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Abstract: With the development of remote sensing technology, a number of fine-resolution (30-m)
global/national land cover (LC) products have been developed. However, accuracy assessments for
the developed LC products are commonly conducted at global and national scales. Due to the limited
availability of representative validation observations and reference data, knowledge relating to the
accuracy and applicability of existing LC products on a regional scale is limited. Since Xinjiang, China,
exhibits diverse surface cover and fragmented urban landscapes, existing LC products generally have
high classification uncertainty in this region. This makes Xinjiang suitable for assessing the accuracy
and consistency of exiting fine-resolution land cover products. In order to improve knowledge of
the accuracy of existing fine-resolution LC products at the regional scale, Xinjiang province was
selected as the case area. First, we employed an equal-area stratified random sampling approach
with climate, population density, and landscape heterogeneity information as constraints, along
with the hexagonal discrete global grid system (HDGGS) as basic sampling grids to develop a
high-density land cover validation dataset for Xinjiang (HDLV-XJ) in 2020. This is the first publicly
available regionally high-density validation dataset that can support analysis at a regional scale,
comprising a total of 20,932 validation samples. Then, based on the generated HDLV-XJ dataset, the
accuracies and consistency among three widely used 30-m LC products, GLC_FCS30, GlobeLand30,
and CLCD, were quantitatively evaluated. The results indicated that the CLC_FCS30 exhibited the
highest overall accuracy (88.10%) in Xinjiang, followed by GlobeLand30 (with an overall accuracy
of 83.58%) and CLCD (81.57%). Moreover, through a comprehensive analysis of the relationship
between different environmental conditions and land cover product performance, we found that
GlobeLand30 performed best in regions with high landscape fragmentation, while GLC_FCS30 stood
out as the most outstanding product in areas with uneven proportions of land cover types. Our study
provides a novel insight into the suitability of these three widely-used LC products under various
environmental conditions. The findings and dataset can provide valuable insights for the application
of existing LC products in different environment conditions, offering insights into their accuracies
and limitations.

Keywords: land cover; remote sensing; validation dataset; accuracy assessment; consistency analysis;
stratified random sampling

1. Introduction

Land cover (LC) monitoring plays a pivotal role in ecological environment gover-
nance, agricultural and forestry management, urban and rural planning, and ecological
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conservation. The rapid development of computer technology and the continuous sharing
of medium- to fine-resolution remote sensing data, such as from Landsat and Sentinel, have
ushered the world into an era of fine-resolution remote sensing [1,2]. When conducting
large-scale macro-scale land cover research, a resolution of 30 m is considered optimal [3,4].
Moreover, this resolution has an advantageous data size, enabling more efficient data
processing and storage.

In recent years, many 30-m fine-resolution LC products have been produced. For
example, Chen et al. (2015) developed the well-known GlobeLand30 using a pixel-object-
knowledge-based (POK) classification strategy based on multi-temporal Landsat and
HJ-1A/B imagery [3], Zhang et al. (2021) generated a global-scale 30-m Global Land Cover
with Fine Classification System (GLC_FCS30) product based on the spectral library of land
cover and time-series Landsat data [1], and Yang et al. (2021) utilized Landsat data and the
random forest classifier to generate the annual China Land Cover Dataset (CLCD) based
on the Google Earth Engine (GEE) [5]. Similarly, Gong et al. (2013) produced the Finer
Resolution Observation and Monitoring of Global Land Cover (FROM_GLC) product using
the Landsat thematic mapper (TM) and enhanced thematic mapper Plus (ETM+) data [6].
The United States Geological Survey (USGS) collaborated with multiple federal agencies to
produce the 30-m National Land Cover Database (NLCD), which covers the entire United
States [7]. These large-scale fine-resolution LC products provide adequate information to
observe the fundamental characteristics and trends of land cover.

However, the accuracies reported for the abovementioned large-scale LC products
are generally towards global and national scales (Table 1). For instance, the accuracy of
GlobeLand30 was evaluated using 38,644 globally distributed validation samples [3]. Simi-
larly, the accuracy of GLC_FCS30 was assessed using 44,043 samples that were distributed
across the globe [1]. For the assessment of CLCD accuracy, a total of 5463 validation points
within China were used [5]. Nevertheless, due to the differences in scene complexity and
data quality across regions, the accuracy of land cover products inevitably varies from
region to region [3,8–10]. In some complex areas, the accuracy of LC products is even much
lower than the overall accuracy of the report [11]. For example, the overall accuracy of
GlobeLand30 is reported to be 83.5% worldwide. However, its accuracy significantly drops
to approximately 50% in Africa [12]. Similarly, in the Central Asian region, the accuracy of
GlobeLand30 was found to be only about 46% [13]. Cui et al. (2023) collected thirteen sets
of global or national-scale land cover datasets. Through the visual interpretation of high-
resolution images, ground “truth” samples were collected to evaluate the data accuracy
across Northeast China [14]. Accordingly, the quantitative evaluation of the accuracy and
consistency of existing 30-m land cover products at the regional scale is of great significance
for the scientific use of these products.

Table 1. Summary of existing accuracy evaluation studies of 30-m LC products.

Validated LC Products Validation Area Sample Quantity Literature

GLC_FCS30 Globe 44,043 Zhang et al. (2021) [1]

CLCD China 5463 Yang et al. (2021) [5]

GlobeLand30 Globe 38,644 Chen et al. (2015) [3]

FROM-GLC30 Globe 38,664 Zhao et al. (2014) [15]

GlobeLand30, FROM-GLC30, and GLC_FCS30 Globe 79,112 Zhao et al. (2023) [16]

The validation of land cover products is typically conducted by randomly selecting
validation points and visually interpreting the labels of each point using high-resolution
imagery for comparison with the product [17]. Therefore, in order to accurately evaluate
the accuracy of land cover products in a specific region, a scientific high-density validation
dataset is a crucial prerequisite [10,15,18–20]. The construction of a high-density verifi-
cation dataset in a scientific manner, with sufficient quantities of representative samples
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covering different categories in each region, is a crucial issue. The research conducted by
Sahr (2011) demonstrated that dividing the study area into equal-sized grids and assigning
validation points at the grid level ensures coverage of sample points in all regions [21].
Zhao et al. (2023) demonstrated that considering multiple factors such as climate and
population when allocating sampling points and employing a stratified random sampling
approach can result in a more reasonable distribution of validation points [16]. To ensure
an adequate number of samples in complex areas and appropriate placement of sampling
points in homogeneous regions, this study employs a multi-indicator equal-area stratified
random sampling method [15]. This approach not only increases the sample size of rare
land cover categories but also effectively reduces the standard deviation of accuracy as-
sessment [16]. Additionally, the use of equal-area stratified random sampling ensures the
balance of different categories during the sample selection process, thereby enhancing the
representativeness and reliability of the assessment results.

