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Abstract: Airborne Laser Scanning (ALS) point cloud classification in ground and non-ground
points can be accurately performed using various algorithms, which rely on a range of information,
including signal analysis, intensity, amplitude, echo width, and return number, often focusing on the
last return. With its high point density and the vast majority of points (approximately 99%) measured
with the first return, filtering LiDAR-UAS data proves to be a more challenging task when compared
to ALS point clouds. Various algorithms have been proposed in the scientific literature to differentiate
ground points from non-ground points. Each of these algorithms has advantages and disadvantages,
depending on the specific terrain characteristics. The aim of this research is to obtain an enhanced
Digital Terrain Model (DTM) based on LiDAR-UAS data and to qualitatively and quantitatively
compare three filtering approaches, i.e., hierarchical robust, volume-based, and cloth simulation, on
a complex terrain study area. For this purpose, two flights over a residential area of about 7.2 ha
were taken at 60 m and 100 m, with a DJI Matrice 300 RTK UAS, equipped with a Geosun GS-130X
LiDAR sensor. The vertical and horizontal accuracy of the LiDAR-UAS point cloud, obtained via
PPK trajectory processing, was tested using Check Points (ChPs) and manually extracted features. A
combined approach for ground point classification is proposed, using the results from a hierarchic
robust filter and applying an 80% slope condition for the volume-based filtering result. The proposed
method has the advantage of representing with accuracy man-made structures and sudden slope
changes, improving the overall accuracy of the DTMs by 40% with respect to the hierarchical robust
filtering algorithm in the case of a 60 m flight height and by 28% in the case of a 100 m flight height
when validated against 985 ChPs.

Keywords: LiDAR-UAS; PPK; DTM; filtering approaches; proposed method

1. Introduction

Airborne Laser Scanning (ALS), also known as airborne Light Detection and Ranging
(LiDAR), and LiDAR-Unmanned Aerial System (LiDAR-UAS) are two different methods
for collecting LiDAR data. LiDAR, an active remote sensing technology, has found applica-
tions in various fields, including topography [1], hydrography [2], archaeology [3,4], oil
exploration [5], mining [6], and forestry [7,8], and has been in use for more than a decade.
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One of the advantages of LiDAR technology compared to aerial photogrammetry or high-
resolution optical satellite data is the acquisition of high-precision three-dimensional (3D)
data using the polar coordinate method (angles and inclined distances) to capture a ter-
rain’s geometry. Moreover, Full-waveform (FWF) ALS systems have been operational for
two decades. In addition to waveform digitization, these systems offer supplementary
information, including echo width. When combined with amplitude data, this additional
information can enhance ground filtering even in areas with dense canopy cover [7].
However, the Structure from Motion (SfM) photogrammetric technique reconstructs three-
dimensional information from two-dimensional images, showing promising results for
DTM derivation, with the main advantages being RGB color information and, especially,
its cost-effectiveness.

Both ALS and LiDAR-UAS play crucial roles in collecting high-resolution and accurate
elevation data for various applications. While both methods rely on LiDAR principles, they
differ in terms of data acquisition platforms, applications, characteristics, point densities,
and scale coverages. Compared with the widespread and well-established method of ALS,
typically used for mapping large territories, the LiDAR-UAS technique can be seen as a
desirable solution for performing topographic surveys for small- to medium-sized areas,
up to a few square kilometers. The choice between ALS and LiDAR-UAS often depends on
the specific requirements of a project, considering factors such as area extent, resolution,
and environmental conditions. Due to its advantages, such as suitability for small-scale
projects, flexibility in capturing data in hard-to-reach areas, cost-effectiveness, and the
capability to achieve very high point density and resolution, LiDAR-UASs often present a
superior solution for small-scale projects when compared to traditional airborne LiDAR or
photogrammetry methods.

LiDAR-UASs consist of LiDAR sensors and UAVs equipped with Global Navigation
Satellite Systems (GNSSs) that determine the position of the UAS and Inertial Navigation
System (INS) using an Inertial Measurement Unit (IMU) that measures the rotation angles
of the UAS with respect to its navigation coordinate system (roll, pitch, and yaw) and
acceleration. Alternatively, LiDAR-UASs can be equipped with an RGB digital camera to
obtain a textured LiDAR-UAS point cloud [9]. The LiDAR sensor emits laser pulses toward
the ground, and the distance between the sensor (emitter) and the measured object that
generates the backscatter echo is calculated based on the time it takes for the laser pulse to
return to the sensor. Multiple returns, with the first return typically being the reflection
from the topmost object (e.g., tree canopy) and the last return being the reflection from the
ground, are recorded [10].

There are several manufacturers available on the market, such as Velodyne LiDAR Inc.
(San Jose, CA, USA), Routescene Inc. (Edinburgh, UK), LeddarTech Inc. (Quebec City, QC,
Canada), RIEGL Laser Measurement System GmbH (Horn, Austria), and Geodetics Inc.
(San Diego, CA, USA), that have developed small and fully integrated LiDAR sensors for
UAVs, with the various types offering different capabilities and specifications [11].

Modeling topographic surfaces is a very important stage in a wide range of applica-
tions, namely: hydrographic studies, engineering projects, telecommunications, geology,
geomorphology, and more. A Digital Terrain Model (DTM) represents the bare earth
terrain with uniformly spaced Z-values in X (Easting) and Y (Northing) directions, ex-
cluding vegetation and artificial objects. DTMs often include not only the elevations of
prominent topographic features on the ground but also mass points and breaklines that
are unevenly distributed. This uneven distribution is intentional and designed to more
accurately represent the actual contour and shape of the bare earth surface [12].

An essential step in data pre-processing for terrain modeling is classifying LiDAR-
UAS point clouds into ground and non-ground points. This classification process involves
distinguishing points that represent the ground surface from those that represent non-
ground objects such as buildings and vegetation. Once the ground points are accurately
classified, the creation of the DTM becomes a straightforward process [13]. Often, a
combination of automated and manual methods is used to classify LiDAR point clouds
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effectively. Automated methods provide initial classifications, which can then be reviewed
and corrected manually where necessary. The effectiveness of point cloud classification into
ground and non-ground points can be influenced by factors such as point cloud density [14],
terrain complexity [15], and the quality of LiDAR-UAS data. Therefore, it is important
to select the classification method that best suits the specific characteristics of the study
area. As LiDAR-UASs are subject to technological advancements and LiDAR data become
more readily accessible, research on LiDAR-UAS-based DTM generation is gaining greater
attention [16].

Different ground filtering algorithms have been developed over the past 30 years [17].
Depending on the concept used, the existing methods for point cloud filtering are classified
into six categories [16] as follows:

– Morphological-based filters: These algorithms use a structural parameter that de-
scribes the height differences within a threshold based on the horizontal distances
used. The smaller the distance between a point and its neighbor, the smaller the height
difference between them. A variant of this method is described in [15], in which the
structural parameter depends on the terrain’s shape. Morphology-based filtering may
be challenging in terrains with a variety of non-ground objects [16].

– Surface-based filters: These algorithms work iteratively. In the first iteration, the
lowest point for each grid cell is used to create an initial surface. Subsequently,
residuals, which represent the distances between the measured points and the initial
surface, are calculated. Each point is assigned a weight based on its residual value.
Points with higher weights have a stronger influence on the surface, attracting the
surface toward them, while points with lower weights have a lesser impact on the
overall configuration of the surface. This iterative process continues until a stable
surface is achieved, or the maximum allowable number of iterations is reached [18–20].
This type of method can present challenges in preserving terrain details, such as sharp
ridges and cliffs. Additionally, it may have a tendency to misclassify small non-ground
objects within the point cloud data [16].

– Triangulated irregular network (TIN)-based refinement: An initial TIN is created
based on the points with the lowest elevation in each grid cell. Gradually, other points
are added by establishing reference thresholds [21]. This approach may encounter
challenges when it comes to detecting discontinuous terrains, such as sharp ridges,
and is time-consuming [16].

