Figure 7. Illustration of the boundary point effect. Circles and triangles represent two different
categories of points.

After selecting the label in N, N′ is obtained. For each center point in N′, the KNN is
used to compute neighboring points, as around points in N, all the neighboring points are
named N′′. Among the k neighboring points in N′′, the points with labels different from
the central points in N′ are filtered. They are sent to the SD module, and the adjacency
probability between the two categories is illustrated in Equation (2).

P′
ij =

∑
n′

i
k=1 np

n′
i

(
np ∈ R

((
N′

i
)

k

)
∧ np ∈ Cj

)
(2)

where np is a neighborhood point belonging to R((N′
i )k), that is, the neighborhood of a

center point (N′
i )k. (N′

i )k is the k-th center point belonging to the i-th category, Cj is the j-th
category, and n′

i is the number of center points of the i-th category.
However, in Equation (2), the influence of boundary points on the adjacency prob-

ability is greatly underestimated. Regarding the boundary points, a point is defined as
a boundary point if its neighborhood contains points of other categories; otherwise, it is
defined as an inland point.

As shown in Figure 7, we assume that k = 3, N′′ = 3, cp1 is the inland point and cp2
is the boundary point. When calculating the adjacency probability, cp2 should be given a
higher weight than cp1, which is called the boundary preference. Since there are far fewer
boundary points than inland points, we set a boundary point weight λ to reinforce the
boundary preference, as shown in Equation (3).
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Pij = λ
∑

n′
i

k=1 np

n′
i

(
np ∈ R

((
N′

i
)

k

)
∧ np ∈ Cj

)
(3)

We propose a novel loss function consisting of two components: (1) Cross-entropy Loss,
measuring the discrepancy between the output of the Encoder–Decoder module and the
ground truth for each point in the prediction results; (2) GAM Loss, assessing the difference
between the predicted labels Mtr and the pseudo-labels M0 during training. As shown in
Figure 8, pseudo-labels M0 are derived from the few labeled data, while the predicted labels
Mtr are obtained from training. M0 and Mtr are compared, and the difference between the
two matrices is defined as Matrix Similarity, as shown in Equation (4). Its value ranges
from negative infinity to 1. The closer its value is to negative infinity, the greater the
difference between M0 and Mtr; and the closer its value is to 1, the smaller the difference
between M0 and Mtr. We adopt a logarithmic form of the loss function GAM Loss, as
shown in Equation (5).

Matrix Similarity = 1 −

∑C−1
i=0 ∑C−1

j=i
(

M0ij − Mtrij
)2

∑C−1
i=0 ∑C−1

j=i M2
0ij

 (4)

GAM Loss = ln(−(Matrix Similarity − 2)) (5)

The total loss is defined as:

Loss = Cross-entropy Loss + GAM Loss (6)

Figure 8. Combination of segmentation network and GAM module.

3.2.2. Network Architecture

The overall network architecture is shown in Figure 9, which includes the GAM mod-
ule and the Encoder–Decoder module. The Encoder module consists of two operations:
(1) point convolution-E; (2) aggregation-A. Specifically, for each center point i and its
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neighboring points R(i), a point convolution operation is used to extract local geometric
features f j. This operation can adaptively adjust and allocate weights within local regions
to adapt point clouds of different shapes and densities. Finally, as shown in Equation (7),
a max-pooling operation is used to aggregate features Fi relative to the center point i.
This operation not only expands the receptive field, but also reduces computational com-
plexity and memory consumption.

Figure 9. SSGAM-Net architecture.

Fi = A
(
E
(
yi, f j

)
| j ∈ R(i)

)
(7)

where yi = i − j illustrates the distance between the centroid i and its nearest neighbor j;
R(i) denotes the nearest neighboring points of the centroid i.

