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Abstract: Multiple object tracking (MOT) in videos captured by unmanned aerial vehicle (UAV)
is a fundamental aspect of computer vision. Recently, the one-shot tracking paradigm integrates
the detection and re-identification (ReID) tasks, striking a balance between tracking accuracy and
inference speed. This paradigm alleviates task conflicts and achieves remarkable results through
various feature decoupling methods. However, in challenging scenarios like drone movements,
lighting changes and object occlusion, it still encounters issues with detection failures and identity
switches. In addition, traditional feature decoupling methods directly employ channel-based at-
tention to decompose the detection and ReID branches, without a meticulous consideration of the
specific requirements of each branch. To address the above problems, we introduce an asymmetric
feature enhancement network with a global coordinate-aware enhancement (GCAE) module and an
embedding feature aggregation (EFA) module, aiming to optimize the two branches independently.
On the one hand, we develop the GCAE module for the detection branch, which effectively merges
rich semantic information within the feature space to improve detection accuracy. On the other hand,
we introduce the EFA module for the ReID branch, which highlights the significance of pixel-level
features and acquires discriminative identity embedding through a local feature aggregation strategy.
By efficiently incorporating the GCAE and EFA modules into the one-shot tracking pipeline, we
present a novel MOT framework, named AsyUAV. Extensive experiments have demonstrated the
effectiveness of our proposed AsyUAV. In particular, it achieves a MOTA of 38.3% and IDF1 of 51.7%
on VisDrone2019, and a MOTA of 48.0% and IDF1 of 67.5% on UAVDT, outperforming existing
state-of-the-art trackers.

Keywords: multiple object tracking; data association; feature enhancement; unmanned aerial vehicle

1. Introduction

Multiple Object Tracking (MOT) focuses on the identification and tracking of multiple
targets belonging to different classes in a video sequence. With the widespread utilization
of MOT task and advances in navigation technology, the MOT of unmanned aerial vehicle
(UAV) has emerged as a vital research area in remote sensing [1–3]. This technology is
increasingly employed for applications in agriculture, monitoring and emergency rescue.
Nevertheless, the MOT task, especially from the perspective of UAV, presents a multitude of
challenges. The UAV-based MOT encounters issues such as image deterioration, alterations
in scale, ambiguous object brightness and immediate tracking [4–6].

In recent years, deep learning methods have been widely adopted to address the
obstacles encountered in MOT. Due to the specific requirements of the MOT task, it is
necessary for the relevant work to establish a unique trajectory for each tracked target
in the video sequence. Concretely, the tracking methods can be broadly categorized into
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two paradigms, the two-stage tracker [7–9] and the one-shot tracker [10–12]. Although
the two-stage tracker has exhibited significant improvements in detection performance
owing to the superior quality of detection results as reported in previous studies [13–15],
it still requires a distinct training phase for a feature extraction module that can handle
re-identification (ReID) information. In other words, the two-stage tracker divides detection
and feature extraction into two independent steps, which is a complex and time-consuming
tracking framework.

To eliminate the independence of the two processes, an effective solution is to construct
a federated framework that combines the detection and ReID tasks into a cohesive model,
providing simultaneous output from the detection and ReID head. In particular, since the
introduction of JDE [10], which pioneered the concept of the joint detection and embedding
paradigm, a range of one-shot trackers have emerged to enhance performance based on
this framework. Many researchers recognize the training conflict between the two tasks
and propose various efficient feature deconstruction techniques to address the prevalent
feature misalignment issue in the one-shot tracking algorithms [16–18]. Specifically, the
detection branch is essential for enhancing inter-class variability, whereas the ReID branch
plays a crucial role in improving intra-class discrimination. Utilizing the shared feature
map for both tasks invariably leads to sub-optimal network optimization. When the UAV is
hovering at a considerable altitude from the ground, the tracker’s task is to identify targets
with small pixel areas and accurately locate them to extract specific characteristics. As a
result, the one-shot tracking approach continues to suffer from performance degradation in
UAV videos when it solely relies on channel-based decoupling to address feature conflicts
between the two branches, without taking into account the task-specific demands.

Based on the above analysis, we introduce a novel asymmetric feature enhancement
framework for the MOT task. Similar to the previous methodologies, we maintain the
belief that using specific feature maps to represent the detection and ReID branches will
facilitate the learning of task-independent representations. Nevertheless, instead of relying
on channel-based attention for feature decoupling, we concentrate on feature optimization
according to the diverse demands of each branch. The detection branch necessitates
outstanding recognition capabilities to accurately identify specific categories in complex
and diverse scenarios. To address this, we introduce the custom-designed global coordinate-
aware enhancement (GCAE) module specifically for this branch. The GCAE module
hierarchically encodes the shared feature map in the feature space along different directions,
thus improving the representation of the object of interest in a more effective manner.

For the ReID branch, it is essential to extract the identity embedding of detected targets
based on their central position. Especially in situations involving dense or small objects,
having more precise position information proves invaluable for embedding extraction.
We contend that local information related to potential targets is more conducive to aggre-
gating ReID features. Consequently, we adopt an embedding feature aggregation (EFA)
module to emphasize the significance of feature information at the pixel level. The EFA
module employs the pre-existing detection heatmap and pseudo-Gaussian heatmap as
prior conditions to guide the generation of the more distinctive task-related feature map.

By deliberately treating detection and embedding features as two distinct task opti-
mizations, AsyUAV improves detection accuracy and extracts dependable identity embed-
ding from the UAV viewpoint. Experiments indicate that the proposed modules achieve
remarkable tracking and association performance, demonstrating their superiority on
two public datasets. To provide a comprehensive summary, we outline the key contribu-
tions of this paper as follows:

• We propose a global coordinate-aware enhancement (GCAE) module within the detec-
tion branch to enable interactions over long distances and improve recognition capability.