– Segmentation and classification: These methods work with segments, which are
classified based on height differences in their neighborhoods. In [22], a region growing
technique of creating a surface was applied, based on height differences, to obtain
segments that were subsequently classified into three categories: ground, buildings,
and vegetation. In [23], segmentation compactness and height differences were applied
to determine various types of areas, including the ground. Features such as geometry,
radiometry, topology, the number of returns, intensity, and echo characteristics are
used for better filtering ground points. These methods may encounter difficulties
when applied to densely vegetated areas and strongly depend on the accuracy of
segmentation [16].

– Statistical analysis: These filters, particularly parameter-free algorithms, help mini-
mize the need for manual parameter tuning, thus reducing uncertainty and enhancing
the robustness of applying specific methods to different study sites. Additionally,
these methods tend to excel in relatively flat terrains without intricate non-ground
objects [16].

– Multi-scale comparison: In general, this type of method operates through two main
steps. First, several preliminary trend surfaces are created at different resolutions;
second, each point in the point cloud is examined at various scales by comparing the
elevation difference between the point and the different trend surfaces. This method
is better suited for relatively flat terrains and may exhibit suboptimal performance in
rapidly changing or complex landscapes [16].



Remote Sens. 2024, 16, 78 4 of 33

Filtering high-density point clouds is more challenging than filtering low-density ones
because as point density increases, the performance of the filtering algorithm tends to
decrease [24].

In the existing literature, most studies have primarily focused on DTMs derived from
ALS point clouds. In contrast, a limited number of studies have examined the accuracy of
DTMs generated from LiDAR-UAS point clouds. For example, in [25], the vertical error of
a DTM, created based on a LiDAR-UAS point cloud acquired with a Velodyne laser sensor
VLP-16 at a 50 m height with a density of 180 points/sqm, was evaluated for uncovered and
vegetation areas, separately, using 193 checkpoints measured via GNSS-RTK technology.
The RMSEZ values ranged between 10 and 14 cm for the different vegetation height levels.
The ground points were filtered using Axelsson’s algorithm, and a DTM with a 0.25 m cell
size was created using the moving average interpolation method combined with natural
neighbor interpolation.

In [26], the DTM accuracy, generated based on AL3 S1000 and AL3-32 LiDAR, was
tested for two different terrains (i.e., flat, slope, and overall) for three different heights (i.e.,
20 m, 40 m, and 60 m), using 129 reference points measured via different technologies. For
the 60 m flight height, the RMSE was 10.5 cm for the flat area, 34.3 cm for the slope area,
and 61.6 cm overall. The ground points were filtered using the Axelsson’s algorithm.

In [27], a DTM was created for three small (around 1.5 ha) different forest sites,
differing in terms of the nature of the forest and the terrain. The data acquisition was
carried out with a DJI Zenmuse L1 mounted on a DJI Matrice 300 RTK UAS at a 100 m
height under leaf-off conditions. The ground points were obtained using a combination
of the structural filtering method CANUPO and a CSF. The vertical accuracy was tested,
having as a reference a Terrestrial Laser Scanner (TLS) point cloud. For test site no. 2, which
is an old forest with rugged terrain, the error was 5 cm, and for test site no. 3, the error was
6.5 cm. It is important to note that these sites are devoid of low and medium vegetation,
making them unsuitable for a direct comparison with the DTM results obtained in our
tests. Nevertheless, they can serve as reference points for evaluating the vertical accuracy
of LiDAR-UAS point clouds.

Despite the significant advancements in terms of algorithms, the generation of DTMs,
particularly in specific and complex terrain situations, continues to pose challenges [28].

Research Scope

The primary objective of this study is to identify the most suitable filtering method for
generating a DTM in challenging terrain surfaces, utilizing UAS LiDAR data. Three distinct
filtering techniques, namely, a cloth simulation filter, a volume-based filter, and hierarchic
robust filtering, were applied to two LiDAR-UAS point clouds, and the resulting DTMs
were tested in terms of vertical accuracy using a total of 985 ChPs measured via a total
station and GNSS-RTK technology. The LiDAR-UAS point clouds were acquired at different
altitudes, specifically at 60 m and 100 m. Furthermore, the accuracy of the georeferencing
process of the LiDAR-UAS point cloud data was assessed using 85 ChP elevations, 33 ChP
tridimensional coordinates, and 64 ChP tridimensional coordinates measured with the
total station on the rooftop’s corners and manually digitized polylines on the edges of the
rooftops. The georeferencing process was carried out using a GNSS-aided method with
Post-Processed Kinematic (PPK) processing, without the use of additional information
such as Ground Control Points (GCPs). We propose a workflow to enhance the LiDAR-
UAS DTM by combining the results of the hierarchic robust and volume-based filtering
approaches for precision topographic mapping.

2. Materials and Methods
2.1. Study Area

The study area covers approximately 7.2 ha and constitutes a residential district
situated in Iasi city, which is close to the administrative border of Rediu commune. It en-
compasses 22 houses and 2 residential apartment buildings, each enclosed by a combination
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of natural and artificial fences, along with private roads and a private cemetery (Figure 1).
In terms of administrative classification, it falls within the jurisdiction of the inner city
of the Municipality of Iasi, according to the Urban General Plan. The characteristics of
the study area include those of complex terrains with sudden slope changes, man-made
structures such as retaining concrete walls, artificially terraced terrain, and a long concrete
pathway with steps.
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Figure 1. Study area location.

2.2. Research Methodology

The workflow applied for this study area is depicted in Figure 2 and comprises the
following processing steps: (1) fieldwork with measurements for determining the coordi-
nates of ChPs using GNSS-RTK technology and total station measurements, (2) planning
and execution of the LiDAR-UAS flights, (3) coordinate transformation from ETRS-84
coordinate system to Romanian national coordinate system, (4) processing the LiDAR flight
trajectory and processing to obtain the LiDAR-UAS point cloud, (5) accuracy assessment
of the LiDAR-UAS point cloud based on ChPs and manually measured features, (6) point
cloud filtering to extract the ground and off-ground points for subsequent DTM generation,
(7) proposed combined method to obtain an enhanced DTM and accuracy assessment of
derived DTMs using different filtering algorithms based on 985 ChPs.
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2.3. Check Points (ChPs)

ChPs were systematically positioned across the study area, as shown in Figure 3. Out
of the total points that were established, 85 ChPs were specifically selected for assessing the
vertical accuracy of the LiDAR-UAS point clouds. These ChPs were strategically positioned
in areas devoid of vegetation, such as streets, parking lots, and a cemetery. They were
marked on the ground using metallic bolts and wooden sticks, particularly in the cemetery
area. To ensure a high degree of precision, the 85 ChPs’ locations were surveyed using
a multi-band Emlid Reach RS2 GNSS receiver, achieving centimetric accuracy through
the use of the Romanian Positioning Determination System (ROMPOS) [29] and GNSS-
RTK technology. The planimetric coordinates of the ChPs were determined within the
Romanian national coordinate system known as “Stereographic on a unique secant plane-
1970” (STEREO-70). Furthermore, the ellipsoidal heights were converted from the ETRS89
European datum to the Black Sea-1975 normal heights, corresponding to the RO Const/NH
vertical datum, as outlined in [30]. Also, 33 of these points were marked on the ground by
painting two red and two white triangles, using a hand-crafted pattern of 40 cm × 40 cm.
Subsequently, the coordinates of 64 specific points, representing the corners of rooftops,
were obtained through the reflectorless function of a total station (Figure 3a). The 33 painted
ChPs and the 64 roof corners, were used for the overall accuracy assessment of LiDAR-UAS
point clouds.
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assessment (b).