To this end, we first employed an equal-area stratified random sampling approach
with climate, population density, and landscape heterogeneity information as constraints,
along with the hexagonal discrete global grid system (HDGGS) as basic sampling grids to
develop a High-Density Land cover Validation dataset in Xinjiang (HDLV-XJ). Then, the
consistency and accuracy of three widely used 30-m resolution LC products (GLC_FCS30,
CLCD, GlobeLand30) in 2020 were analyzed based on the developed validation dataset.
Additionally, the suitability of these three LC products under different environment condi-
tions was for the first time analyzed and revealed. The results of this study can provide
an important reference value for the accuracy assessment of existing LC products on re-
gional scales and for the application of LC products in specific scenarios. Additionally, our
HDLV-XJ dataset can provide valuable data support for regional-scale research.

2. Study Area and Data
2.1. Study Area

The study area chosen for this research was the Xinjiang Uyghur Autonomous Re-
gion, situated between 73◦40′ and 96◦18′ east longitude and 34◦25′ and 48◦10′ north latitude
(Figure 1). As the largest provincial-level administrative region in China, Xinjiang encom-
passes an extensive land area, accounting for over one-sixth of the country’s total land area,
with a precise measurement of 1,664,897 km2 [22]. Located in the Northwestern part of
China, Xinjiang lies in the hinterland of the Eurasian continent and is considered one of the
provinces farthest from the ocean within China. Xinjiang has a typical temperate continental
climate that has only a few and unevenly distributed precipitation events [23]. The region
comprises diverse land cover types, including primarily deserts, grasslands, and croplands.
The distribution of vegetation is predominantly observed in mountainous and oases [24].

2.2. The 30-Meter Global Land Cover Products

Three widely used LC products were selected for evaluation: GlobeLand30, GLC_FCS30,
and CLCD (Figure 2). Among them, GLC_FCS30 is a 30-m global land cover product devel-
oped using time-series Landsat data. The product covers the time span from 1985 to 2020,
with update cycles occurring every 5 years. It incorporates 16 primary LCCS land cover types
and 14 secondary land cover types (Table 2). The overall global accuracy of the GLC_FCS30 is
reported as 82.5% [1]. CLCD is a 30-m-resolution annual land cover dataset for China. This
product is derived from the utilization of Landsat data in conjunction with a random forest
classifier. The dataset includes yearly land cover information for China from 1985 to 2019.
Its classification system includes nine land cover types (Table 2). The overall accuracy of the
CLCD reaches 79.31% [5]. GlobeLand30 is a high-precision global land cover product with a
spatial resolution of 30 m. It was updated with three sets of data, in 2000, 2010, and 2020. The
development of GlobeLand30 was based on the “Pixel-Object-Knowledge” (POK) method.
Its classification system includes 10 land cover types (Table 2), and the overall accuracy is
83.5% [3]. By utilizing the vector boundaries of Xinjiang, the original LC products were
clipped and reclassified to standardize their classification system, as shown in Figure 2.



Remote Sens. 2024, 16, 82 4 of 24Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 26 
 

 

 
Figure 1. Study area and the land cover type along with the corresponding examples of their ap-
pearance on Google Earth: (source: Google Earth). 

2.2. The 30-Meter Global Land Cover Products 
Three widely used LC products were selected for evaluation: GlobeLand30, 

GLC_FCS30, and CLCD (Figure 2). Among them, GLC_FCS30 is a 30-m global land cover 
product developed using time-series Landsat data. The product covers the time span from 
1985 to 2020, with update cycles occurring every 5 years. It incorporates 16 primary LCCS 
land cover types and 14 secondary land cover types (Table 2). The overall global accuracy 
of the GLC_FCS30 is reported as 82.5% [1]. CLCD is a 30-m-resolution annual land cover 
dataset for China. This product is derived from the utilization of Landsat data in conjunc-
tion with a random forest classifier. The dataset includes yearly land cover information 
for China from 1985 to 2019. Its classification system includes nine land cover types (Table 
2). The overall accuracy of the CLCD reaches 79.31% [5]. GlobeLand30 is a high-precision 
global land cover product with a spatial resolution of 30 m. It was updated with three sets 
of data, in 2000, 2010, and 2020. The development of GlobeLand30 was based on the 
“Pixel-Object-Knowledge” (POK) method. Its classification system includes 10 land cover 
types (Table 2), and the overall accuracy is 83.5% [3]. By utilizing the vector boundaries of 
Xinjiang, the original LC products were clipped and reclassified to standardize their clas-
sification system, as shown in Figure 2. 

  

Figure 1. Study area and the land cover type along with the corresponding examples of their
appearance on Google Earth: (source: Google Earth).

Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 26 
 

 

 
Figure 2. The 30-m global land cover products in harmonized classification systems: (a) remote sens-
ing image of Xinjiang, (b) GLC_FCS30, (c) CLCD, and (d) GlobeLand30. 

2.3. Climate Zone and Population Datasets 
In order to scientifically generate sufficient validation samples in different regions 

and to avoid spatial imbalance in sample distribution, climate zone and population da-
tasets were also collected. The climate zone data used in this study were from the Köppen–
Geiger climate spatial distribution dataset, which was derived based on temperature and 
precipitation observations from global climate models (h p://koeppen-geiger.vu-
wien.ac.at/shifts.htm (accessed on 16 June 2023)) [25]. The climate zones are defined as 
follows: primary climate groups include equatorial (A), arid (B), warm temperate (C), 
snow (D), and polar (E). Precipitation categories include desert (W), steppe (S), fully hu-
mid (f), summer dry (s), winter dry (w), and monsoonal (m). Temperature categories in-
clude hot arid (h), cold arid (k), hot summer (a), warm summer (b), cool summer (c), ex-
tremely continental (d), polar frost (F), and polar tundra (T). The Kӧppen–Geiger climate 
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Table 2. The classification systems of the three LC products. The classification system for GLC_FCS30,
CLCD, and GlobeLand30 were sourced from Zhang et al. (2021) [1], Yang et al. (2021) [5], and
Chen et al. (2015) [3], respectively. Note: the land cover types we used in this study are in bold.

CLCD Id GlobeLand30 Id GLC_FCS30 Id

Cropland 1 Cultivated land 10

Rain-fed cropland 10
Herbaceous cover 11

Tree or shrub cover (orchard) 12
Irrigated cropland 20

Forest 2 Forest 20

Evergreen broadleaved forest 50
Deciduous broadleaved forest 60

Closed deciduous broadleaved forest 61
Open deciduous broadleaved forest 62

Evergreen needleleaved forest 70
Closed evergreen needleleaved forest 71
Open evergreen needleleaved forest 72

Deciduous needleleaved forest 80
Closed deciduous needleleaved forest 81
Open deciduous needleleaved forest 82

Mixed-leaf forest 90

Shrub 3 Shrubland 40
Shrubland 120

Evergreen shrubland 121
Deciduous shrubland 122

Grassland 4 Grassland 30 Grassland 130
Wetland 9 Wetland 50 Wetlands 180

Impervious 8 Artificial surfaces 80 Impervious surfaces 190

Bare land 7 Bare land 90

Lichens and mosses 140
Sparse vegetation 150
Sparse shrubland 152

Sparse herbaceous cover 153
Bare areas 200

Consolidated bare areas 201
Unconsolidated bare areas 202

Water 5 Water bodies 60 Water body 210
Snow/Ice 6 Permanent snow and ice 100 Permanent ice and snow 220