• We introduce an embedding feature aggregation (EFA) module that applies prior
spatial attention to the ReID branch. By fusing pre-existing feature information, the
generated ReID-specified feature map effectively mitigates background interference
and enhances robustness against changing views observed from the UAV.
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• An asymmetric feature enhancement network, comprising the GCAE and EFA mod-
ules, has been seamlessly integrated into the one-shot MOT framework for UAV-based
tracking, referred to as AsyUAV. All experiments show that compared with the current
leading MOT techniques on VisDrone2019 and UAVDT datasets, AsyUAV obtains
competitive performance in terms of detection accuracy and the acquisition of dis-
criminative identity features, and achieves the best results on MOTA and IDF1 metrics
(Figure 1).
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Figure 1. Comparisons of preceding state-of-the-art trackers with our proposed AsyUAV on the
VisDrone test set using IDF1-MOTA-FPS measurement metrics. The x-axis represents MOTA, while
the y-axis represents IDF1, and the size of the circle denotes FPS. Our AsyUAV demonstrates superior
performance in terms of MOTA, IDF1, and competitive tracking speed (FPS).

2. Related Work

In this section, we describe the research on common paradigms for multiple ob-
ject tracking and techniques to improve tracking performance. For further elaboration,
Section 2.1 discusses the multiple object tracking task, Section 2.2 introduces the feature
enhancement method and Section 2.3 covers the data association strategy.

2.1. Multiple Object Tracking

In recent years, the convenience and flexibility of drone platform cameras have sparked
growing interest among researchers in the field of MOT for UAV video. Different from
the video detection task, the MOT task demands the continuous tracking of specific object
categories throughout a video sequence, with each tracked object maintaining a unique
identity number across numerous frames. Leveraging the efficient feature representation
capabilities of convolutional neural networks, the MOT algorithms have made remarkable
advancements. One prevalent approach for MOT involves the tracking by detection
paradigm, where targets are first detected and then associated based on their appearance
and motion cues.

For example, SORT [19] uses a deep learning-based detector (Fast R-CNN [20]) to
identify potential targets in each frame. Building on the foundation laid by SORT, Deep-
SORT [21] incorporates a pre-trained feature extraction model for creating discriminative
appearance embedding and employs a deliberate cascade matching method to elevate the
tracking performance of MOT. BOT-SORT [13] introduces a highly reliable tracking system
by integrating camera motion-compensated features and employing a suitable Kalman
filter [22] state vector for precise box localization. However, despite its achievement in
reaching state-of-the-art performance, the inherent complexity of the tracking process
inevitably leads to reduced speed.
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Fortunately, the advent of the one-shot paradigm has struck a balance between accu-
racy and speed. This paradigm combines object detection with the extraction of correspond-
ing embeddings into a unified framework, offering an alternative solution for the MOT
task. For instance, JDE [10] accomplishes the training of ReID and detection tasks within a
shared YOLOv3 model. This approach substantially reduces computational overhead and
serves as a straightforward and efficient baseline for designing real-time MOT frameworks.
FairMOT [23] addresses the issue of an individual anchor being assigned to multiple targets
or multiple anchors being assigned to one target, which is a problem arising from the use of
anchor-based methods. As a solution, an anchor-free tracker based on the CenterNet [24]
detector is proposed.

Recently, following the triumph of the Transformer architecture in computer vision [25],
researchers are exploring the integration of identity information from previous frames to
develop a Transformer-based MOT framework. For example, TransCenter [26] presents
a Transformer-based architecture for MOT which is centered around the objects. Trans-
MOT [27], on the other hand, employs a spatial-temporal graph Transformer to capture the
spatial-temporal relationships among objects. TrackFormer [28] concurrently handles object
detection and track formation by employing an encoder-decoder Transformer structure.
MOTR [29] introduces the concept of a “track query” and uses each track query to represent
a unique trajectory throughout the entire video. Importantly, it eliminates the need for
post-processing in the association, making it the first end-to-end MOT tracker.

Although there are various multiple object tracking paradigms, the tracking by detec-
tion paradigm involves a complex tracking process and Transformer-based MOT methods
require a large number of learning parameters. In contrast, the one-shot tracker offers a
more balanced trade-off between model complexity and inference time, making it more
practical for real-world applications. Consequently, our method adheres to the one-shot
tracker paradigm.

2.2. Feature Enhancement

Feature enhancement plays a critical role in MOT, particularly within the one-shot
tracking paradigm. A primary issue often encountered is the optimization conflicts arising
from distinct feature demands between the detection and ReID branches. In particular,
CSTrack [30] spotlight the inherent competition between object detection and ReID. It intro-
duces a reciprocal network with self-attention and cross-attention mechanisms, enabling
both tasks to effectively fulfil their unique feature requirements. Taking inspiration from
the excellent work of CStrack and aiming to address the contradiction and disentangle
the learning of detection and ReID features, various methods have been introduced. For
instance, RelationTrack [31] develops a global context decoupling module, MOTFR [29]
proposes a locally shared information decoupling module, FPUAV [16] introduces a novel
feature decoupling network, and FDTrack [32] designs a mutual inhibition decoupling
module. These approaches collectively contribute to resolving the feature optimization
conflict between detection and ReID tasks.