A total of 985 ChPs (Figure 3b) were employed for the DTM accuracy assessment.
These points are characteristic points of the surrounding space, such as road edges and
fences, as well as man-made structures (Figure 4), and have been measured using a total
station. This set of ChPs also encompasses the previously mentioned 85 ChPs to guarantee
their distribution across the entire surface of the study area.
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Figure 4. Total station measurements of the ChPs marked with red dots for accuracy assessment of
derived DTMs: long concrete pathway with steps (a), retaining concrete walls (b,c).

2.4. GeoSun GS-130X LiDAR Scanner

For this particular case study, a GeoSun GS-130X LiDAR sensor was employed. This
sensor is purposefully designed for remote sensing and data collection across a wide
spectrum of applications. Its versatility extends to fields such as forestry, agriculture,
mining, environmental monitoring, and topographic mapping. Some key features and
information about the GeoSun GS-130X can be found in Appendix A. Weighing just 1.26 kg,
this system is well suited for seamless integration with small- to medium-sized UASs.
It has the capability to scan at a rate of 1,280,000 points per second while maintaining a
measurement accuracy of less than 10 cm at a flight height of 120 m.

2.5. LiDAR-UAS Mission Planning

For the LiDAR-UAS mission planning, the Unmanned Ground Control Software
(UgCS) Expert v4.17 (2141) was used, which is a software platform developed by SPH
Engineering, primarily designed for the planning and execution of autonomous drone
missions. Offering a user-friendly interface, the mission plan was created based on a few
parameters, with the most important ones being the UAS (DJI Matrice 300 RTK for this case
study), LiDAR mission, take-off and landing points, area of interest, field of view (FOV)
(75◦ for these missions), flight height (60 m and 100 m), flight speed (7 m/s), side overlap
(30%), and altitude mode (AGL), as well as with avoid obstacle and avoid terrain options
selected. For both missions, two calibration circles with a 20 m radius were specified in the
first point of the itinerary, as can be seen in Figure 5.
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A GeoSun GS-130X LiDAR-UAS scanner was mounted on the DJI Matrice 300 RTK
UAS (Figure 6a). During the flights, an Emlid Reach RS2 GNSS receiver was set as the
base station (Figure 6b) to record GNSS observations. The position of the receiver was
determined with GNSS-RTK technology in 2 min intervals at 5 Hz (600 measurements)
using the corrections through the ROMPOS service from the permanent reference station,
namely, the IASI station from the national geodetic network, which was 3.9 km apart from
the study area.

Remote Sens. 2024, 15, x FOR PEER REVIEW 9 of 33 
 

A GeoSun GS-130X LiDAR-UAS scanner was mounted on the DJI Matrice 300 RTK 

UAS (Figure 6a). During the flights, an Emlid Reach RS2 GNSS receiver was set as the base 

station (Figure 6b) to record GNSS observations. The position of the receiver was 

determined with GNSS-RTK technology in 2 min intervals at 5 Hz (600 measurements) 

using the corrections through the ROMPOS service from the permanent reference station, 

namely, the IASI station from the national geodetic network, which was 3.9 km apart from 

the study area. 

  

(a) (b) 

Figure 6. (a) DJI Matrice 300 RTK UAS with GeoSun GS-130X LiDAR scanner. (b) Emlid Reach RS2 

GNSS receiver, set as the base station for PPK processing. 

2.6. LiDAR-UAS Trajectory Computation 

In general, the primary sources of error in UAV-based laser scanning are associated 

with the estimation of the GNSS/INS trajectory. These errors can be categorized into two 

main types: position errors and orientation errors. Position errors refer to inaccuracies in 

determining the exact location of the system or device as it moves. Orientation errors 

pertain to deviations in the device’s spatial orientation or attitude. These errors can be 

systematic and consistent, which means they occur in a predictable manner, and they tend 

to propagate into errors in the point cloud data collected by the system. This underscores 

the importance of accurate trajectory estimation for obtaining precise and reliable 

geospatial data through UAV-based laser scanning [31]. 

Developed by Wuhan Geosun Navigation Technology Co., Ltd., Shuttle is a high-

precision GNSS/INS positioning and attitude determination post-processing software, 

which was used for the GeoSun GS-130X LiDAR-UAS trajectory computation. Shuttle 

employs single-epoch ambiguity algorithms and high-order Kalman filters to maximize 

the integration of GNSS carrier phase data and information from the inertial navigation 

component (IMU). Compared to GNSS post-processing alone, the GNSS/INS combination 

provides a more comprehensive set of carrier dynamics information, thus enhancing 

resolution accuracy and overall reliability [32]. 

The processing steps for this case study are presented in Figure 7 and can be 

summarized as follows: GNSS dynamic (the receiver moves relative to the surface of the 

Earth) precision single-point positioning (Figure 8a,c), GNSS dynamic differential 

positioning (Figure 8b,d), coordinate transformation, GNSS/INS combined positioning 

and attitude measurement, and point cloud generation. Shuttle’s GNSS positioning 

solution is based on the fuzzy degree core algorithm, which combines several single-epoch 

ambiguity-solving techniques. The observation data of a dual-frequency GNSS receiver, 

the corresponding precision ephemeris, and the precision clock are used to achieve precise 

single-point positioning. The GNSS/INS-combined positioning attitude uses a high-order 

Kalman filter to establish a random error model of up to 24 orders for the system, and 

performs algorithms such as round-trip filtering, smoothing, and zero-speed updating. 

Figure 6. (a) DJI Matrice 300 RTK UAS with GeoSun GS-130X LiDAR scanner. (b) Emlid Reach RS2
GNSS receiver, set as the base station for PPK processing.

2.6. LiDAR-UAS Trajectory Computation

In general, the primary sources of error in UAV-based laser scanning are associated
with the estimation of the GNSS/INS trajectory. These errors can be categorized into two
main types: position errors and orientation errors. Position errors refer to inaccuracies
in determining the exact location of the system or device as it moves. Orientation errors
pertain to deviations in the device’s spatial orientation or attitude. These errors can be
systematic and consistent, which means they occur in a predictable manner, and they tend
to propagate into errors in the point cloud data collected by the system. This underscores
the importance of accurate trajectory estimation for obtaining precise and reliable geospatial
data through UAV-based laser scanning [31].

Developed by Wuhan Geosun Navigation Technology Co., Ltd. (Wuhan, China), Shut-
tle is a high-precision GNSS/INS positioning and attitude determination post-processing
software, which was used for the GeoSun GS-130X LiDAR-UAS trajectory computation.
Shuttle employs single-epoch ambiguity algorithms and high-order Kalman filters to
maximize the integration of GNSS carrier phase data and information from the inertial
navigation component (IMU). Compared to GNSS post-processing alone, the GNSS/INS
combination provides a more comprehensive set of carrier dynamics information, thus
enhancing resolution accuracy and overall reliability [32].

The processing steps for this case study are presented in Figure 7 and can be summa-
rized as follows: GNSS dynamic (the receiver moves relative to the surface of the Earth)
precision single-point positioning (Figure 8a,c), GNSS dynamic differential positioning
(Figure 8b,d), coordinate transformation, GNSS/INS combined positioning and attitude
measurement, and point cloud generation. Shuttle’s GNSS positioning solution is based on
the fuzzy degree core algorithm, which combines several single-epoch ambiguity-solving
techniques. The observation data of a dual-frequency GNSS receiver, the corresponding
precision ephemeris, and the precision clock are used to achieve precise single-point posi-
tioning. The GNSS/INS-combined positioning attitude uses a high-order Kalman filter to
establish a random error model of up to 24 orders for the system, and performs algorithms
such as round-trip filtering, smoothing, and zero-speed updating.
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Figure 8. Flight trajectory computation: the GNSS dynamic single-point and differential positioning
result for the 60 m height (a,b), the GNSS dynamic single-point and differential positioning result for
the 100 m height (c,d).