In general, the Encoder consists of several point convolution layers, which involve
aggregating point features from the neighborhood around a central point. The Decoder’s
primary function is to restore the spatial resolution of point clouds. This restoration is
achieved by nearest upsampling combined with skip connection to recapture the lost spatial
information. After the upsampling stage, the upsampled features are aggregated with
those from the corresponding encoder layer. Finally, the network employs a fully connected
layer to output the semantic labels. Additionally, in the feature aggregation, SPP is used
to merge multi-scale features. SPP executes pooling operations across various levels on
feature maps, thereby capturing and aggregating information from multiple scales. At each
respective level, SPP divides the feature map into distinct regions, subsequently conducting
pooling operations within these regions. Therefore, SPP enables the network to capture both
fine-grained local features and coarser-grained global features. This capability facilitates
the network’s proficiency in handling objects of diverse sizes and shapes, improving the
perception of the network at various scale. With the few labels predicted by the Encoder–
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Decoder module, the GAM module guides the Encoder–Decoder module to learn the global
contextual relationships. Specifically, the Encoder–Decoder module aims to minimize both
the Cross-entropy Loss and GAM Loss through the application of gradient descent during
the training stage.

4. Experiments
4.1. Evaluation Metrics and Experimental Settings

The purpose of point cloud semantic segmentation is to assign semantic labels to
individual points within a point cloud. As shown in Figure 10, for each category of points
within the prediction results, there are four possible cases: (1) True Positive (TP): this
refers to the number of instances in which the model correctly predicted a positive result;
(2) False Positive (FP): this denotes the number of instances in which the model erroneously
predicted a positive result; (3) False Negative (FN): this represents the number of instances
in which the model mistakenly predicted a negative result; (4) True Negative (TN): this
refers to the number of instances where the model accurately predicted a negative result.

Figure 10. Typical confusion matrix.

Intersection over union (IoU) and overall accuracy (OA) are commonly used evalu-
ation metrics in point cloud semantic segmentation. IoU is calculated as the proportion
of intersection and union between the predicted segmentation results and the ground
truth. A higher IoU indicates that neural networks predict more accurate segmenta-
tion boundaries. The mean IoU (mIoU) is the average value of IoUs for all categories.
The OA metric measures the classification accuracy of model, calculated as the proportion
of correctly classified points and the total number of points. A higher OA indicates that
neural networks have better segmentation performance. The above metrics are shown in
Equations (8)–(10):

IoU =
TPi

TPi + FPi + FNi
(8)

mIoU =
∑N

i IoUi

N
(9)

OA =
TP + TN

TP + TN + FP + FN
(10)

In summary, we use the above metrics to evaluate the performance of the neural
network in the following experiments.

4.2. Experimental Settings and Environment

We conduct experiments on VCD. This experimental dataset consists of 15 categories
of industrial objects. During the training process, we set the number of neighboring points
k at 1500, and the weight λ of GAM Loss is assigned as 25. In addition, we set the batch
size at 6, the learning rate at 0.001, and the number of training epochs at 50, with the Adam
optimizer. In order to improve computational efficiency, downsampling is required, while
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simultaneously preserving the adjacency relationships. Therefore, we implement a global
uniform downsampling strategy in each training scene for the computation of the GAM.
In the following comparative experiments, the primary parameters for each method are
defined as follows. For RandLA-Net and BAAF-Net, the k value in KNN algorithm is set
to 16. Both methods utilize an input of 40,960 points and a sub-grid size of 0.04. In the
case of KPConv and RRDAN, the number of kernel points is set at 15. KPConv employs a
input sphere radius of 3.0 for the input sphere, a first subsampling grid size of 0.06, and a
convolution radius of 2.5. RRDAN uses an input sphere radius of 20 and a first subsampling
grid size of 0.40, and maintains the same convolution radius of 2.5. The number of input
points for both PointNet and PointNet++ is 4096. All training and testing are conducted on
the same equipment.