Simultaneously, researchers have shown a growing interest in enhancing the feature
representation of the ReID branch. They argue that harnessing distinctive identity features
can lead to a more robust association process [31,33]. DcMOT [34] presents a multi-attention
feature learning module, known as recurrent across-channel attention with spatial attention,
to improve the discriminative power of the ReID task in the one-shot MOT framework.
MOTFR [29] and RelationTrack [31] both utilize an enhanced attention mechanism to cap-
ture global contextual relationships on the ReID feature map. UAVMOT [35] incorporates
the embedding feature from two consecutive frames to update and improve the repre-
sentation of object identity, effectively adapting to changes in the UAV perspective. In
addition, OMC [36] amplifies the role of the encoding feature, which uses the identity
information existing in the previous frame and the feature map of the current frame to
perform a cross-correlation operator to rectify misclassified targets.
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The above analysis highlights the critical importance of enhancing relevant feature rep-
resentation. Previous scholars have made notable advancements in the one-shot tracking
paradigm, resulting in significant performance improvements. However, their improve-
ment strategies primarily rely on symmetric network structures to address feature conflicts
or incorporate spatio-temporal attention into the ReID branch, often without careful consid-
eration of the specific requirements of each branch. This oversight can lead to suboptimal
results as it neglects the distinct demands of both branches. Unlike the previously men-
tioned methods, we take into account that the detection branch needs to handle diverse
multi-category and multi-scale scenes. Simultaneously, the ReID branch requires precise
feature extraction positions and robust embedding to represent the unique information of
each associated target. Therefore, an asymmetric network enhancement strategy is further
proposed to systematically enhance feature representation in both the detection and ReID
branches. By carefully considering the specific requirements of each task and optimizing
them proactively, our tracker is better equipped to handle complex and dynamic scenarios.

2.3. Data Association

In contrast to single-image detection, in the case of MOT, the objective is to track
objects across a video sequence. Therefore, data association becomes a critical step in
establishing connections between frames.

Current methods rely on both motion and appearance cues for association. Initially,
SORT [19] makes use of motion information by predicting the location of matched tracks
in the current frame with the help of the Kalman filter [22]. Subsequently, Intersection
over Union (IoU) is employed as the similarity metric to complete data association be-
tween the bounding boxes of detected targets and the matched tracks. ByteTrack [37] is a
straightforward yet highly effective tracker that employs a low-scoring detection strategy
and depends on the IoU association to deliver outstanding performance in pedestrian
datasets. MAT [38] focuses on high frame rate motion modelling and provides a range of
solutions for trajectory prediction, reconnection, and matching over extended time inter-
vals. Additionally, researchers have developed deep networks as replacements for various
filter algorithms in learning object motion, thereby achieving high-performance tracking
results [39,40].

However, the motion model is notably reliant on a high frame rate and tends to be
sensitive when it comes to long-range association. In scenarios involving camera motion
and low frame rates, the motion cue offers no clear advantage over the appearance cue.
Specifically, the appearance information bears similarity to the ReID task in pedestrian
re-identification [41]. When the viewpoint of the drone alters, the ReID-based approach can
globally search for optimal matching results, thus enhancing the data association in MOT.
For the training of the ReID task, there are two different feature extraction methods. One
of them uses an additional feature extraction network to extract the identity embedding
from the bounding box of the detected object, renowned as the tracking by detection
paradigm [21]. Conversely, the alternative approach involves the joint learning of detection
and ReID branches, known as the one-shot tracking paradigm [10].

These two association cues possess their individual benefits. We argue that the motion-
based strategy is better suited for local-scale matching, whereas the appearance-based
strategy is more appropriate for global-scale matching. Both motion-based and appearance-
based matching are important for tracking in the UAV video. In situations where the
camera undergoes sudden movement, appearance information proves to be a more reliable
association cue. When encountering targets that are blurred or obstructed, motion infor-
mation becomes the more dependable cue. Therefore, it is unquestionably important to
leverage both cues to address various scenarios.

3. Methodology

This section provides a detailed explanation of our methodology. The overall frame-
work of our tracker is described in Section 3.1. Next, we proceed to introduce the global
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coordinate-aware enhancement (GCAE) module and embedding feature aggregation (EFA)
module in Section 3.2 and Section 3.3, respectively. Lastly, Section 3.4 provides a brief
description of the online matching strategy.

3.1. Overall Framework

When UAV-captured images are fed into the MOT pipeline, our AsyUAV is designed
to accurately detect and robustly track designated object categories across successive frames.
The comprehensive structure of AsyUAV is depicted in Figure 2. First, individual frames
from the video sequence are transmitted in sequence to AsyUAV, which then generates
the shared feature map through the backbone. Subsequently, we employ an asymmetric
feature enhancement network to selectively optimize both the detection branch and the
ReID branch. This asymmetric feature enhancement network comprises the GCAE module
for the detection branch and the EFA module for the ReID branch. GCAE is designed
to enhance detection performance, while EFA is aimed at extracting more discriminative
identity features. After obtaining the detection-specified feature map and ReID-specified
feature map using the two proposed modules, respectively, we further derive the object
bounding box, heatmap, and identity embedding through a 1 × 1 convolutional layer.
Finally, these outputs are matched online with the previous trajectory.

Heatmap

Offset

Height & Width

Embeddings

Vt

Video sequence Feature extractor

Backbone

Shared feature map

Asymmetric feature enhancement

Detection & ReID branches

GCAE

EFA

ReID-specified features

Detection-specified features

Detection heatmap

Pseudo-Gaussian heatmap

Vt-1

Vt+1

Figure 2. The overall framework of AsyUAV. After generating shared features through the backbone,
we utilize an asymmetric feature enhancement network to produce detection-specific and ReID-
specific features. The proposed asymmetric feature enhancement consists of a GCAE module and an
EFA module. The GCAE module is implemented in the detection branch to improve detection accu-
racy, while the EFA module is employed in the ReID branch to enhance embedding discriminability.