Tundra 70

2.3. Climate Zone and Population Datasets

In order to scientifically generate sufficient validation samples in different regions and
to avoid spatial imbalance in sample distribution, climate zone and population datasets
were also collected. The climate zone data used in this study were from the Köppen–
Geiger climate spatial distribution dataset, which was derived based on temperature and
precipitation observations from global climate models (http://koeppen-geiger.vu-wien.ac.
at/shifts.htm (accessed on 16 June 2023)) [25]. The climate zones are defined as follows:
primary climate groups include equatorial (A), arid (B), warm temperate (C), snow (D), and
polar (E). Precipitation categories include desert (W), steppe (S), fully humid (f), summer
dry (s), winter dry (w), and monsoonal (m). Temperature categories include hot arid (h),
cold arid (k), hot summer (a), warm summer (b), cool summer (c), extremely continental
(d), polar frost (F), and polar tundra (T). The Köppen–Geiger climate classification spatial
distribution data are shown in Figure 3. We clipped the Köppen-Geiger climate spatial
distribution dataset using the vector boundary data of Xinjiang (Figure 3b). Xinjiang
includes 10 different climate types, namely BSk, BWk, Dfa, Dfb, Dfc, Dsa, Dsb, Dsc,
Dwc, and ET. Due to the limited spatial extent and similar characteristics of certain climate
classifications (Dsa, Dsb, Dfa) in Xinjiang, this study employed the merging method utilized
by Olofsson et al. (2012) for collecting validation data on global land cover products [25–27].
Classes were manually merged into different classes. For example, Dsa: “Continental,

http://koeppen-geiger.vu-wien.ac.at/shifts.htm
http://koeppen-geiger.vu-wien.ac.at/shifts.htm
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dry and hot summer”, Dsb: “Continental, dry and warm summer”, and BSk: “Arid,
desert, cold” were merged into one desert class in Xinjiang, and Dsa: “Continental, dry
summer, hot summer” and Dsa: “Continental, dry summer, warm summer” were merged
with the continental forest class. Table 3 summarizes the initial 10 classes into the final
5 climate classifications.
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Table 3. Edited Köppen–Geiger climate classification in Xinjiang.

New Code Climate Climate Code

1 Desert BWk
2 Grassland BSk + Dsa + Dsb
3 Continental forest Dfa + Dfb
4 Boreal forest Dsc + Dwc + Dfc
5 Frost EF

The Global Human Settlement Layer (GHSL) dataset provides spatial information on
global population distribution and residential areas. It offers four levels of global geospatial
population data with resolutions of 100 m, 1 km, and more, covering the period from
1975 to 2030 with a 5-year interval (https://ghsl.jrc.ec.europa.eu/download.php?ds=pop
(accessed on 16 June 2023)). Due to the availability of the latest global geospatial population
data, GHSL-POP2020 was used as a source for stratified population data in this study.
Based on the population density data in GHS-POP2020, the population data of the Xinjiang
were reclassified using a threshold of five people per km2 [28], resulting in the creation of
the population and un-population layers.

2.4. The Existing Land Cover Validation Dataset

Two published global land cover validation datasets were collected in our study
to cross-compare with our developed HDLV-XJ and to further illustrate the accuracy of
our validation dataset. The first was the global validation dataset (SRS_Val) released
by Zhao et al. (2023) [16]. The SRS_Val adopted a stratified random sampling method
to distribute 79,112 validation samples globally in 2020, of which 659 validation points
were distributed in Xinjiang. The second were the global land cover validation samples
(GLV_2015) produced by Zhang et al. (2019) in 2015 [1]. The GLV_2015 was generated
through integrating the GLCNMO2008 training dataset, VIIRS reference dataset, STEP
reference dataset, global cropland reference data, and high-resolution imagery in Google
Earth. This dataset contains a total of 403 sample points in Xinjiang. Both SRS_Val and
GLV_2015 adopted a standardized classification system derived from UN-LCCS, and

https://ghsl.jrc.ec.europa.eu/download.php?ds=pop
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GLV_2015 is only distributed in six categories in Xinjiang. The quantities and spatial
distributions of the validation points in these two datasets are illustrated in Figure 4a,b. The
validation samples of SRS_val are scattered throughout Xinjiang. The most prevalent land
cover in SRS_Val is bare area (with 296 samples), followed by grassland (with 143 samples)
and sparse vegetation (with 83 samples). Conversely, the sample points of GLV_2015 in
the Xinjiang region are predominantly concentrated in the south. Furthermore, bare land
presented the highest counts in the GLV_2015 (with 222 samples), followed by permanent
ice and snow (with 96 samples) and sparse vegetation (with 56 samples). The land types in
the two datasets were modified according to the classification system used in this study
(Table 2). The number of samples corresponding to each class after adjustment is shown in
Figure 4c.
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3. Methods
3.1. Harmonization of the Land Cover Classification Systems

This study encounters the challenge of dealing with the different classification systems
employed by the LC products GLC_FCS30, CLCD, and GlobeLand30. When computing the
consistency of LC products, the differences in classification systems used in LC products
can affect the consistency and accuracy of those different products [8–10]. The classification
systems of CLCD and GlobeLand30 solely encompass land cover’s first-level classes, while
GLC_FCS30 incorporates three-level classes; therefore, a classification system based on
those of CLCD and GlobeLand30 was adopted (Table 2). It should be noted that the tundra
in GlobeLand30 was not included in our classification system because this land cover
class is almost nonexistent in the Xinjiang region. Meanwhile, the classification system of
GLC_FCS30 was merged and adjusted to the categories used in this study (Table 2).

3.2. Construction of the Land Cover Validation Dataset in Xinjiang

The flowchart is illustrated in Figure 5. First, we performed a spatial overlay operation
on the Köppen–Geiger climate spatial distribution data and GHSL-POP2020 data to obtain
a climate–population density constraint layer. Furthermore, the Shannon diversity index
(SHDI) was calculated to derive the landscape heterogeneity, and the hexagonal discrete
global grid system (HDGGS) was used to generate basic sample-allocated hexagonal grids.
Then, a spatial join operation was utilized to combine the above constraint layers to deter-
mine the number of samples distributed in each hexagonal grid. A total of 22,000 sample
points were allocated within each grid based on the derived constraint layers. Finally, the
category of each validation sample point was annotated based on visual interpretation to
generate the HDLV-XJ.



Remote Sens. 2024, 16, 82 8 of 24
Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 26 
 

 

 
Figure 5. Flowchart for constructing the HDLV-XJ. 