4.3. Experimental Results
4.3.1. Comparison with Other Methods

In Table 2, our method outperforms current advanced methods in both mIoU and
global OA metrics, particularly in mIoU. Compared to the other methods, our approach
has improved 4.2% in mIoU. Our method exhibits competitive performance in the semantic
segmentation of airborne noisy true-color point clouds. Notably, for category pairs with
similar shapes, such as insulators and ground stakes, capacitors and inductors, and small-
sized objects such as brackets and conduits, our method shows a significant advantage over
other methods. The aforementioned advantages indicate that the adjacency relationships
between objects captured by the GAM module significantly improve the performance of the
network. Specifically, our proposed method is capable of accurately segmenting key objects
in UAV electrical power inspection, offering significant value for industrial applications.

Table 2. Comparison of segmentation results between the proposed SSGAM-Net and other methods.

Methods OA (%) mIoU (%)
Stru
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PointNet [32] 73.1 27.3 71.7 0.0 0.0 5.1 60.6 92.2 34.2 10.1 29.2 0.1 67.6 19.6 0.0 18.5 0.1
PointNet++ [33] 77.3 30.9 60.4 5.8 0.0 0.0 27.8 93.4 58.4 22.2 45.9 0.2 37.9 29.2 31.5 33.0 17.3

RandLA-Net [36] 91.9 71.7 69.8 56.1 73.7 17.8 98.8 98.1 87.9 60.7 71.0 92.0 77.3 49.3 82.7 71.7 68.9
BAAF-Net [46] 90.7 70.2 60.4 59.3 65.3 20.8 99.1 96.5 73.0 65.2 73.5 91.4 81.7 44.8 77.8 64.2 80.3
KPConv [40] 95.5 81.1 95.6 90.4 70.0 62.9 99.5 98.9 91.4 69.9 76.6 86.5 84.1 46.4 90.5 81.9 71.3
RRDAN [41] 94.6 77.5 91.7 86.1 76.2 60.0 97.6 99.4 98.9 51.6 43.5 63.9 85.9 40.8 96.2 96.5 76.4

SSGAM-Net (Ours) 96.9 85.3 96.9 92.2 74.4 75.6 99.6 99.5 93.8 74.2 72.8 90.7 86.9 54.1 97.3 86.8 84.1

Note: The best test results of each method are selected for comparison, and bold fonts mean the best accuracy.

The GAM module performs well in different scale regions by taking advantage of mini-
mizing both GAM Loss and Cross-entropy Loss. In small-scale region No. 1 of Figure 11, all
methods except (b) SSGAM-Net exhibit different degrees of mis-segmentation. SSGAM-Net
performs well because of the powerful GAM module, which guides the network to learn
global contextual relationships within noisy point clouds, avoiding the mis-segmentation of
non-adjacent objects existing in the same local space. In the large-scale region, as shown in
Figure 12, region No. 1 in (c,d), and regions No. 2 and 3 in (e) all exhibit mis-segmentation
of non-adjacent objects existing in the same local space. However, benefiting from the
pseudo-label guidance of the powerful GAM module, (b) SSGAM-Net still performs well
in regions No. 1, 2, and 3. The results show that the GAM module effectively guides the
network to learn global contextual relationships within noisy point clouds by generating
pseudo-labels, which dramatically improves the segmentation accuracy. The GAM Loss
prevents non-adjacent objects of different categories from being mis-segmented into the
same local space, while the Cross-entropy Loss reduces the risk of mis-segmentation of the
entire object.
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(a) (b) (c) (d) (e)

Figure 11. The segmentation results of the insulator on the structure in small-scale regions.
(a) Ground truth; (b) SSGAM-Net; (c) BAAF-Net; (d) KPConv; (e) RandLA-Net. The dashed el-
lipse region indicates region No. 1.

(a) (b) (c) (d) (e)

Figure 12. The segmentation result of the capacitor in large-scale regions. (a) Ground truth;
(b) SSGAM-Net; (c) BAAF-Net; (d) KPConv; (e) RandLA-Net. The dashed ellipse regions indi-
cate the corresponding numbered regions.