Following the computation of the LiDAR-UAS trajectory using the GNSS information,
the geodetic coordinates, defined within the ETRS-89 coordinate system, were subsequently
transformed to the STEREO-70 coordinate system for the horizontal position and the
Black Sea-1975 system for normal heights. This transformation was carried out using the
coordinate transformation tool integrated into Geosun’s self-developed gAirHawk 5.0
software. For 2D coordinate transformation, a predefined 7-parameter method specific to
the Romanian territory was employed. As for the vertical position, the transformation grid,
also accessible through TransDatRO v4.07 software [33] provided by the National Agency
for Cadaster and Land Registry (NACLR), was utilized.

At a flight height of 60 m, a total of 6 strips were acquired with a side overlap of 30%,
as shown in Figure 9a, and at a flight height of 100 m, 4 strips were acquired, as depicted in
Figure 9b.
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Figure 9. LiDAR-UAS point cloud strips acquired at (a) 60 m height (6 strips colored with different
colors); (b) 100 m height (4 strips colored with different colors).

The point density of the LiDAR-UAS data was determined for both flights using
the “opalsCell” module of Orientation and Processing of Airborne Laser Scanning data
(OPALS) v2.5.0 software, developed by the Department of Geodesy and Geoinformation
from Technical University of Vienna [34,35]. The analysis revealed varying point densities.
For the 100 m flight, the point density ranged from 0 to a maximum of 1209 points/sqm,
while for the 60 m flight, it varied between 0 and 2585 points/sqm. To estimate point
density more effectively, histograms and color-coded visualizations were calculated (refer
to Appendix B). From these, the Root-Mean-Square (RMS) value was considered as a
reliable approximation of the point density per square meter. For the 100 m flight, the RMS
value was found to be approximately 300 points/sqm, and for the 60 m flight, it was about
564 points/sqm. A visual representation of the point clouds from both flights is shown in
Figure 10. Additionally, a summary of the LiDAR-UAS point clouds is provided in Table 1.
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Table 1. Summary of the LiDAR-UAS point clouds.

LiDAR-UAS Point Cloud No. of Points Density Points/sqm

60 m height 39,287,325 564
100 m height 20,159,785 300
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3. Results
3.1. Quality Assessment of the LiDAR-UAS Point Clouds

Assessing the accuracy of LiDAR data collected from a UAS involves several steps and
considerations. First, the standard deviation was computed to assess the disparity between
LiDAR-derived elevation data and Ground Control Point (GCP) elevations, employing
85 ChPs, as detailed above (Figure 11a). Next, the coordinates of the 64 corners of rooftops
were compared with the coordinates of the same points manually extracted directly from
LiDAR-UAS point clouds. In Figure 11b, a close-up view is provided, highlighting certain
points denoting the corners of rooftops. These specific points are distinguished by their
red coloring and are superimposed onto the shaded Digital Surface Model (DSM). This
presentation aims to enhance the clarity and understanding of the data.
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Figure 11. Quality assessment of LiDAR-UAS point cloud: (a) detail with some ChPs (markers with
purple dots and their corresponding assigned numbers) superimposed on the LiDAR-UAS mesh
surface; (b) points measured with a total station (red color) superimposed on a shaded DSM.

Subsequently, the coordinates of 33 painted points were manually measured directly
on the mesh surface by visually approximating the center to assess the planimetric, vertical,
and overall accuracy of the LiDAR-UAS point cloud. This step is not simple but is of
high importance, as reported in [36], where the global accuracy was measured using high-
intensity targets. The point cloud was colored by intensity attribute using the “viridis”
color palette from CloudCompare v2.12.4 software [37], and an RGB point cloud was
created by choosing a 0–40 range for saturation. The solution to creating the mesh surface
for the ChPs arises due to point cloud density, as no LiDAR point is measured in the
ChP center (Figure 12a–c). The coordinates were compared with those measured via
GNSS-RTK technology.
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(b) LiDAR-UAS point cloud colored by intensity for a ChP; (c) mesh surface created for a ChP
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Finally, a manual digitization process was applied on shaded Digital Surface Models
(DSMs) (Section 3) to delineate the edges of building roofs. These manually digitized roof
edges were then compared with edges manually digitized from orthophotos generated
from a 60 m oblique UAS flight, as reported in [30] (Figure 13).
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Figure 13. Quality assessment of LiDAR-UAS point cloud: (a) manually digitized rooftop edges
based on the 60 m shaded DSM; (b) manually digitized rooftop edges based on 60 m UAS orthophoto;
(c) superimposed digitized rooftop edges.

To evaluate the disparities between the LiDAR-derived elevation data and the eleva-
tions provided by ChPs, a mesh surface was generated based on the LiDAR-UAS point
clouds using CloudCompare software. The Hausdorff distances between each ChP point
and the mesh surface were measured, and a histogram representing the distribution of
the Hausdorff distances was then computed, as shown in Figure 14. The values of the
Root-Mean-Square Error were computed using the average difference (Hausdorff distances)
between reference ChP elevations (as actual values) and the mesh surface created based
on LiDAR-UAS points. The analysis indicates that for the 60 m flight, approximately 39%
of the ChPs exhibit calculated distances falling within a range of 1 to 2 cm, with an RMSE
value of 2 cm. For the 100 m flight, about 35% of the ChPs have calculated distances ranging
from 2 to 3 cm, with an RMSE value of 4 cm, as reported in [27]. The 4 cm error was also
obtained in [27], but after rasterization of LiDAR-UAS point cloud averaging the data
within a 0.1 m cell, providing significant smoothening. These data suggest the degree of
agreement between LiDAR-derived elevations and the ChPs at different flight heights.
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Figure 14. Histogram of Hausdorff distances between ChP altitude and mesh-DSM based on LiDAR-
UAS point cloud acquired at (a) 60 m flight height and (b) 100 m flight height.

By comparing the coordinates of the 33 ChPs measured via GNSS-RTK with the
coordinates of the same points manually measured directly on the mesh surface, errors
along each axis were computed. These errors include the RMSEX, RMSEY, and RMSEZ,
as well as the planimetric error RMSEX,Y and the total error RMSET. Additionally, the
standard deviation was calculated, and the results are presented in Table 2.
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Table 2. The residuals of the 33 ChPs marked with paint along the roads.

LiDAR-UAS
Point Cloud

RMSEX
σ

(cm)

RMSEY
σ

(cm)

RMSEZ
σ

(cm)

RMSEX,Y
σ

(cm)

RMSETOT
σ

(cm)

60 m height 3.3
3.3

3.5
2.9

2.2
1.4

4.8
2.0

5.3
2.0

100 m height 5.0
4.9

4.2
3.7

3.7
2.2

6.5
3.0

7.5
2.8

Upon analyzing the results, it can be seen that the planimetric error for the 60 m
flight is 4.8 cm and 6.5 cm for the 100 m height. Furthermore, the total errors are 5.3 cm
for the 60 m height and 7.5 cm for the 100 m height, which is in accordance with the
values reported in [36]. However, the total errors found in [36] were approx. 3.8 cm at the
50 m flight altitude and approx. 4.8 cm at the 70 m flight altitude after the removal of the
georeferencing global error using 3D transformation of the entire point cloud.

Subsequently, by comparing the coordinates of the roof corners measured via the total
station with the coordinates of the same points manually extracted directly from LiDAR-
UAS point clouds, the errors along each axis were computed; the results are summarized
in Table 3.

Table 3. The residuals of the 64 points representing rooftop corners.