3.2. Global Coordinate-Aware Enhancement

The effectiveness of the attention mechanism for enhancing network learning is well-
established. However, attention constrained to specific regions poses difficulties in captur-
ing interactive information across a global context. It is worth noting that global information
helps the network comprehend the context and extract useful features. Especially in ob-
ject detection task, it is crucial to understand the global positional relationship between
targets [42]. Therefore, with the goal of strengthening the representation power of the
detection feature map and enhancing detection accuracy, we introduce the GCAE module,
a pivotal component of the asymmetric feature enhancement network.

The specific structure of the GCAE module is illustrated in Figure 3. We designate the
shared feature map output from the feature extractor part as Fs ∈ RC×H×W . The GCAE
module takes it as input and generates the detection-specified feature map Fd ∈ RC×H×W

with amplified depiction. In particular, we employ global max pooling and global average
pooling along both the row direction and column direction of Fs to obtain channel-based



Remote Sens. 2024, 16, 70 7 of 20

global coordinate attention. The output of the c-th channel through global max pooling can
be defined as:

GMProw
c (h) = max(Fs

c[h, 0 : W]) (1)

GMPcol
c (w) = max(Fs

c[0 : H, w]) (2)

where GMProw
c and GMPcol

c represent the global max pooling at the row (row) direction
and column (col) direction, respectively. Similarly, the output of the c-th channel through
global average pooling can be defined as

GAProw
c (h) =

1
W

W−1

∑
i=0

Fs
c(h, i) (3)

GAPcol
c (w) =

1
H

H−1

∑
j=0

Fs
c(j, w) (4)

where GAProw
c and GAPcol

c represent the global average pooling at the row (row) direction
and column (col) direction, respectively.

The dimensions of the four tensors obtained through the different pooling operations
are GMProw ∈ RC×H , GMPcol ∈ RC×W , GAProw ∈ RC×H , and GAPcol ∈ RC×W , respec-
tively. Then, we adopt the following equation to produce the global coordinate-aware
channel information Z ∈ RC×[2∗(H+W)].

Z = [GMProw, GMPcol , GAProw, GAPcol ] (5)

Recall that [·, ·, ·, ·] denotes the concatenation operation along the channel dimension.
Fusing the four tensors with distinct spatial orientations and contextual details enables Z
to capture comprehensive interdependencies in the spatial dimension while maintaining
sensitivity to the region of interest.

After that, we obtain the refined global coordinate-aware channel information, de-
noted as Ẑ ∈ RC×(H+W). This is accomplished through a tailored transformation, which
adaptively reweights position information with diverse characteristics while reducing
dimensionality to align with the original feature dimension. The procedure is outlined as
follows

Ẑ = ReLU(Ψbn(Conv(WzZ))) (6)

Here, Wz is a learnable matrix, and Conv(·) denotes a standard 1×1 convolutional
layer. Additionally, Ψbn(·) and ReLU(·) correspond to the rectified linear unit and batch
normalization operator, respectively. Later, we split Ẑ into two distinct vectors ẐH ∈ RC×H

and ẐW ∈ RC×W along the height and width directions. Two additional non-shared 1×1
convolutional layers with non-linear activation function σ(·) are implemented to ZH and
ZW , respectively. Considering that

gH = σ(Conv(ẐH
)) (7)

gW = σ(Conv(ẐW
)) (8)

Lastly, gH is expanded horizontally and gW is expanded vertically. The resulting
detection-specific feature map, denoted as Fd, is obtained through the following numerical
operations

Fd
c (i, j) = Fs

c(i, j)× gH
c (i)× gW

c (j) + Fs
c(i, j) (9)

The proposed GCAE module is capable of allowing the detection branch to prioritize
regions of interest for objects located on the feature map. In contrast to the standard global
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pooling process, which merely condenses global spatial information into a channel vector,
our approach takes into account both the direction and type of pooling operation. This
allows the detection-specific feature map to establish interactions over long distances,
thereby assisting the detection head in recognizing and locating targets.
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Figure 3. The specific structure of the Global Coordinate-Aware Enhancement (GCAE) module.
Wz is a learnable matrix. “Col-maxpool”, “Col-avgpool”, “Row-maxpool” and “Row-avgpool”
represent global max pooling at the column direction, global average pooling at the column direction,
global max pooling at the row direction and global average pooling at the row direction. “⊗” means
element-wise multiplication and “⊕” means element-wise summation.

3.3. Embedding Feature Aggregation

In this section, we introduce a novel EFA module, specifically designed to enhance
high-level features for the ReID branch. This module is aimed at creating the more dis-
tinctive task-related feature map, and it serves as a crucial component of the asymmetric
feature enhancement network.

As depicted in Figure 4, the EFA module takes three inputs, namely detection heatmap
HMs ∈ RK×H×W , pseudo-Gaussian heatmap HMg ∈ RK×H×W and shared feature map
Fs ∈ RC×H×W . Then, generating the ReID-specific feature map Fr ∈ RC×H×W . Generally,
HMs is generated by the detection head and contains the predicted center position of
the object. The target category is represented by a specified feature layer of HMs, with
the number of channels K indicating the number of categories. As shown in the first
stage of Figure 4, the non-maximum suppression (NMS) algorithm is utilized to eliminate
redundant or overlapping targets over the detection heatmap. It is implemented via a
standard 3 × 3 max pooling layer for improved efficiency [24].

Following the NMS operation, which extracts the peak keypoints from each layer of
the detection heatmap, we manually proceed to generate the pseudo-Gaussian heatmap
HMg according to the bounding box annotation. The HMg is produced as follows

HMg
i = exp(−

(x− cx)2 + (y− cy)2

2(σp)2 ) i = {1, 2, 3..., K} (10)

where (x, y) represents the pixel coordinates on the HMg and (cx, cy) denotes the center
point of the bounding box annotation. σp is the standard deviation value that determines
the Gaussian radius. The feature map layers in HMg correspond to those in HMs and each
layer represents an object category.
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Figure 4. The specific structure of the Embedding Feature Aggregation (EFA) module. The EFA
module combines the detection heatmap HMs and pseudo-Gaussian heatmap HMg to produce
aggregated feature map M, which is subsequently employed as an attention weight to generate the
ReID-specified feature map Fr. Note that the Stage 2 is only used for training phase.