3.2.1. The Equal-Area Stratified Random Sampling Method Based on Multiple Indicator 
Constraints 

To ensure a sufficient number of samples in complex areas and to position appropri-
ate sampling points in homogeneous and heterogeneous areas, the equal-area stratified 
random sampling method was utilized, based on multiple indicators [16]. This method 
accomplishes two objectives: it augments the sample size for uncommon land cover cate-
gories and concurrently reduces the standard deviation in accuracy assessment [26]. The 
methodology primarily relies on two constraint indices, climate–population density data 
and landscape heterogeneity, to determine the number of validation points in each region. 
A hexagonal grid was constructed as the fundamental unit for assigning sampling points, 
in order to ensure adequate representation of each region and sufficient data for validation 
purposes. 

First, since land cover information is intricately intertwined with climate change and 
human activities [29,30], climate and population density data were incorporated to gen-
erate a climate–population density layer, serving as the primary foundation for the layout 
of samples. Specifically, the population and un-population layers in Xinjiang were delin-
eated based on the population density data. The climate data were reclassified into five 
categories (Table 3) and overlaid with the population and un-population layers to obtain 
the climate–population density layer. 

Then, because landscape variables significantly influence the accuracy of LC prod-
ucts and classification results are generally more a ainable in areas with homogeneous 
landscapes than those with heterogeneous landscapes [31], landscape heterogeneity was 
used as a quantitative measure of landscape fragmentation within the study area, enabling 
the development of a more robust land cover validation dataset. Therefore, in addition to 
establishing the climate–population density layer, this study also incorporated landscape 
heterogeneity as a criterion for the allocation of sample points. The objective was to allo-
cate a greater number of sample points in highly heterogeneous areas, thereby establish-
ing a more rigorous validation framework to evaluate the accuracy of the LC products 
[32]. The Shannon diversity index was used to describe the degree of landscape heteroge-
neity [33]. In a landscape ecosystem, the more diverse the land use types and the higher 
the fragmentation, the greater the amount of information contained in the patches, result-
ing in a higher calculated value of the Shannon diversity index (SHDI) [34]: 

𝑆𝐻𝐷𝐼 =  − ∑ (𝑃 )(ln 𝑃 )  (1)

where Pi is the proportion occupied by landscape patch type i and m is the total number 
of land cover types in the landscape patch; the GLC_FCS30 was utilized in this study to 
compute the SHDI. The calculated SHDI map was classified into different layers at inter-
vals of 0.2 for the creation of a landscape constraint layer that represents landscape heter-
ogeneity. 

Finally, in order to ensure a representative sample distribution across the Xinjiang 
province, the hexagonal discrete global grid system (HDGGS) was employed to gather 
validation datasets [6,21]. The R programming language was used to generate HDGGS 

Figure 5. Flowchart for constructing the HDLV-XJ.

3.2.1. The Equal-Area Stratified Random Sampling Method Based on Multiple
Indicator Constraints

To ensure a sufficient number of samples in complex areas and to position appropriate
sampling points in homogeneous and heterogeneous areas, the equal-area stratified random
sampling method was utilized, based on multiple indicators [16]. This method accom-
plishes two objectives: it augments the sample size for uncommon land cover categories and
concurrently reduces the standard deviation in accuracy assessment [26]. The methodology
primarily relies on two constraint indices, climate–population density data and landscape
heterogeneity, to determine the number of validation points in each region. A hexagonal
grid was constructed as the fundamental unit for assigning sampling points, in order to
ensure adequate representation of each region and sufficient data for validation purposes.

First, since land cover information is intricately intertwined with climate change
and human activities [29,30], climate and population density data were incorporated to
generate a climate–population density layer, serving as the primary foundation for the
layout of samples. Specifically, the population and un-population layers in Xinjiang were
delineated based on the population density data. The climate data were reclassified into
five categories (Table 3) and overlaid with the population and un-population layers to
obtain the climate–population density layer.

Then, because landscape variables significantly influence the accuracy of LC prod-
ucts and classification results are generally more attainable in areas with homogeneous
landscapes than those with heterogeneous landscapes [31], landscape heterogeneity was
used as a quantitative measure of landscape fragmentation within the study area, enabling
the development of a more robust land cover validation dataset. Therefore, in addition to
establishing the climate–population density layer, this study also incorporated landscape
heterogeneity as a criterion for the allocation of sample points. The objective was to allocate
a greater number of sample points in highly heterogeneous areas, thereby establishing a
more rigorous validation framework to evaluate the accuracy of the LC products [32]. The
Shannon diversity index was used to describe the degree of landscape heterogeneity [33].
In a landscape ecosystem, the more diverse the land use types and the higher the fragmen-
tation, the greater the amount of information contained in the patches, resulting in a higher
calculated value of the Shannon diversity index (SHDI) [34]:

SHDI = −∑m
i=1 (Pi)(ln Pi) (1)

where Pi is the proportion occupied by landscape patch type i and m is the total number of
land cover types in the landscape patch; the GLC_FCS30 was utilized in this study to compute
the SHDI. The calculated SHDI map was classified into different layers at intervals of 0.2 for
the creation of a landscape constraint layer that represents landscape heterogeneity.

Finally, in order to ensure a representative sample distribution across the Xinjiang
province, the hexagonal discrete global grid system (HDGGS) was employed to gather
validation datasets [6,21]. The R programming language was used to generate HDGGS
grids. These grids were then employed as the foundational units for allocating samples,
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while the generated climate–population density layer and the landscape heterogeneity
layer were used to constrain the samples in each HDGGS grid. Specifically, all samples
were first stratified and allocated to each constraint layer based on the proportional area
of each constraint layer. Then, the number of HDGGS grids within each constraint layer
was calculated, and samples within each constraint layer were equally distributed in each
HDGGS grid.

3.2.2. Labeling HDLV-XJ Based on Visual Interpretation Method

Based on the aforementioned constraints, a total of 22,000 samples were allocated to
the HDGGS grids based on the area of each separate region formed by the constraint layers.
Since high-resolution imagery in Google Earth (version: 7.3.6.9345) is sufficient and often
used to assist in the visual interpretation of datasets for validation purposes [35–37], Google
Earth was used for the visual interpretation of the real land cover of each validation sample.
It enables the careful examination of shapes, sizes, and patterns, thereby facilitating the
assessment of human impacts on the Earth’s surface [3,15,38]. A total of nine land cover
types were classified, which encompassed cropland, forest, shrubland, grassland, water,
permanent snow/ice, bare land, impervious, and wetland. Table 4 presents these land
cover types, along with examples showcasing their appearance on Google Earth. In order
to maintain the accuracy of the generated validation dataset, samples that were difficult to
identify were directly excluded.

Table 4. The land cover types and examples of their appearance on Google Earth.

LC Type Typical Imagery on Google Earth

Cropland
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Table 4. Cont.

LC Type Typical Imagery on Google Earth
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respectively, where nii is the correctly classified pixel number of type i, m is the number of
land cover types, n is the total pixel number in the study area, ni+ is the total pixel number
of type i in the validation dataset, and n+i is the total pixel number of type i in the ground
truth data.