LiDAR-UAS
Point Cloud

RMSEX
(cm)

RMSEY
(cm)

RMSEZ
(cm)

RMSEX,Y
(cm)

RMSETOT
(cm)

60 m height 6 8 7.6 10 12.6

100 m height 8.2 11.4 11 14.1 17.9

It is essential to note that the accuracy of corner measurements in a laser-scanned
point cloud depends on various factors, including the point cloud density, the laser scanner
characteristics, scan angle, vegetation, noise, and environmental conditions. The density of
laser points in the point cloud plays a significant role in the identification of corners and
edges. Higher point densities provide more information, making it easier to detect sharp
transitions in elevation or slope, which are indicative of corners or edges. Low-density
point clouds may not capture subtle features effectively. The type of laser scanner used for
data acquisition affects the point cloud’s quality. Scanners with different laser wavelengths,
pulse repetition rates, and scanning patterns can influence the quality and accuracy of the
data. Thus, the planimetric accuracy for the 60 m height was found to be 10 cm, and for the
100 m height, it was found to be 14.1 cm. The total errors are 12.6 cm for the 60 m flight
height and 17.9 cm for the 100 m flight height.

In order to automatically compare the extracted roof edges based on shaded DSM and
60 m flight orthophotos, we relied on comparing two polylines (the sequences of connected
line segments) to obtain the standard deviation of the distances between them. ArcGIS Pro
v10.8.2 software was used for this particular task, obtaining a standard deviation of 10.4 cm
for the 60 m flight and a standard deviation of 15.5 cm for the 100 m flight.

3.2. LiDAR-UAS Point Cloud Classification in Ground and Off-Ground Points

To classify the LiDAR-UAS point cloud into ground and off-ground points, three
methods were applied: a Cloth Simulation Filter (CSF) [38] implemented in CloudCompare
software, a volume-based algorithm [39], and a hierarchic robust filter algorithm [40]
implemented into Opals v2.5.0 software.

3.2.1. Cloth Simulation Filtering Approach

The CSF algorithm is very easy to apply and requires three parameters, i.e., the type of
terrain surface (steep slope, relief, or flat), the cloth resolution (grid size), and the threshold



Remote Sens. 2024, 16, 78 15 of 33

for the off-ground point classification. However, for obtaining optimal results, an important
aspect is to carefully choose the values for the parameters, as also emphasized in [41]. The
significance of the cloth resolution parameter when conducting ground filtering within the
CSF was demonstrated in [42]. This study concluded that increasing the cloth resolution
makes the DTM coarser in quality. Additionally, it is essential to note that various data
types require distinct parameter settings. For the present study, the “relief” option was
chosen since the terrain level difference is about 30 m, the cloth resolution was set to 0.5 m,
and the threshold for the off-ground points was 0.1 m.

For DTM generation, the “opalsGrid” module was utilized, opting for the robust
moving interpolation method, and the following parameter configurations were selected:
0.3 m search radius, 20 neighbors, and 0.1 m grid size for the 60 m height; 0.6 m search
radius, 20 neighbors, and 0.2 m grid size for the 100 m height. As anticipated, gaps in
information (void pixels) persisted in the resulting data. To address this and create a final
DTM without these information gaps, the “opalsFillGaps” module, designed to identify
gaps in raster models, was employed. The adaptive interpolation method was applied to
calculate values for the void pixels, ensuring a complete DTM (Appendix C).

Visually analyzing the ground and non-ground points, it can be seen that some points
belonging to the bare earth surface (for example, a part of the parking lot and some points
on the street), and also the points measured on the concrete retaining walls, were falsely
classified as off-ground points (Appendix C, Figure A2, profiles P1–P5). Conversely, points
that are not associated with bare earth are categorized as ground points, which include
features like graves (Appendix C, Figure A2, profile P2), medium vegetation, or even
construction rooftops, as highlighted on the shaded DTM (Appendix C, Figure A2). If the
cloth resolution is set to 0.2 m, the points belonging to the building roofs are classified as
ground points.

The effect of planar areas such as building roofs, which were misclassified as ground
points by the CSF, was also reported in [43]. One of the conclusions of this study was that
in order to precisely evaluate the performance of the CSF, a more extensive and statistically
rigorous accuracy assessment is necessary. This assessment should encompass a variety of
landscapes, including urban, rural, and forested areas.

3.2.2. Volume-Based Filtering Approach
DSM Generation

When using the volume-based filtering approach, the basic input is the Digital Surface
Model (DSM) of the study area in raster format. For the DSM derivation, first, all LiDAR-
UAS points were interpolated using the “robust moving plane” interpolation method,
implemented into “opalsGrid” module. The DSMrmp corresponding to the 60 m height
resulted in a regular grid structure with a grid cell dimension of 10 cm. The height for each
grid cell was estimated by finding the best-fitting tilted plane of the 20 nearest points of
the grid point (x, y) within the 30 cm search radius (3×cell size) with quadrant-oriented
data selection, without taking into consideration the points detected as outliers. For each
neighbor point, the individual weight was calculated by applying a weight function defined
as the inverse of the squared distance. For the 100 m height, the grid cell dimension was set
as 20 cm, and the search radius was set to 60 cm.

Details of the shaded DSMrmp for the 60 m height are shown in Figure 15a, where the
averaging effect of the moving least squares method is evident along building edges, as
noted by [44]. While the DSMrmp effectively represents smooth surfaces, its application
along building edges and within forested areas can result in either an overestimation or
underestimation of surface heights. In addition to the elevation, moving least squares
interpolation enables the extraction of additional attributes for each grid point. These
attributes encompass the standard error of the estimated grid point elevation (σz, indicating
roughness), excentricity (distance between the grid point and the center of gravity of input
points), point count, point density, slope, and exposure. These attributes have demonstrated
their significance in subsequent data processing stages, particularly in identifying concealed
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and vegetated areas [44]. Hence, by employing the “opalsCell” module of Opals, the
DSMmax was computed based on the highest elevation within a 0.1 m grid cell for the 60 m
height and 0.2 m for the 100 m height. Although the method accurately represents building
edges, it does introduce artificial roughness on building roofs and streets (Figure 15b).
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Using the σz values (as shown in Figure 15c), a combination of rasters was utilized
through the “opalsAlgebra” module, calculated using pseudocode (1) with a set threshold
value of 0.01 m. When the σz values are lower than the threshold, the DSM height is
derived from the DSMrmp; otherwise, it is obtained from the DSMmax:

z
[
DSMrmp_max

]
= z[σz] < 0.01 or not z[DSMmax]? z

[
DSMrmp

]
: z [DSMmax] (1)

To address the gaps (void pixels due to the acquisition angle, grid size, number of
neighbors, point density, or interpolation method) in the obtained DSMrmp_max, another
interpolation technique, Delaunay triangulation (OPALS-“delaunayTriangulation”), was
applied. To create a complete DSM (DSMfinal) without information gaps, the two rasters,
DSMrmp_max and DSMDelaunay, were merged using pseudocode (2), performed in the “opal-
sAlgebra” module of Opals software. Specifically, cells from DSMrmp_max were retained,
and cells from DSMDelaunay were incorporated only in cases where information gaps existed
in the first DSM.

z
[

DSM f inal

]
= z

[
DSMrmp_max

]
? z

[
DSMrmp_max

]
: z

[
DSMDelaunay

]
(2)

The shading of the final DSM for the 60 m height is shown in Appendix C1, Figure A3a.
By using the two attributes, σz and eccentricity, a mask for the terrain and planar surfaces
can be calculated setting a threshold value of 0.1 for the σz attribute and 0.8 for the
eccentricity attribute, as shown in Appendix C, Figure A3b. The vegetated areas are
highlighted very well as well as the roof’s edges.