As shown in the second stage of Figure 4, we utilize the pseudo-Gaussian heatmap
to limit the feature representation areas for each layer of the detection heatmap. This way
can effectively highlight the region of interest and mitigate background interference. We
perform element-wise multiplication and summation along the channel dimension to create
a unified aggregated feature map, denoted as M, yielding

M =
K

∑
i=1

NMS(HMs
i )×HMg

i (11)

We focus on the importance of fine-grained semantic information within M, employing
it as prior knowledge to guide the enhancement of feature representation in the ReID
branch. The incorporation of pixel-level priors enables the ReID phase to concentrate on
potential target areas during the training stage, thus enhancing the discriminative power
and robustness of the extracted identity embeddings during the inference stage. Therefore,
in the third stage, as depicted in Figure 4, by utilizing M as an attentional weight, the
output of our ReID-specific feature map Fr can be expressed as

Fr
c(i, j) = M(i, j)× Fs

c(i, j) + Fs
c(i, j) (12)

All in all, we propose the integration of the EFA module during the ReID phase to
enhance the reliability of the target identity. In contrast to adaptive optimization methods
reliant on deep convolutional networks, we employ a task-guided learning strategy to
facilitate pixel-level learning at the ReID branch. During the training phase, both the
pseudo-Gaussian and detection heatmaps are simultaneously used as attentional weights
in the third stage to update the embedding feature. However, during the inference phase,
the pseudo-Gaussian heatmap is not available. This encoding process allows the EFA
module to strike a balance between network generalization and its superior performance.

3.4. Online Matching Strategy

In this section, we provide a comprehensive explanation of our matching strategy
to associate detected objects across consecutive frames. Our approach is based on the
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cascade matching strategy introduced in MOTDT [43] and incorporates method from
ByteTrack [37] to maximize the use of low-scoring detection results. The pseudocode of the
online matching strategy is shown in Algorithm 1.

The association process requires processing a multi-frame video sequence V, where
each frame contains the detection results DetN and their corresponding identity embed-
dings IDN , with N representing the number of detected targets. Additionally, we define
two detection thresholds, dhigh and dlow, to categorize DetN . The result of the association
process is the set of tracks T.

For each frame, we employ the Kalman filter to predict the positional status of the
tracks in the current frame (lines 3 to 4). We initialize both the low-scoring detection
results Detlow and the high-scoring detection results Dethigh along with their corresponding
identity information IDhigh, and subsequently categorize the detection results based on the
detection threshold (lines 5 to 11).

During the cascade matching stage (lines 12 to 26), we initially utilize appearance-
based information to establish associations between T and Dethigh. This entails computing
the Mahalanobis distance, denoted as Dm, between the predicted tracks T and the high-
scoring detected bounding boxes Dethigh. Then, we combine the Mahalanobis distance
with the cosine distance computed from the identity embedding IDhigh, generating the
composite distance metric D, which can be expressed as

D = λDr + (1− λ)Dm (13)

where λ serves as a weighting parameter and is set to 0.98 in our experiment following the
default setting. The Hungarian algorithm with a matching threshold τ is used to determine
the matching targets. If D exceeds τ, the ith detection is deemed successfully associated
with the corresponding tracks. Otherwise, we keep the unmatched tracks T′remain and
detections Det′remain.

Secondly, for the remaining tracks T′remain and detections Det′remain, we associate them
using Intersection over Union (IOU) distance based on motion information. The second
remaining detections from Det′remain is put into Det′′remain and the second remaining tracks
from T′remain is put into T′′remain. Last but not least, we update the appearance features of
the identified targets in each frame to accommodate appearance variations, which can be
described as

IDt
track = εIDt−1

track + (1− ε)IDt
detection (14)

where, IDt
track denotes the identity embedding of matched targets in the current frame,

IDt−1
track denotes the identity embedding of tracks from the previous frame and IDt

detection
denotes the identity embedding of matched tracks in the current frame. Additionally, we
initialize new tracks for any detections that fail to correspond with previously identified
targets (lines 25–26).

For the low-scoring detection results Detlow, the IoU distance is used between Detlow
and T′′remain to preserve detections that may be subject to severe occlusion or motion
blur. These detections are considered background during the cascade matching stage
(lines 27–28).

Finally, we store the last remaining tracks Tlast
remain after the entire matching process for

30 frames in case they reappear again (lines 29–30).
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Algorithm 1: Pseudo-code of online matching strategy
Input:
• A Video sequence: V;
• Detection results: DetN and corresponding identity embedding: IDN ;
• Detection thresholds: dhigh, dlow;

Output:

• Tracks: T

1 Initialization: T← ∅;
2 for frame fk in V do

// Predict location of tracks at fk−1
3 for t in T do
4 t← Kalman filter(t) ;

// Classify the detection results
5 Dethigh ← ∅; Detlow ← ∅; IDhigh ← ∅ ;
6 for Deti in DetN do
7 if Deti.score > dhigh then
8 Dethigh ← Deti ;
9 IDhigh ← IDi ;

10 else if Deti.score > dlow then
11 Detlow ← Deti ;

// Cascade matching tracks and detection results

12 First associate T and Dethigh using appearance cues;
13 Dm ←Mahalanobis distance from T and Dethigh ;
14 Dr ← cosine distance from IDhigh ;
15 D ← λDr + (1− λ)Dm ;
16 for Deti in Dethigh do
17 if D > τ then
18 T← T∪Deti