3.3.2. Consistency Analysis

The evaluation of LC product consistency can be performed considering both area
and pixel levels. Area consistency examines the variations in the proportion of land cover
types across different LC products. By comparing the respective areas of each land cover
type among different products, it becomes possible to visually assess the consistency and
diversity of these LC products [41–43]. The pixel consistency in LC products can reflect
the spatial consistency of each land cover type. The pixel consistency is obtained using
the spatial overlay method. The overall similarity coefficient (OS) and class similarity
coefficient (CS) between different products can be calculated using [44]

OS =
∑n

1 XYii
M

× 100% (6)

CSi =
XYii

(Xi+Yi)/2
× 100% (7)

where Xi is the number of pixels of the i-th LC type in LC product X; Yi is the number of
pixels of the i-th LC type in the comparison LC product Y; XYii is the number of consistent
pixels between X and Y; n is the number of land cover types, which is 9 in this case; and M
is the total number of pixels in the study area.

4. Results
4.1. The High-Density Land Cover Validation Dataset for Xinjiang

In order to generate a high-density and representative validation dataset for Xinjiang,
the HDGGS was used to generate hexagonal grids as the basic unit for sample allocation.
Figure 6a shows the results of the generated hexagonal grid units, including 1604 grids
in the Xinjiang region. In addition, a total of 20,932 validation samples were generated
within these grid units. The spatial distribution and distribution via the categories of
these validation samples are illustrated in Figure 6b. The interpretation of land features
relied on the comprehensive status observed in high-resolution imagery from Google Earth
for 2020. It can be observed that the sample points are distributed across the study area.
The equal-area stratified random sampling method employed in this study ensures the
distribution of sample points in different areas.

Furthermore, in order to demonstrate the accuracy of the HDLV-XJ dataset that we
developed, we merged the validation samples from SRS_Val and GLV_2015 to cross-
compare with our HDLV-XJ product. Considering that the locations of the sample points
in the three validation datasets do not correspond one-to-one, the nearest neighbor points
were selected as the reference points for accuracy calculation [45]. The confusion matrix
was computed using Equations (2)–(5), and the resulting values are presented in Table 5.
When SRS_Val and GLV_2015 were used as reference benchmarks, the overall accuracy of
our HDLV_XJ dataset exceeded 80% for both. Specifically, the producer’s accuracy for bare
land and snow/ice was around 90%. In the case of SRS_Val vs. HDLV-XJ, the producer’s
accuracy for grassland and cropland was above 90%. Although forest and shrubland
showed a lower accuracy than the above land cover types, the agreement still reached 75%.
Taking into account errors in the visual interpretation of the validation samples, as well as
differences in the years represented by the validation datasets, the comparison results with
the third-party dataset demonstrated the reliability of our HDLV-XJ dataset.
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Table 5. The accuracy of HDLV_XJ as compared with SRS_Val and GLV_2015.

SRS_Val vs. HDLV-XJ GLV_2015 vs. HDLV-XJ
Classes P.A. U.A. P.A. U.A.

Cropland 100.00% 77.78% 0.00% 0.00%
Forest 75.00% 100.00% 0.00% 0.00%

Shrubland 75.00% 75.00% 0.00% 0.00%
Grassland 90.63% 82.86% 0.00% 0.00%

Water 0.00% 0.00% 0.00% 0.00%
Snow/Ice 75.00% 50.00% 94.44% 77.27%
Bare land 89.09% 100.00% 89.80% 100.00%

Impervious 0.00% 0.00% 0.00% 0.00%
Wetland 0.00% 0.00% 0.00% 0.00%

O.A. 88.68% 82.43%

4.2. Accuracy Assessment of GLC_FCS30, GlobeLand30, and CLCD

The confusion matrices for the three LC products in Xinjiang were calculated using
the validation dataset constructed for this study, utilizing Equations (2)–(5). Based on
the obtained results, the GLC_FCS30 exhibits the highest overall accuracy of 88.10%. The
GlobeLand30 follows with the second highest overall accuracy of 83.58%, while the CLCD
demonstrates the lowest overall accuracy of 81.57%.

The GLC_FCS30 demonstrates an overall accuracy of 88.10%, along with a kappa
coefficient of 0.799 (Table 6). Regarding the producer’s accuracy, forest exhibits the highest
accuracy, followed by bare land, shrubland, cropland, and water. However, impervious and
wetland display lower accuracies. These findings suggest that regions with homogenous
surface cover types occupying larger proportions in the study area generally exhibit higher
accuracy levels. Conversely, complex surface cover types often exhibit confusion with
other types. For instance, wetland, which possess particularly intricate spectra, are prone
to confusion with vegetation [46]. According to Table 6, approximately 49.4% of wetland
validation points were incorrectly classified as vegetation types, including cropland, for-
est, shrubland, and grassland. In terms of user’s accuracy, cropland, water, permanent
snow/ice, and bare land exhibit similar accuracies to the producer’s accuracy. Water
demonstrates the highest user’s accuracy, reaching 96.24%. This indicates the product’s
remarkable capability to accurately assign samples to their respective water categories.
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Table 6. The accuracy matrix for the GLC_FCS30.

Classified

CRP FST SHR GRS Wat SI BaL IMP WET Total

R
ef

er
en

ce

CRP 1369 4 59 13 0 0 61 7 2 1515
FST 1 570 4 6 0 0 14 0 0 595
SHR 1 1 294 7 0 0 15 0 0 318
GRS 130 204 51 3679 0 20 788 1 5 4878
Wat 1 0 3 1 128 2 6 1 1 143
SI 0 1 2 89 2 781 18 0 0 893

BaL 6 4 181 542 2 108 11,513 1 16 12,373
IMP 18 0 16 3 0 0 17 86 0 140
WET 12 3 9 14 1 1 16 0 21 77
Total 1538 787 619 4354 133 912 12,448 96 45 20,932
P.A. 90.36% 95.80% 92.45% 75.42% 89.51% 87.46% 93.05% 61.43% 27.27%
U.A. 89.01% 72.43% 47.50% 84.50% 96.24% 85.64% 92.49% 89.58% 46.67%
O.A. 88.10%

Kappa 0.798716

Note: CRP: cropland; FST: forest; SHR: shrubland; GRS: grassland; Wat: water; SI: permanent snow/ice; BaL: bare
land; IMP: impervious; WET: wetland.

The CLCD achieves an overall accuracy of 81.57%, with a kappa coefficient of 0.675
(Table 7). Considering producer’s accuracy, bare land exhibits the highest accuracy at
91.01%, followed by water, cropland, and grassland. However, shrubland and wetland
display relatively low producer’s accuracies, possibly due to identification difficulties
within the CLCD. In terms of user’s accuracy, cropland and forest demonstrate higher
accuracies at 93.51% and 87.84%, respectively, indicating strong classification abilities for
these land cover types. Notably, the producer’s accuracy and user’s accuracy for the
shrubland in the CLCD classifier are both zero, suggesting that no samples were correctly
classified within this category in the training dataset for the CLCD classifier, as depicted in
Figure 7c,d. This deficiency in training data representation for the shrubland potentially
undermines the classification performance of this specific class.

Table 7. The accuracy matrix for the CLCD.