Ground Point Filtering

The volume-based filtering approach by [39] identifies open terrain parts of a DSM
input raster. Two key parameters are needed to apply this approach, i.e., the minimum
height for the off-ground point classification and the maximum size of an elevated object,
specifically the maximum length or width, and are typically used to limit the consideration
of very large objects, such as buildings. The algorithm runs the classification separately
for all four directions: N–S, E–W, NW–SE, and SW–NE. To obtain the final terrain mask,
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a straightforward voting scheme is employed, which combines the outcomes of all four
directional masks. Therefore, the parameter “minConsensus” specifies the minimum
number of directional masks that must classify a particular pixel as elevated for it to be
considered as such. Taking as input the DSMfinal raster, setting the minimum height at 0.1 m
and the maximum length at 40 m (building situated in the N-V part of the study area), and
considering all four directions for voting a pixel, the terrain mask is calculated. By analyzing
the result, it can be seen that some elevated points remain. The adopted solution was to
apply morphological operations on the terrain mask using the “opalsMorph” module.

Dilation and erosion are fundamental operations in mathematical morphology, initially
developed for binary images and later extended to grayscale images. Opening implies
erosion and dilation in this order, while closing consists of dilation and erosion applied in
this order.

The structural element, a small mask (a matrix with “0” and “1” values), typically of
an odd size, often 3 × 3 pixels, is placed over the binary image and moved to all possible
positions, being compared to all corresponding pixels in the image being analyzed. In the
case of dilation, it tests whether the structural element intersects with the corresponding
pixels in the image, while in the case of erosion, it tests whether the structural element
matches with all the pixels under the mask (each pixel with a “1” value within the structural
element corresponds to a pixel with a “1” value in the image segment under the mask). The
new image created through a morphological operation is still a binary image, where pixels
have a non-zero value only if they correspond to the binarization mode in that location.
Dilation and erosion have opposite effects: dilation creates the background of an object,
while erosion operates inversely. The size of the matrix defines the size of the structural
element, and the positions of the “0” and “1” values define the shape of the structural
element. The origin of the structural element is usually one of its pixels, typically located at
its center, but it can also be situated outside the structural element. The structural element
can have any shape: cross, square, diamond, etc. For this particular case study, the closing
morphological operation was applied to the “terrain mask” binary raster image, using a
square-shaped structural element, with a size of 3. The binary terrain mask before applying
the morphological operation is shown in Appendix D, Figure A4a, and after applying the
morphological operation in Figure A4b in Appendix D.

For DTM generation, the robust moving interpolation method, with the same pa-
rameter configurations as described above (Section 3.2.1), was applied, in addition to
the adaptive interpolation method, to calculate values for the void pixels (Appendix D,
Figure A5a,b). The effect of the “close” morphological operation on the final DTM can be
observed in Figure 16. The isolated points that remain in areas of high vegetation cause
artifacts in the generated DTM (Figure 16b) that are removed in the DTM obtained via
volume-based morphological filtering (Figure 16c).
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The details of non-ground points identified via volume-based morphological filtering
superimposed on the DSM are shown in Figure 17. Natural elements, such as high, medium,
and low vegetation, and artificial elements, such as graves, cars, and buildings, were
correctly classified as non-ground points (Figure 17a). However, some omission errors can
be seen on the edges of the study area, where a part of the street and the slanting terrain
surface are wrongly classified as non-ground points (Figure 17b).
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Figure 17. Details of non-ground points identified via volume-based morphological filter. Correctly
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3.2.3. Hierarchic Robust Filtering Approach

To filter the LiDAR-UAS point cloud in order to automatically classify the ground
and off-ground points, the point clouds obtained at 60 m and 100 m heights were filtered
using the hierarchic robust filtering algorithm implemented into Opals software with four
iterations, establishing threshold strips for elevation for noise filtering. For this purpose,
the “opalsRobFilter” module was employed. First, the point cloud was filtered via the last
return, a total of 657,466 points measured with the second return, representing only 1.7% of
the total number of points for the 60 m height and 58,509 representing only 0.3% of the total
number of points, were eliminated. The same percentage of first and second return points
was reported by [25]. A HESAI Pandar XT laser sensor attached to a LiDAR-UAS scanner
can only measure two returns, with the number of points measured using one return
being significantly higher than the points measured using the second return. The process
continues with an initial approximation of the surface, considering all points within the
dataset, which may include elements such as vegetation, powerlines, buildings, and ground.
Subsequently, the residuals, representing the distances between the measured points and
the initial surface approximation are calculated and stored as attribute “normalizedZ”. Each
point is assigned a weight based on its distance from the surface, prioritizing points located
below the surface over those situated above it. Consequently, the surface is drawn toward
the points located at lower elevations, typically representing the ground. For this case study,
the initial surface was created using three iterations, considering the minimum height of
two points for the first iteration and one point for the next iterations, in grid cell sizes of
5 m, 3 m, and 1 m. To calculate the DTM surface, the “moving average” interpolation
method was used, setting the grid sizes at 2.5 m, 1.5 m, and 0.5 m for each iteration. The
threshold strips for elevation considering the normalizedZ values were [−3 m ÷ +2 m] for
the first iteration, [−1.5 m ÷ +1 m] for the second iteration, and [−0.25 m ÷ +0.5 m] for the
third iteration. Therefore, a point is classified as a ground point if the normalized value is
within the range interval.

After obtaining the ground points in the third iteration, the “opalsRobFilter” module
was used next. The result was an XYZ file containing all points classified as ground. The
parameter settings for the module are described in (3):
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opalsRobfilter -Infile: ground_points.odm;
-Interpolation: plane;
-Number of Threads: 1;
-Sigma a priori: 0.1;
-Penetration: 20;
-Outfile: filter_ground_points.xyz

(3)

The processing sequence in this module follows a grid-oriented approach, starting
with the creation of an internal grid with a grid size equivalent to the specified search
radius (parameter searchRadius = 3 by default). A local surface is estimated for each
grid node, using the “moving plane” interpolation method with a titled plane (parameter
interpolation = plane), from the three available interpolation methods, taking into consid-
eration all the points situated within the defined search radius. The point classification into
ground and non-ground points is given by a threshold (parameter maxSigma = 0.5 m by
default), i.e., the standard deviation of the surface interpolation. As not all laser pulses
are able to reach the ground, in the context of robust interpolation, the penetration rate
(parameter penetration = 20) given in percentages is utilized as an estimate to establish an
initial course for the local surfaces, which occurs prior to the detailed interpolation process.
The robust interpolation process is carried out through iterations; during each iteration, the
individual point weights are adjusted according to the residuals. This process of surface
interpolation and re-weighting is reiterated until either the changes in the surface are within
a defined threshold or the maximum number of iterations has been reached. By default, the
maximum number of iterations is 100. For the ground points found by hierarchic robust
interpolation, a surface was created using the “nearest point” interpolation method, with a
grid size of 0.5 m and a 15 m search radius. Defining a range interval of −0.1 m ÷ 0.05 m
for the normalizedZ attribute calculated for each ground point with respect to this surface,
the final classification of ground points is made.

The details of the mesh surface created based on ground points identified via hierarchic
robust filtering are displayed in Figure 18. It can be observed that even though the upper
surface of the graves was filtered via the algorithm, some points at the bottom part, which
were identified as ground points, led to irregularities. This same effect was observed in
areas with medium vegetation.
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Figure 18. Details of the mesh surface created based on ground points identified via hierarchic robust
filtering and UAS images for two specific areas: a parking lot with a ~4 m high wall (a,c) and a ~1 m
high wall and graves (b,d).