19 else
20 Det′remain ← first remaining results from Dethigh;
21 T′remain ← first remaining tracks from T;

22 second associate T′remain and Det′remain using IoU distance;
23 Det′′remain ← second remaining results from Det′remain;
24 T′′remain ← second remaining tracks from T′remain;

25 initialize new tracks ;
26 T← T∪ {Det′′remain} ;

// preserve low-score results like BytetTrack

27 associate T′′remain and Detlow using IoU distance;
28 Tlast

remain ← last remaining tracks from T′′remain;

// delete unmatched tracks
29 T← T \ Tlast

remain;

30 Return: T
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4. Experiments

In this section, we provide an overview of the experiments. Sections 4.1 and 4.2
describe the implementation details, datasets and metrics. Section 4.3 compares the tracking
performance of AsyUAV with preceding benchmarks. Section 4.4 proves the effectiveness
of asymmetric feature enhancement network through ablation study. Section 4.5 and
Section 4.6 present analyses and visualizations of various scenarios using the VisDrone2019
and UAVDT datasets.

4.1. Implementation Datails

For training, we choose a variant of DLA-34 pre-trained on the COCO dataset [44]
as our backbone and then equipped with proposed modules. Following the common
setting [35], we adopt the random crop and multi-scaling strategy as data augmentation.
All experiments are conducted on a single GeForce RTX 3090 GPU with a batch size of 12.
The network is optimized using the Adam optimizer [45] and is trained for 30 epochs with
an initial learning rate of 7 × 10−5. The learning rate decays by a factor of 10 at the 10th
and 20th epochs. Since AsyUAV encompasses both detection and ReID tasks, we employ
an uncertainty loss [46] to cater to the requirements of multi-task learning. Specifically,
the target heatmap and bounding box size in the detection branch are supervised by focal
loss [47] and L1 loss, respectively. The ReID branch is treated as a classification task and is
trained using cross-entropy loss.

4.2. Datasets and Metrics

We use MOT datasets captured from a UAV perspective to evaluate the effectiveness of
our tracking framework. The primary datasets used are VisDrone2019 [48] and UAVDT [49],
both of which are shot in open environments, presenting challenges such as small targets
and perspective changes.

The VisDrone2019 dataset consists of 80 annotated video sequences, divided into a
training set (56 sequences), a validation set (7 sequences) and a test set (17 sequences).
There are 10 categories: pedestrian, person, car, van, bus, truck, motor, bicycle, awning-
tricycle, and tricycle. The category and number of objects in each video are randomly
distributed. The UAVDT dataset comprises mainly traffic vehicle video under an aerial
view. In the MOT task, the dataset is divided into a training set (30 sequences) and a test
set (20 sequences). It focuses on three categories: car, truck, and bus.

For a fair comparison, we use the official evaluation toolkits to assess the tracking
performance of our algorithm. In the experiment of VisDrone2019, we use all ten categories
provided for training and evaluate the tracking performance for five categories, specifically
car, bus, truck, pedestrian, and van. In the case of the UAVDT experiment, our analysis
is primarily focused on the car category. Furthermore, a series of ablation experiments
are performed on the VisDrone2019 validation set to verify the individual modules within
AsyUAV, and the FairMOT [23] is adopted as the baseline.

The CLEAR Metrics [50] are widely used to assess the quantitative performance of the
MOT algorithm. The common indicators we used are summarized in Table 1. Specifically,
we select the MOTA, which focuses on detection performance, and the IDF1, which focuses
on tracking performance, as our main evaluation criteria. The MOTA is calculated as:

MOTA = 1− FP + FN + IDS
GT

(15)

where FP is the number of false positives, FN is the number of false negatives, IDS is the
number of ID switches and GT denotes the number of ground-truth objects. The IDF1 is
calculated as:

IDF1 =
2IDFTP

2IDTP + IDFP + IDFN
(16)

where IDTP, IDFP and IDFN are the number of true positives, false positives and false
negatives that take into account identity information.
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Table 1. Summary of evaluation indicators, where ↑ or ↓ represent better performance for each metric.

Metric Better Perfect Description

MOTA ↑ 100% Multiple object tracking accuracy, see Equation (15).

IDF1 ↑ 100% ID F1 Score of the predicted identities, see
Equation (16).

MT ↑ 100% Mostly tracked targets, see [51] for details.
ML ↓ 0 Mostly lost targets, see [51] for details.
FP ↓ 0 The total number of false positives.
FN ↓ 0 The total number of false negatives
IDS ↓ 0 The number of Identity Switches
IDP ↑ 100% Ratio of IDTP/(IDTP + IDFP).
IDR ↑ 100% Ratio of IDTP/(IDTP + IDFN).

Precision ↑ 100% Ratio of TP/(TP + FP).
Recall ↑ 100% Ratio of TP/(TP + FN).
FPS ↑ - Processing speed on the benchmark.

4.3. Performance Comparison with Preceding Trackers

To provide a comprehensive comparison, we conducted experiments with AsyUAV
on the VisDrone2019 and UAVDT test sets, comparing it with other established algorithms.
The results are presented in Tables 2 and 3. For a clearer depiction of the results, we bold
the top performance for each indicator.

Table 2. Quantitative comparisons with preceding state-of-the-art methods on the VisDrone2019
test set.