Classified

CRP FST SHR GRS Wat SI BaL IMP WET Total

R
ef

er
en

ce

CRP 1211 7 0 261 0 0 24 11 1 1515
FST 3 289 0 295 0 1 4 3 0 595
SHR 8 0 0 203 0 0 101 6 0 318
GRS 26 29 0 3620 1 14 1173 14 1 4878
Wat 0 1 0 11 115 1 11 4 0 143
SI 0 0 0 52 11 551 279 0 0 893

BaL 17 0 0 1040 10 26 11,261 19 0 12,373
IMP 22 1 0 77 0 0 18 22 0 140
WET 8 2 0 34 4 1 18 5 5 77
Total 1295 329 0 5593 141 594 12,889 84 7 20,932
P.A. 79.93% 48.57% 0.00% 74.21% 80.42% 61.70% 91.01% 15.71% 6.49%
U.A. 93.51% 87.84% 0.00% 64.72% 81.56% 92.76% 87.37% 26.19% 71.43%
O.A. 81.57%

Kappa 0.675249

Note: CRP: cropland; FST: forest; SHR: shrubland; GRS: grassland; Wat: water; SI: permanent snow/ice; BaL: bare
land; IMP: impervious; WET: wetland.
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The overall accuracy of the GlobeLand30 is 83.58%, with a kappa coefficient of 0.717
(Table 8). Regarding the producer’s accuracy, bare land obtains the highest accuracy
at 90.28%, followed by cropland, water, and wetland. On the other hand, shrubland
has a relatively low producer’s accuracy of 18.24%, indicating significant challenges in
classifying shrubland. As for the user’s accuracy, cropland and bare land demonstrate
higher accuracies of 90.13% and 89.60%, respectively, suggesting GlobeLand30’s strong
ability to correctly classify instances of cropland and bare land. However, the user’s
accuracy for shrubland is lower, at 32.77%. In summary, GlobeLand30 performs well
in some land cover categories, such as cropland and bare land, but there is room for
improvement in the classification of other categories.

In conclusion, it is evident that complex land cover types are more susceptible to
misclassification. For example, based on Table 6, it is apparent that wetlands in GLC_FCS30
exhibit a higher confusion ratio, with over 50% of validation samples being misclassified
as other types, as demonstrated in Figure 7a,b. There are also numerous instances of
misclassification between similar land cover types. In particular, approximately 20% of
shrubland was classified incorrectly as forest and grassland, as depicted in Figure 7c,d.
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Table 8. The accuracy matrix for the GlobeLand30.

Classified

CRP FST SHR GRS Wat SI BaL IMP WET Total

R
ef

er
en

ce

CRP 1360 2 1 109 1 0 15 21 6 1515
FST 5 274 6 297 1 1 9 2 0 595
SHR 18 5 58 120 2 0 105 3 7 318
GRS 48 58 46 3800 7 40 854 4 21 4878
Wat 1 1 0 3 126 1 2 1 8 143
SI 0 5 3 37 2 543 302 0 1 893

BaL 59 9 61 988 25 33 11,170 8 20 12,373
IMP 18 0 1 11 0 0 6 104 0 140
WET 0 1 1 3 8 0 3 0 61 77
Total 1509 355 177 5368 172 618 12,466 143 124 20,932
P.A. 89.77% 46.05% 18.24% 77.90% 88.11% 60.81% 90.28% 74.29% 79.22%
U.A. 90.13% 77.18% 32.77% 70.79% 73.26% 87.86% 89.60% 72.73% 49.19%
O.A. 83.58%

Kappa 0.717466

Note: CRP: cropland; FST: forest; SHR: shrubland; GRS: grassland; Wat: water; SI: permanent snow/ice; BaL: bare
land; IMP: impervious; WET: wetland.

4.3. Consistency Analysis for Global Land Cover Products

Through the spatial overlay of the three LC products, a combination of visual map-
ping and quantitative expression approaches was employed to illustrate the overall pixel
consistency between two or more products, as well as the pixel consistency for each land
cover type.

To begin, the overall similarity coefficient (OS) and class similarity coefficient (CS)
were computed for different products using Equations (6) and (7), as presented in Table 9.
The overall similarity coefficient between CLCD and GlobeLand30 was 83.32%, whereas
between GLC_FCS30 and CLCD, it was 78.46%. Notably, the lowest overall similarity
coefficient of 75.16% was observed between GLC_FCS30 and GlobeLand30. The above
analysis reveals that approximately 75% of pixels share the same land cover label between
any two LC products. Additionally, through overlaying the three products, an overall
similarity coefficient of 69.96% was obtained, indicating a lower coefficient compared to
the pairwise similarities. Consequently, it can be inferred that the land cover types are
completely identical in 69.96% of the study area.

Table 9. Overall similarity coefficient (OS) (%) and individual class similarity coefficient (CS) (%)
among different products.

Similarity Coefficient Three Maps GLC_FCS30 vs.
CLCD

CLCD vs.
GlobeLamd30

GLC_FCS30 vs.
GlobeLand30

Cropland 66.01% 69.76% 80.60% 64.47%
Forest 30.95% 42.48% 55.20% 35.27%

Shrubland 0.00% 0.00% 0.00% 2.10%
Grassland 37.76% 48.53% 67.80% 43.26%

Water 66.13% 71.81% 74.80% 61.89%
Snow/Ice 51.84% 55.52% 72.42% 47.02%
Bare land 74.14% 73.46% 90.41% 69.55%

Impervious 12.14% 17.64% 15.44% 40.84%
Wetland 0.78% 2.34% 8.96% 8.12%

OS 69.96% 78.46% 83.32% 75.16%

Subsequently, the class similarity coefficients were calculated among the three prod-
ucts. The analysis reveals that the class similarity coefficients for bare land, water, and
cropland exceed 60%, indicating a spatial correspondence of over 60% between these land
cover types (Figure 8). Remarkably, the average value of the class similarity coefficient
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for bare land stands is highest, at 77.14%. In contrast, wetland and shrubland exhibit the
lowest class similarity coefficients, suggesting limited overlap among all three products.
Additionally, the consistency for the impervious category is notably low, with an average
class similarity coefficient of 21.52%.
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Simultaneously, the pixel consistency between the two products across different land
cover types aligns with the aforementioned similarity of the three products. The highest
consistency is observed in bare land, with class similarity coefficients of 73.46%, 90.41%,
and 69.55% for GLC_FCS30 vs. CLCD, CLCD vs. GlobeLand30, and GLC_FCS30 vs.
GlobeLand30, respectively. Following that, cropland exhibits the next highest consistency,
with class similarity coefficients ranging from 64% to 80%. Conversely, the class similarity
coefficients for shrubland and wetland are below 9%.

The average areas of the nine land classes for the three LC products, as presented in
Table 10, can be sorted in descending order based on their average area: bare land, grassland,
cropland, permanent snow/ice, forest, shrubland, water, impervious, and wetland. Notably,
the average areas of bare land, grassland, and cropland surpass 90,000 km2. Their respective
average areas are 1,102,577.54 km2; 350,050.94 km2; and 98,989.83 km2. Bare land covers
66.22% of the region, making it the predominant geographical landscape.