4.3.2. Hyperparameter Selection

To determine the suitable values of the hyperparameters k and λ of the GAM mod-
ule in the experiments, we empirically set 36 different combinations of k and λ values,
and determine the appropriate values based on mIoU. The experimental results are shown
in Figure 13; when the value of k is close to 1500 and the value of λ is close to 25, the
segmentation results on the VCD achieve the best mIoU. Based on the experimental facts,
we adopt the set of hyperparameters k = 1500 and λ = 25 when conducting experiments
on VCD.

4.3.3. Computational Cost Comparison

Furthermore, a comparative analysis was conducted on the computational time and
memory consumption among various methods during training. Batch size is uniformly set
to 6. The data presented in Table 3 indicate that PointNet and RandLA-Net demonstrate
the fastest processing time. On the contrary, PointNet++ exhibits the most prolonged
processing time, consuming 5182 s per epoch. Notably, despite RandLA-Net’s remark-
ably fast processing time of 98 s per epoch, it consumes substantial GPU memory cost,
amounting to 23,282 MB. This shows that RandLA-Net necessitates considerable memory
resources to handle large-scale data, while it is time-efficient. KPConv demonstrates good
performance in terms of processing efficiency and GPU memory utilization. After the above
quantitative comparison, our proposed SSGAM-Net shows advantages in higher accuracy
and acceptable GPU memory cost for time-insensitive tasks such as offline segmentation.
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Figure 13. The experimental results are under different combinations of k and λ values. The darker
the color, the higher the mIoU under the corresponding hyperparameter combination, and the values
inside each square indicate the mIoU.

Table 3. The processing time and memory consumption among various methods during training.

Model Total Time (s per Epoch) GPU Memory Cost (MB)

PointNet [32] 102 5382
PointNet++ [33] 5182 6344
KPConv [40] 378 8663
RandLA-Net [36] 98 23,282
BAAF-Net [46] 293 27,175
RRDAN [41] 425 10,867
SSGAM-Net (Ours) 641 8805

Note: The bold fonts indicate the fastest processing speed and least memory consumption.

5. Conclusions and Outlook

In this paper, we present a novel hybrid semi-supervised and supervised network,
SSGAM-Net, for semantic segmentation of noisy true-color point clouds obtained by drones.
Without the need for redundant pre-processing or post-processing, our proposed method
provides an elegant and efficient way for direct semantic segmentation of airborne noisy
point clouds. To verify the performance of SSGAM-Net, we built an airborne industrial
true-color point cloud dataset VCD for the experiments. The experimental results on VCD
show that our proposed method achieves 85.3% in mIoU and 96.6% in OA. Specifically,
in terms of the metric mIoU, our SSGAM-Net surpasses other advanced algorithms by
a margin of 4.2 to 58%, achieving a competitive level. Moreover, the results validate not
only that the pseudo-labels generated by the GAM module in semi-supervised settings
correctly represent the adjacency relationships between objects, but also that pseudo-labels
effectively guide the network to learn the global contextual relationships within noisy
point clouds. Benefiting from the powerful GAM module, the ED module is able to utilize
the global contextual relationships to improve the segmentation performance. There-
fore, our proposed SSGAM-Net is suitable for direct semantic segmentation of airborne
noisy true-color point clouds, exhibiting significant potential for application in intelligent
industrial O&M.

Our work introduces a new perspective for understanding global contextual rela-
tionships within noisy point clouds, effectively linking global contextual relationships to
concrete adjacency relationships. The adjacency relationships serve as a vital reference
to distinguish between objects that share similar features, such as geometry or color in-
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formation. Therefore, it considerably enhances the explainability and trustworthiness of
the model.

In this work, we are the first to characterize the spatial relationships of components
in industrial scenarios and combine them with a novel hybrid learning framework to
accurately segment airborne noisy true-color point clouds. However, our proposed method
is unable to temporarily support multimodal data and has not yet conducted model
lightweighting. In future work, we will focus on lightweighting the network so that it can
be efficiently deployed in edge devices for intelligent industrial O&M applications, such as
the construction and updating of industrial BIM models. Moreover, we will aim to enhance
the model’s ability to process multimodal data.
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