For DTM generation, the robust moving interpolation method with the same parameter
configurations as described above (Section 3.2.1) was applied, in addition to the adaptive
interpolation method, to calculate values for the void pixels (Appendix E).
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3.2.4. Proposed Method for Enhancing DTM Quality by Combining Robust Filtering and
Volume-Based Filtering Approaches for Ground Points

By analyzing and comparing the DTMs resulting from the CSF, volume-based filtering,
and hierarchic robust filtering methods, advantages and disadvantages could be identified
for each. As observed, the estimated models at 60 m and 100 m heights obtained via
hierarchic robust filtering approximate the ground topography with the highest fidelity.
However, a significant drawback arises with steep slopes, where the algorithm is not able
to capture ground points in close proximity to terrain edges. Consequently, the applied
interpolation introduces smoothing effects in the DTM, deviating from the precise shape
of the actual terrain. However, the volume-based filtering approach eliminates all areas
under the corresponding ground mask but keeps the points at very steep slopes (e.g.,
retaining walls). Among the three algorithms analyzed, the CSF algorithm demonstrated
the poorest performance, as it failed to identify large terrain areas as ground. It did not
identify points on concrete retaining walls, artificial terraces, or sudden terrain slopes
as ground points, erroneously classifying points on graves, building roofs, and medium
vegetation as the “ground” class. Therefore, to obtain a final DTM with higher quality,
we proposed a combined approach based on the strengths of the two methods, namely,
hierarchical robust and volume-based filtering. In this way, the void areas at steep slopes
with missing ground points in the hierarchic robust filter algorithm are filled with the
corresponding ground points identified through the volume-based filtering approach.

The proposed solution is described with pseudocode (4), where, in the case of steep
slopes of more than 80%, the ground points identified via the morphological-based filtering
approach are considered; otherwise, the ground points extracted via the hierarchic robust
filter are taken in the final combined approach. In this manner, the difficulties in identifying
the ground points at steep edges encountered by robust filters are compensated for via the
volume-based filtering approach.

For this, in the first step, a slope map of the entire area of interest (for both 60 m
and 100 m flights) was computed using the “OpalsGrid” module with the feature “slope”
implemented in Opals software. Secondly, with the “OpalsAlgebra” module, only the
regions with a slope greater than 80% were selected and saved in a corresponding mask. A
detailed view of the slope and the corresponding mask, which includes two retaining walls
and an artificially terraced terrain, is illustrated in Figure 19.
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The computed mask was then further employed to select and extract the corresponding
areas from the ground points identified with the volume-based filtering method. The
purpose of this was to merge the points extracted via hierarchic robust filtering with the
ground points identified via the volume-based filtering approach for areas with very steep
slopes. Hence, the number of ground points increased by 1% and 0.8% for the 60 m and
100 m heights, respectively (Table 4).

Ground ptsProposed method = Slope > 80 ? Ground pts Morph. Volume : Ground ptsHierarchic robust (4)

where:
Ground ptsProposed method—ground points identified via the proposed approach;
Ground ptsHierarchic robust—ground points extracted via the hierarchic robust filter-

ing approach;
Ground ptsMorph. Volume —ground points extracted via the morphological volume-

based approach;
Slope > 80 —condition for ground point selection only in steep terrain areas with

slopes > 80%.

Table 4. Number of LiDAR-UAS ground points for the enhanced DTM.

No. of LiDAR-UAS Ground Points 60 m Heigh 100 m Height

Hierarchic robust 17,814,702 11,092,862
Morphological volume-based

(steep slopes only) 175,641 88,681

Total (combined) 17,990,343 11,181,543

Finally, a new interpolation was performed on the combined point cloud with only
ground points using the robust moving interpolation method, keeping the same config-
uration parameters as presented in Section 3.2.1. Additionally, void areas were filled via
the adaptive interpolation method. As expected, the newly obtained DTM is improved
compared to hierarchical robust DTM, especially in areas with very steep slopes. Detailed
views of the enhancements at a retaining wall and terraces are visible in Figure 20 in the
last column. Compared to the robust filtering-based DTM with missing information in
these specific areas containing sudden slope changes, the final combined model added the
corresponding ground points from the volume-based DTM, thus increasing ground point
completeness and improving the quality of the final result.

A summary of the number of ground points obtained by applying different filtering
approaches on LiDAR-UAS point clouds acquired at 60 m and 100 m heights is presented
in Table 5.

Table 5. Summary of the LiDAR-UAS ground points identified via different filtering approaches.

No. of Ground
Points CSF Volume-Based

Filter
Volume-Based

Morphological Filter
Hierarchic Robust

Filter Proposed Method

60 m height 19,844,316 16,611,900 15,300,117 17,990,702 17,990,343
100 m height 11,713,850 10,016,332 9,071,908 11,092,862 11,181,543

Using QGIS v3.28.13 software, the elevations of the 985 ChPs were interpolated in the
derived DTMs, applying different filtering approaches. The resulting statistics, including
mean, median, standard deviation, and Root-Mean-Square error for the differences between
the initial elevations and the interpolated ones, are presented in Table 6.
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Table 6. Vertical accuracy of derived DTMs based on 985 ChPs.

Filtering Method
Accuracy Metrics (m)

µ Median σ RMSE

CSF
60 m −0.04 0.01 0.29 0.29

100 m −0.05 −0.01 0.28 0.29

Volume-based morphological filter
60 m 0.01 0.00 0.28 0.28

100 m −0.01 −0.02 0.29 0.29

Hierarchic robust filter
60 m −0.02 0.01 0.25 0.25

100 m −0.04 −0.01 0.25 0.25

Proposed method
60 m −0.00 0.01 0.16 0.15

100 m −0.02 −0.01 0.18 0.18
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The statistical values were calculated after filtering the outliers. Upon analyzing the
histogram of the distribution of vertical errors for the 60 m flight height when using the
hierarchic robust filtering method, it was observed that the calculated errors fell within
a range of −1.86 m to +2.20 m, with a standard deviation of 0.25 m. In contrast, when
the proposed method was applied in the DTM generation process based on LiDAR-UAS
point clouds, the error range was notably reduced to −1.05 m to +0.76 m, with a standard
deviation of 0.15 m. This means that the proposed method significantly decreases the error
range, with the maximum error being approximately three times smaller compared to the
hierarchic robust filtering method. For the 100 m flight height, the errors ranged from
−2.05 m to +2.00 m, which was then reduced to −2.05 m to +0.66 m when employing the
proposed method. Again, the maximum error was approximately three times smaller with
the proposed method. Overall, the proposed method enhances DTM quality compared to
the hierarchic robust filter, resulting in a 40% improvement for the 60 m flight height and a
28% improvement for the 100 m flight height.

4. Discussion

Through the examination of the three considered strategies for UAS point cloud
filtering (CSF, volume-based morphological, and hierarchic robust filtering algorithms),
the strengths and weaknesses associated with each approach were identified. While
CSF shows the weakest performance, by eliminating a significant number of ground
points, the volume-based morphological filter has a better efficiency, as it identifies ground
points at very steep slopes. However, hierarchic robust filtering shows the best behavior
overall but faces challenges in identifying ground points on steep slopes and in close
proximity to terrain edges. Therefore, our proposed algorithm makes use of the strengths
of the two most effective methods, namely: hierarchical robust filtering and volume-based
morphological filter.

Figure 21 shows detailed profiles of “ground” points classified via the analyzed filter-
ing approaches, along with the corresponding DTMs created based on these points. These
profiles focus on specific areas, particularly those with steep slopes where the proposed
methodology has notably increased the number of identified ground points. By looking
at all profiles, the CSF performed worst overall. The retaining walls were successfully
identified using the volume-based filtering approach. In addition, the hierarchic robust
and CSF were effective in identifying the points located beneath trees. In the P2 profile, it is
evident that there are graves with points identified as “ground” via the CSF, but they were
correctly classified via the hierarchic robust and volume-based filters. In the P3 profile,
tree branches cover the upper part of the wall, resulting in no points being identified as
ground points via the volume-based filter. This effect can also be seen in profile P5, where
an anthropic terraced terrain is illustrated. In the P4 profile, all points on the wall are
correctly identified via the volume-based filter, but when generating the DTM, the points
are located in the same cell (vertical wall), so the values are averaged, leading to a point in
the middle of the wall.

The most significant advantages and disadvantages for each considered ground filter-
ing approach and for the final combined proposed method, as identified in this paper, are
summarized in Table 7.