Table 11 presents the comparative area results for each land class in three LC products:
GLC_FCS30, CLCD, and GlobeLand30. There is a relatively high consistency in the area
measurements for bare land, cropland, and permanent snow/ice across the three products.
The consistency is moderate for water and impervious. However, significant variations exist
in the area measurements for some land classes, particularly for shrubland and wetland,
indicating low consistency. The area of shrubland in GLC_FCS30 is nearly four times
larger than in GlobeLand30, while CLCD only reports shrubland of 1.27 km2, significantly
smaller than both GLC_FCS30 and GlobeLand30. Moreover, GlobeLand30 indicates a
larger wetland area of 9197.70 km2 compared to the other two products. In contrast, CLCD
reports a mere 500.83 km2 of wetland area, accounting for a mere 0.03% of the total area.



Remote Sens. 2024, 16, 82 17 of 24

Table 10. The average area of LC types of the LC products (unit: km2).

LC Type Mean Area Percentage Mean

Cropland 98,989.83 5.95%
Forest 29,424.22 1.77%

Shrubland 18,850.94 1.13%
Grassland 350,050.94 21.03%

Water 11,369.57 0.68%
Snow/Ice 42,092.11 2.53%
Bare land 1,102,577.54 66.22%

Impervious 7339.36 0.44%
Wetland 4202.49 0.25%

Table 11. The areas of LC types of the LC products (unit: km2).

LC Type GLC_FCS30 Percentage in
GLC_FCS30 CLCD Percentage in

CLCD GlobeLand30 Percentage in
GlobeLand30

Cropland 104,931.34 6.30% 87,744.63 5.27% 104,293.52 6.26%
Forest 48,311.59 2.90% 18,576.16 1.12% 21,384.91 1.28%

Shrubland 44,592.01 2.68% 1.27 0.00% 11,959.54 0.72%
Grassland 307,358.94 18.46% 383,017.16 23.01% 359,776.72 21.61%

Water 10,028.85 0.60% 10,792.64 0.65% 13,287.22 0.80%
Snow/Ice 55,086.92 3.31% 35,631.59 2.14% 35,557.83 2.14%
Bare land 1,084,205.57 65.12% 1,123,584.54 67.49% 1,099,942.51 66.07%

Impervious 7472.84 0.45% 5048.18 0.30% 9497.05 0.57%
Wetland 2908.94 0.17% 500.84 0.03% 9197.70 0.55%

An analysis of area consistency between GLC_FCS30 and GlobeLand30 exposes no-
table variations across different land cover types. The areas of bare land in both products
exhibit high similarity, encompassing approximately 66% of the total study area. A similar
pattern emerges in cropland, where GLC_FCS30 reports an area of 104,931.34 km2 and Glo-
beLand30 reports an area of 104,293.52 km2. However, for other categories, the consistency
between the two products is relatively low.

5. Discussion
5.1. The Advantages of the HDLV-XJ Dataset

In this study, we combined multiple indicators and the equal-area stratified sampling
method to generate over 20,000 validation samples in Xinjiang province. The high-density
HDLV-XJ validation dataset ensured a sufficient quantity of validation data in both homo-
geneous and heterogeneous regions. In order to demonstrate the advantages of our dataset,
the SHDI of Xinjiang was calculated and categorized into 10 levels to exhibit the degree
of landscape fragmentation in this region (Figure 9a). A higher level indicates a greater
diversity of land-use types and a higher degree of fragmentation. Figure 9b illustrates the
sample proportions at different landscape heterogeneities. In addition, we also assigned
the same number of samples into this region using random sampling as a comparison. As
illustrated in Figure 9b, the sample proportion of HDLV-XJ is higher than the distribution
proportion of random sampling results in the heterogeneous regions. The random sampling
allocation results in an excessive number of samples in homogeneous regions, resulting in
a lower representation in heterogeneous regions. As a comparison, our HDLV-XJ dataset
takes into account the distribution of samples in heterogeneous regions while ensuring that
homogeneous regions are allocated with sufficient samples.
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In addition, by comparing the validation point quantities of two global land cover
validation datasets (SRS_Val, GLV_2015) and our HDLV-XJ dataset across different land
cover types (Table 12), our HDLV-XJ dataset showed considerably higher sample numbers
for each land cover type compared to the other datasets. This indicates that the global-scale
validation data cannot accommodate regional-scale accuracy assessments. Our HDLV-XJ
provides representative validation data with sufficient samples for rare categories (such
as water (143 HDLV-XJ samples vs. 3 SRS_Val samples and 1 GLV_2015 samples) and
impervious (140 HDLV-XJ samples vs. 5 SRS_Val samples and 2 GLV_2015 samples),
enabling a more accurate assessment of the accuracy of land cover products in the Xinjiang
area. Our HDLV-XJ product provides scientific data to support the use of land cover
products in the Xinjiang region.

Table 12. The comparison of the validation point quantities for each LC type among the three datasets.

LC Type CRP FST SHR GRS Wat SI BaL IMP WET Total

HDLV-XJ 1515 595 318 4878 143 893 12,373 140 77 20,932
SRS_Val 55 23 19 143 3 28 381 5 2 659

GLV_2015 0 0 32 0 1 96 283 2 0 403

Note: CRP: cropland; FST: forest; SHR: shrubland; GRS: grassland; Wat: water; SI: permanent snow/ice; BaL: bare
land; IMP: impervious; WET: wetland.