Dataset Tracker MOTA IDF1 MT ML FP FN IDS FPS

VisDrone2019

GOG [52] 28.7 36.4 346 836 17,706 144657 1387 2.0
SORT [19] 14.0 38.0 506 545 80,845 112,954 3629 23.5
IOUT [53] 28.1 38.9 467 670 36,158 126,549 2393 27.3
MOTR [54] 22.8 41.4 272 825 28,407 147,937 959 -

TrackFormer [28] 25.0 30.5 385 770 25,856 141,526 4840 -
ByteTrak [37] 35.7 37.0 - - 21,434 124,042 2168 27.0

UAVMOT [35] 36.1 51.0 520 574 27,983 115,925 2775 12.0
AsyUAV(ours) 38.3 51.7 671 413 46,392 93,681 3954 27.5

Table 3. Quantitative comparisons with preceding state-of-the-art methods on the UAVDT test set.

Dataset Tracker MOTA IDF1 MT ML FP FN IDS FPS

UAVDT

GOG [52] 35.7 0.3 627 374 62,929 153,336 3104 2.0
SORT [19] 39.0 43.7 484 400 33,037 172,628 2350 23.5
IOUT [53] 36.6 23.7 534 357 42,245 163,881 9938 27.3

DSORT [21] 40.7 58.2 595 358 44,868 155,290 2061 -
SMOT [55] 33.9 45.0 524 367 57,112 166,528 1752 -

ByteTrack [37] 41.6 59.1 - - 28,819 189,197 296 27.0
UAVMOT [35] 46.4 67.3 624 221 66,352 115,940 456 12.0
AsyUAV(ours) 48.0 67.5 600 310 46,571 130,121 349 27.5

(1) Results on VisDrone2019.

As demonstrated in Table 2, the AsyUAV attains the highest performance on various
MOT metrics, with a score of 38.3% on MOTA and 51.7% on IDF1.

This highlights that our innovative asymmetric feature enhancement approach markedly
boosts both detection and association capabilities. Specifically, the UAVMOT employs an
embedding feature update module to enhance the target feature association, although it
achieves state-of-the-art performance, the inference speed is lower. In comparison, our
AsyUAV demonstrates competitive IDF1 metrics and twice the FPS of UAVMOT. ByteTrack
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is a two-stage tracker that relies on motion-based matching. Compared with ByteTrack,
our AsyUAV outperforms it with a 2.6% (35.7%→ 38.3%) increase in MOTA and a 14.7%
(37.0%→ 51.7%) increase in IDF1. Furthermore, AsyUAV demonstrates the stability and
continuity of tracks with the highest MT and the lowest ML values.

(2) Results on UAVDT.

To further evaluate the feasibility of our algorithm, we conducted experiments on the
UAVDT test set, and the results are presented in Table 3. The UAVDT dataset encompasses
various challenging scenarios, including fast-moving targets, complex backgrounds and
viewpoint changes, which impose significant demands on MOT algorithms. The exper-
iment demonstrates that our AsyUAV achieves impressive performance on the UAVDT
dataset, with MOTA and IDF1 scores of 48.0% and 67.5%. Notably, it surpasses previously
established state-of-the-art methods. For instance, AsyUAV significantly outperforms Byte-
Track, resulting in a substantial increase in MOTA from 41.6% to 48.0% and in IDF1 from
59.1% to 67.5%. While UAVMOT is a recently proposed one-shot tracker, our approach
surpasses it by 1.6% (46.4% → 48.0%) on MOTA and attains competitive IDF1 scores
(67.3% vs. 67.5%).

4.4. Ablation Study

To determine the viability of the AsyUAV framework, we executed ablation experi-
ments on two key modules, namely, the GCAE module and the EFA module. To elaborate,
the GCAE module is primarily designed to enhance detection performance whereas the
EFA module is geared towards boosting association performance.

(1) Effectiveness of GCAE module.

The GCAE module is responsible for refining the detection-specified feature map
generated from the shared feature map produced by the backbone. As observed in the
first and second rows of Table 4, when the baseline is equipped with the GCAE module,
there is a significant increase in MOTA, from 29.7% to 31.8%, and an IDF1 improvement of
0.8% (47.0%→ 47.8%). These enhancements demonstrate the effectiveness of our GCAE
module in improving detection performance and facilitating the matching process. This
module not only introduces coordinate-sensitive attention to the detection branch but also
makes full use of valuable information obtained through different pooling forms.

Table 4. Ablation study for the effectiveness of different proposed modules in AsyUAV. Where “X”
represents the baseline equipped with this module.

Baseline GCAE EFA MOTA IDF1 IDS

X 29.7 47.0 1148
X X 31.8 47.8 1149
X X 31.2 49.0 1114
X X X 32.1 49.6 1111

To be specific, we apply global average pooling (GAP) and global max pooling (GMP)
operations along both the row and column directions of the shared feature map. GAP is
employed to gather general information, while GMP concentrates on capturing prominent
features. As depicted in Table 5, it is evident that employing GMP and GAP individually
leads to excellent strong performance in the Recall and Precision indicators, respectively.
Due to their different concerns, we use a concatenation operation and learnable weight to
allow the module to select meaningful features adaptively. Different from directly using
the summation operation, the concatenation operation yields the best overall performance.

(2) Effectiveness of EFA module.

The EFA module effectively complements and extends the embedding capability of
the ReID branch. As shown in the first and third rows of Table 4, the proposed EFA
module enhances the tracking performance of the baseline, resulting in a 2.0% (47.0%→
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49.0%) increase in IDF1 and a 1.5% (29.7% → 31.2%) increase in MOTA. Furthermore,
the combined application of EFA and GCAD achieves even more outstanding tracking
performance. As shown in the fourth row of Table 4, the AsyUAV (baseline with GCAD
and EFA modules) has a MOTA of 32.1%, an IDF1 of 49.6%, and reduces the IDS from 1148
to 1111.