Our present results form the basis for further detailed analyses and represent the
beginning of future research directions, such as the application of the proposed method in
other test areas with different topographic characteristics (mountainous, urban, and land
areas), on datasets with different acquisition times (leaf-on vs. leaf-off conditions), and
acquisitions with different LiDAR-UAS sensors.



Remote Sens. 2024, 16, 78 24 of 33Remote Sens. 2024, 15, x FOR PEER REVIEW 25 of 33 
 

 

Figure 21. Detailed profiles (P1, P2, P3, P4, and P5) of LiDAR-UAS acquisition with corresponding 

extracted ground points (left column) and with DTM interpolated points (right column) for 

different retaining concrete walls. Here, on the vertical walls, the CSF algorithm does not identify 

any ground points. In profile P2, the grave contains points identified as “ground”. The location of 

the detailed profiles in the test area is shown in Figure A2 (Appendix C). 

Figure 21. Detailed profiles (P1, P2, P3, P4, and P5) of LiDAR-UAS acquisition with corresponding
extracted ground points (left column) and with DTM interpolated points (right column) for different
retaining concrete walls. Here, on the vertical walls, the CSF algorithm does not identify any ground
points. In profile P2, the grave contains points identified as “ground”. The location of the detailed
profiles in the test area is shown in Figure A2 (Appendix C).
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Table 7. Advantages and disadvantages of the CSF, volume-based morphological, hierarchic robust
filtering, and proposed methods (advantages are indicated with a tick, while disadvantages are
indicated with a circle).

CSF Volume-Based Morphological
Filter Hierarchic Robust Filter Proposed Method

✓ Free of charge # Paid license # Paid license # Paid license

✓ Fast processing # Longer computation time
# Similar computation

time to
volume-based filter

# Longer computation
time (requires
processing of both
volume-based and
hierarchic robust
methods)

# Sudden slope changes
are not depicted

✓ Sudden slope changes are
depicted

# Sudden slope
changes are not
depicted

✓ Sudden slope changes
are depicted

# Points belonging to bare
earth are misclassified as
non-ground points

✓ Points belonging to bare
earth are correctly classified
as non-ground points

✓ Correctly identifies
ground points,
except for areas of
steep slopes

✓ Correctly identifies
ground points

# Reduced number of
identified ground points

# Reduced number of
identified ground points
because only points under
the “terrain” mask are
extracted (points under the
tree canopy are not
extracted)

✓ Increased number of
extracted ground
points

✓ Increased number of
extracted ground points
(more than hierarchic-
robust-filter-identified
points)

# Missing ground points
at steep slopes

✓ Ground points close to the
edges of very steep slopes
are well identified

# Ground points close
to the edges of very
steep slopes are not
identified

✓ Extracts ground points
at steep slopes

✓ Needs only 3
parameters # Requires more parameters

# Requires more
parameters

# Requires more
parameters

# Multiple tests to find the
suitable parameters

✓ Fewer number of tests to
find the suitable parameters

✓ Fewer number of
tests to find the
suitable parameters

✓ Fewer number of tests to
find the suitable
parameters

# Objects with a low
height compared to the
ground (such as graves
with a height of
approximately 40 cm)
are added to the Digital
Terrain Model
(commission errors)

# Objects with a low height
compared to the ground are
correctly classified

✓ Effective on many types
of terrain

# Points situated in the
middle of roofs are
misclassified as ground
points

✓ Correctly eliminates points
belonging to buildings and
roofs

✓ Correctly eliminates
points belonging to
buildings and roofs

✓ Correctly eliminates
points belonging to
buildings and roofs

# DTM affected by
interpolation effects due
to large gaps

# When generating the DTM,
the interpolation method
causes a smoothing effect of
the terrain surface, thus not
reflecting the real terrain

✓ Resulting DTM
characterized by
smoothing effects at
steep slopes, due to
interpolation

✓ DTM with improved
quality
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5. Conclusions

The filtering of ground points represents an essential step in LiDAR data pre-processing,
particularly for terrain modeling and the derivation of Digital Terrain Models. Over the last
three decades, various ground filtering algorithms have been developed, with a primary
focus on Airborne Laser Scanning (ALS) point clouds. Even though LiDAR-UAS and ALS
methods both rely on LiDAR principles, they differ in terms of data acquisition platforms,
applications, and characteristics. While LiDAR-UASs provide the advantage of a high
point density, they also have the drawback of typically having a smaller number of returns
in comparison to ALS systems, with the first return often representing about 99% of the
entire point cloud. The high point density in LiDAR-UAS data may result in the reduced
performance of filtering algorithms, rendering the task of filtering LiDAR-UAS point clouds
more challenging compared to ALS point clouds.

In this study, the focus falls on obtaining a highly accurate DTM that faithfully reflects
the actual ground features of a complex landscape, using as input data LiDAR-UAS point
clouds. For this, different filtering approaches (i.e., hierarchical robust, volume-based, and
cloth simulation) were tested, and their results were qualitatively and quantitatively compared.

For assessing the vertical, planimetric, and overall accuracy of the LiDAR-UAS point
clouds, a total of 85 ChPs placed in open areas (measured via GNSS-RTK technology) were
employed, together with 64 points representing roof corners (measured via a total station)
and manually drawn polylines for roof edges. The vertical accuracy of the derived DTMs
was assessed using 985 ChPs, including the 85 ChPs and topographical details measured
via the total station, i.e., man-made structures, roads, and fences.

Ground points are “approximately” well identified by all three tested filtering meth-
ods, but the quality of the final obtained DTMs is affected by the adopted interpolation
and void area filling strategies. Therefore, while the volume-based algorithm effectively
identifies ground points, the subsequent application of the interpolation method produces
a continuous surface that may not accurately represent the actual shape of the terrain. The
main advantage of this algorithm is its capability to accurately classify points measured on
steep or sudden slopes as ground points. From all three analyzed filters, the CSF performed
worst overall, while the hierarchic robust filter performed the best in classifying ground
points, except for areas with steep slopes and rapid changes in elevation, such as vertical
walls. Therefore, to obtain an enhanced DTM that represents the real terrain shape with
higher confidence, we proposed a new method that makes use of the strengths of the two
filtering approaches, namely, hierarchical robust and volume-based filtering approaches.
The results of the two techniques have been combined, applying an 80% slope condition
for the volume-based filtering approach, thereby obtaining an increased number of ground
points. Finally, the newly interpolated DTM shows improvements of 40% and 28% for
the LiDAR-UAS flights at 60 m and 100 m, respectively. Furthermore, in comparison
to the terrain models generated via the individual filtering methods, the final combined
DTM shows the best overall quality and accuracy metrics. The obtained enhanced DTM
represents a valuable dataset for further precision topographic mapping applications, such
as urban planning, infrastructure development, and environmental monitoring, where
having an accurate and detailed representation of the Earth’s surface is essential.
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Appendix A

Table A1. Specification of GS-130X UAS LiDAR Scanning System.

Component Name System Parameters

GS-130X

Weight 1.26 kg

Measuring accuracy Less than 0.1 m @120 m

Working temperature −20 ◦C~+65 ◦C

Power range 12 V–24 V

Consumption 10 W

Carrying platform GS-800 Multi Rotor and other brand

Storage 64 GB storage, maximum support 128 GB TF card

LiDAR Unit
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and Dense Image Matching Acquired Using the UAV Platform for DTM Creation. ISPRS Int. J. Geo-Inf. 2018, 7, 342. [CrossRef]

26. Fuad, N.A.; Ismail, Z.; Majid, Z.; Darwin, N.; Ariff, M.F.M.; Idris, K.M.; Yusoff, A.R. Accuracy evaluation of digital terrain
model based on different flying altitudes and conditional of terrain using UAV LiDAR technology. In Proceedings of the IOP
Conference Series: Earth and Environmental Science, Kuala Lumpur, Malaysia, 24–25 April 2018; IOP Publishing: Bristol, UK,
2018; Volume 169, p. 012100.
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