5.2. Analysis of the Relationship between Different Environment Conditions and the Performance
of Land Cover Products

Due to the potential impact of landscape heterogeneity on LC mapping accuracy [26,47–49],
we conducted an analysis to examine the relationship between landscape heterogeneity and the
accuracy of LC products (Figure 10). The results showed that the accuracy of all
three LC products significantly decreased (p-value: <0.05) with increasing landscape hetero-
geneity. Specifically, the LC product with the highest slope of decrease was CLCD (with a
slope of −0.32), followed by GLC_FCS30 (with a slope of −0.22), and finally GlobeLand30
(with a slope of −0.17). Furthermore, the accuracy of all three LC products can generally reach
80% in homogeneous areas (low heterogeneity). In particular, the accuracy of GLC_FCS30 is
close to 0.9 when the heterogeneity is below 0.1. This suggests that the degree of landscape
heterogeneity indeed has a significant negative impact on LC mapping accuracy, and the results
of the three products are more reliable in homogeneous areas. Additionally, GlobeLand30
generally exhibits the most robust performance in areas with high landscape heterogeneity. As
can also be observed from Figure 10d–k, the consistency of classification results for the three LC
products varied significantly in areas with high landscape heterogeneity, indicating a greater
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degree of uncertainty. The accuracy in these regions ranges from 60% to 80%. Therefore, in
order to enhance the accuracy of LC products in complex regions, producers may need to pay
more attention to transitional areas where landscape heterogeneity is high. These areas exhibit
higher probabilities of misclassification compared to homogeneous regions.
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Then, we analyzed the relationship between the area of land cover types and the
mapping classification accuracy (Figure 11). It can be seen that the accuracy of most LC
types in GLC_FCS30 is relatively stable, particularly performing well in cases with small
areas. However, the classification accuracy for impervious surfaces and wetlands is still
limited. Due to their strong spectral heterogeneity, impervious surfaces and wetlands are
also recognized as land cover classes that are relatively difficult to classify accurately [3].
As a comparison, apart from water bodies, the mapping accuracy of each land cover class
in CLCD decreases noticeably as the area decreases, with a correlation coefficient (r) of 0.56
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between area and accuracy. Due to the significant differences in spectral characteristics
between water bodies and other land cover classes [50], water bodies are relatively easy to
identify and can maintain a high level of accuracy in CLCD. Furthermore, GlobeLand30
exhibits a similar pattern to CLCD, but its accuracy for impervious surfaces and wetlands,
which are small-area land classes, is still higher than that of GLC_FCS and CLCD. This may
be attributed to the incorporation of manual post-processing after classification. Therefore,
GLC_FCS30 performs the best in handling small-area land classes, but its classification abil-
ity for impervious and wetland still needs improvement. On the other hand, GlobeLand30
demonstrates good classification performance in impervious and wetland classes.
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Based on the above, the performance of CLCD is more sensitive to landscape frag-
mentation compared to GlobeLand30 and GLC_FCS30 (Figure 10). The mean landscape
heterogeneity index of Xinjiang is approximately 0.65, which is relatively high; this may
be the reason for the relatively lower accuracy of CLCD compared to the other two LC
products. Furthermore, it can be seen that GlobeLand30 and CLCD are more sensitive to
the area ratio of land classes compared to GLC_FCS30 (Figure 11). Because our HDLV-XJ
is a regionally intensive validation dataset with a high density of samples, there are still
a significant number of samples (as shown in Table 12), even in land classes with rela-
tively low coverage (such as cropland, snow and ice, forest, and shrubland) in Xinjiang.
Therefore, this leads to lower assessment accuracies of CLCD and GlobeLand30 for these
land classes, which in turn results in the highest validation accuracy for GLC_FCS30 in
Xinjiang. The differences in mapping methods may be the main reason for the variations
in accuracy among the three LC products. From Table 13, it can be seen that CLCD and
GlobeLand30 are both based on global classification models, while GLC_FCS30 is based on
a local adaptive classification model. Due to the requirement of ensuring overall accuracy
across a large-scale area during training, there may be significant differences in the number
of samples available in local areas when building global classification models [51,52].In
contrast, the local adaptive classification strategy divides the large-scale area into differ-
ent sub-regions and constructs training data within each sub-region [1]. Therefore, this
mapping strategy can better balance the number of training data for each land cover in
local areas [1]. However, GLC_FCS30 still faces challenges in accurately extracting land
cover types such as wetlands and impervious surfaces. On the other hand, GlobeLand30
incorporates manual post-processing in its mapping process, which further improves the
accuracy of these fragmented land cover types [3]. As a result, GlobeLand30 has a higher
level of accuracy in these cases. Therefore, when conducting large-scale LC mapping, the
local adaptive classification strategy may be more appropriate. Additionally, producers
should also pay attention to individually addressing land cover types that are difficult
to accurately identify, such as wetlands and impervious surfaces. This ensures that these
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specific land cover types receive appropriate handling and improves the overall accuracy
of the mapping process.

Table 13. The mapping methods of 30-m GLC_FCS30, GlobeLand30, and CLCD.

LC Product Method Literature

GLC_FCS30 Local adaptive random forest models were trained for each
5◦ × 5′ geographical grid element to generate the land-cover maps. Zhang et al. (2021) [1]

CLCD A global random forest classifier was trained to classify the whole of China. Yang et al. (2021) [5]

GlobeLand30
A global pixel- and object-based classification model was applied to classify

global land covers, and a knowledge-based interactive post-process was
applied to improve the mapping accuracy.

Chen et al. (2015) [3]

5.3. Limitations

There are still some limitations in the present research, mainly in three aspects: (1) The
constructed HDLV-XJ dataset introduced climatic factors, population density, and a hexago-
nal grid combined with landscape heterogeneity to design the sampling scheme, ensuring a
representative and effective sample layout. However, this dataset is only applicable for land
cover validation for Xinjiang in 2020, which hinders its use in long-term and large-scale
accuracy assessment studies. To address this limitation, the study will explore extending
the validation dataset through the combination of time-series remote sensing images and
fitting algorithms and encourage public participation in the construction and interpretation
of the validation dataset through open collaboration. (2) The generated validation dataset
can only validate the nine primary land cover types and is not suitable for validating the
secondary classification system. To overcome this limitation, the study will incorporate
multiple sources of geospatial data and design a more detailed classification system. This
will allow for the interpretation and validation of more detailed land cover categories.
(3) Considering the importance of 30-m resolution land cover products in fine-resolution
long-term monitoring, we only validated three mainstream 30-m land cover products in
this study. However, with the recent availability and sharing of 10-m-resolution Sentinel
data, 10-m land cover products are also gradually being generated. In the future, we will
also include 10-m land cover products for further evaluation.

6. Conclusions

Fine-resolution LC products have been developed in recent years. However, the ac-
curacy evaluation of the developed LC products is typically conducted at the global and
national levels, with limited consideration for their accuracy and applicability in regional
areas. Therefore, conducting a comprehensive accuracy assessment and consistency analy-
sis of LC products in local areas is crucial for users to effectively compare the performance
of different products. This study examined Xinjiang as the research area and constructed a
high-density land cover validation dataset (HDLV-XJ, containing 20,932 validation samples)
based on multi-source remote sensing data for Xinjiang. The accuracy and consistency
of three mainstream land cover products in 2020 with a resolution of 30-m (GLC_FCS30,
CLCD, GlobeLand30) were analyzed based on the constructed validation dataset.

The results indicated that the CLC_FCS30 exhibited the highest overall accuracy
(88.10%) in Xinjiang, followed by GlobeLand30 (with an overall accuracy of 83.58%).
By contrast, CLCD demonstrated the lowest overall accuracy of 81.57%. In terms of
consistency, Xinjiang demonstrates high-consistency patterns for bare land, farmland, and
water. Specifically, the average consistencies between the GLC_FCS30 and GlobeLand30,
GLC_FCS30 and CLCD, and GlobeLand30 and CLCD are 77.14%, 70.21%, and 68.66%,
respectively. However, this consistency drops significantly when it comes to wetland and
shrubland, with a value of less than 1% for each. Furthermore, among the LC products,
GlobeLand30 demonstrated the highest performance in regions characterized by high
landscape fragmentation. On the other hand, GLC_FCS30 emerged as the superior product
in areas with uneven proportions of land cover types. Additionally, the utilization of a local
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adaptive classification mapping strategy offers significant advantages in enhancing the
accuracy of land cover mapping. The study provided important insights for the application
of current land cover products in Xinjiang, uncovering both the accuracy and limitations
associated with these products.
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