Table 5. Ablation study for the fusion method of pooling operation in GCAE module. Where “Max”
means the global max pooling and “Avg” means the global average pooling. “ +©” is the summation
operation and “ c©” is the concatenation operation.

Module Fusion Method MOTA Precision Recall IDF1↑

GCAE

Max 30.5 74.8 48.3 47.7
Avg 31.5 76.5 47.7 46.5

Max +©Avg 31.2 76.4 47.3 47.5
Max c©Avg 31.8 77.1 47.6 47.8

During the design of the EFA module, optional pseudo-Gaussian prior information is
considered during the training phase. To evaluate the feasibility of the Gaussian prior, we
conducted ablation experiments on the EFA module and the AsyUAV model. The results
are presented in Table 6. The EFA module with Gaussian prior improves the IDF1 by 1.3%
(47.8%→ 49.1%), the IDP by 1.0% (58.4%→ 59.4%) and the IDR by 1.3% (40.5%→ 41.8%).
Besides, the AsyUAV model with Gaussian prior sees an increase in IDF1 from 48.2% to
49.6%, IDP from 62.2% to 62.9% and IDR from 39.3% to 40.9%. Such results demonstrate
that the use of Gaussian prior is beneficial for enhancing the learning of the ReID branch
and positively impacts data association.

Table 6. Ablation study for the feasibility of the pseudo-gaussian prior information in the EFA
module. Where “X” indicates that the Gaussian prior is used.

Module Gaussion Prior IDF1 IDP IDR MOTA

EFA 47.8 58.4 40.5 30.5
X 49.1 59.4 41.8 30.7

AsyUAV 48.2 62.2 39.3 31.4
X 49.6 62.9 40.9 32.1

4.5. Case Analysis

(1) Analyse different cases of UAV movement.

To better illustrate the advantages of our tracker in UAV-captured videos, we compare
the visualization results of AsyUAV and the baseline under various UAV movements, as
shown in Figure 5. When the UAV is hovering in the sky, the size of the objective on
the ground will alter. As depicted in Figure 5a, the baseline performs inadequately in
such scenarios, leading to many missed detections. Conversely, AsyUAV displays notable
adaptability to changes in target size while accurately identifying and tracking targets.
Another scenario occurs when the UAV moves forward along the ground, as depicted
in Figure 5b. Compared with the baseline, which struggles to detect some small targets,
AsyUAV efficiently tracks them. Contrary to good visibility during daylight, tracking
at night presents a more challenging task. In Figure 5c, the baseline encounters identity
switches due to a sudden change in the UAV’s shooting angle, but AsyUAV successfully
tracks these vehicles. Moreover, when the UAV and the vehicle are in relatively fast motion,
the vehicle in the picture appears blurred. As shown in Figure 5d, the baseline has failure
cases where two ID numbers correspond to a single target. On the contrary, these targets
can be accurately detected and tracked in AsyUAV.
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Figure 5. Case analysis of different movements. We list four special cases, including (a): UAV hovers
up and down, (b): UAV moves forward, (c): UAV alters orientation and modifies viewpoint, and
(d): Relatively fast motion between UAV and ground vehicles.

(2) Discuss occlusion by traffic signals.

When the UAV hovers over the intersection, the primary challenge is the temporary
occlusion caused by the traffic signals that obstruct all passing vehicles. As shown in
Figure 6, both during the daylight and at night, due to the occlusion of traffic signals, the
baseline appears to ID switches and false negatives. This observation demonstrates that
the baseline is vulnerable to partial occlusion. However, benefiting from the synergy of the
GCAE and EFA modules, the AsyUAV can effectively achieve trajectory continuity. The
visualization results offer excellent detection performance and robust identity embedding
of our tracker in UAV videos.
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Figure 6. Visualization results of the impact of traffic signals. Different color bounding boxes
represent the identity number of different targets and the dashed lines indicate trajectory continuity.
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4.6. Visualization

To show the effectiveness of our method more intuitively, we present visual tracking
results of AsyUAV on the VisDrone2019 dataset (Figure 7) as well as the UAVDT (Figure 8)
dataset. The AsyUAV performs remarkably in dynamic UAV environments, accurately
tracking small and moving targets under varying lighting conditions. The obtained vi-
sualisation results exhibit that AsyUAV executes the MOT task proficiently, even when
encountering intricate and varied UAV videos.

Frame 1 Frame 50 Frame 100

Frame 1 Frame 100 Frame 200

Frame 1 Frame 100 Frame 150

Frame 1 Frame 100 Frame 200

Figure 7. Qualitative results of AsyUAV on part of VisDrone2019 dataset.

Frame 100 Frame 120 Frame 140

Frame 540 Frame 590 Frame 640

Frame 100 Frame 120 Frame 140

Frame 200 Frame 230 Frame 260

Figure 8. Qualitative results of AsyUAV on part of UAVDT dataset.

5. Conclusions

In this paper, we introduce AsyUAV, a novel one-shot tracker with an asymmetric
feature enhancement network for the multiple object tracking task in unmanned aerial
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vehicle view. We incorporate global coordinate-aware enhancement (GCAE) and embed-
ding feature aggregation (EFA) modules to purposefully reduce competition and promote
collaboration between the detection and ReID branches. Additionally, GCAE is dedicated
to enhancing detection performance, while EFA is specifically designed to improve associa-
tion performance. Due to the combination of two components, AsyUAV excels in detecting
targets and preserving the continuity of their trajectories, even in challenging scenarios
like target occlusion and size changes induced by the unpredictable movement of UAV
platform. In comparison with other trackers on the public MOT benchmarks based on the
UAV video, our model surpasses them and attains the best performance in both the MOTA
and IDF1 metrics. In the future, we intend to delve into leveraging temporal information in
videos to enhance discriminative representation learning.
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