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Abstract: Knowledge of the soil water content (SWC) is important for many aspects of agriculture and
must be monitored to maximize crop yield, efficiently use limited supplies of irrigation water, and
ensure optimal nutrient management with minimal environmental impact. Single-location sensors are
often used to monitor SWC, but a limited number of point measurements is insufficient to measure
SWC across most fields since SWC is typically very heterogeneous. To overcome this difficulty,
several researchers have used data acquired from unmanned aerial vehicles (UAVs) to predict the
SWC by using machine learning on a limited number of point measurements acquired across a field.
While useful, these methods are limited by the relatively small number of SWC measurements that
can be acquired with conventional measurement techniques. This study uses UAV-based data and
thousands of SWC measurements acquired using geophysical methods at two different depths and
before and after precipitation to predict the SWC using the random forest method across a vineyard
in the central United States. Both multispectral data (five reflectance bands and eleven vegetation
indices calculated from these bands) and thermal UAV-based data were acquired, and the importance
of different reflectance data and vegetation indices in the prediction of SWC was analyzed. Results
showed that when both thermal and multispectral data were used to estimate SWC, the thermal
data contributed the most to prediction accuracy, although multispectral data were also important.
Reflectance data contributed as much or more to prediction accuracy than most vegetation indices.
SWC measurements that had a larger sample size and greater penetration depth (~30 cm sampling
depth) were more accurately predicted than smaller and shallower SWC estimates (~18 cm sampling
depth). The timing of SWC estimation was also important; higher accuracy predictions were achieved
in wetter soils than in drier soils, and a light precipitation event also improved prediction accuracy.

Keywords: UAV; multispectral; thermal; soil water content; GPR; machine learning; random forest

1. Introduction

Soil moisture is a key parameter for agricultural water management and for research
activities in fields ranging from climate prediction to flood risk assessment. In agriculture,
knowledge of soil moisture is needed to determine the optimal timing and rate of irrigation
to maximize crop production, as well as to optimize soil–fertilizer interactions. Optimal
water management also helps to conserve limited water resources and increase the prof-
itability of the crop, and it can be useful in avoiding soil salinization. Regulators can also
use measurements of soil water content (SWC) to help validate pumping records, which
can make water users more accountable and can contribute to a better balance between the
water needs of agriculture and the environment.

Soil water content has conventionally been measured using sensors buried in the soil,
such as time–domain reflectometry, tensiometers, and capacitance sensors [1–4]. Although
these methods can provide accurate SWC measurements, they are point measurements
and cannot capture the heterogeneity of SWC at the field scale. Satellite remote sensing
techniques can also be used to estimate surface SWC [5,6]. Satellite-based techniques have
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the advantages of covering entire fields, high temporal resolution, accurate positioning,
and low costs to individual users of the data. Sentinel-2 provides free data and has a
spatial resolution of 10–20 m and a 5-day revisit frequency, and it is one of the satellites
commonly used in agriculture today [7–10]. However, the acquisition and availability of
satellite imagery depends on weather conditions, and the timing of the satellite imagery
cannot be tailored to the specific needs of each researcher or farmer. Perhaps the largest
disadvantage of satellite-based techniques is their coarse spatial resolution; even with
the highest resolution data currently available, the pixels are too large to be useful for
most precision agriculture applications [11–16]. Another significant disadvantage is the
depth penetration of satellite data; for most satellites, the signal typically penetrates only
the first few cm into the soil. This limitation is overcome by data from the NASA Soil
Moisture Active Passive (SMAP) mission Level-4, which can penetrate down to 100 cm,
but the coarse resolution (9 km) of these data [17,18] makes them less suitable for precision
agriculture. Thus, satellite-based measurements are often insufficient for agricultural
irrigation management [19–21].

Geophysical methods, such as ground penetrating radar (GPR) or electromagnetic
methods, overcome some of the limitations of both point measurements and satellite data.
Geophysical data can be collected with high resolution, and the sampling depth of most
geophysical instruments is greater than that of satellite data, so the SWC in the root zone
can be determined [22–28]. Geophysical data can also be acquired whenever the farmer or
researcher desires, and it is not affected by cloud cover. Also, geophysical measurements
do not disturb the soil, so they are more representative of truly in situ conditions than some
types of point measurements. However, geophysical methods do have disadvantages, the
most significant of which may be the cost of geophysical instruments and the expertise
needed in processing some types of geophysical data, such as GPR measurements. Also,
geophysical methods acquire data along selected traverses, so even though the resolution
of individual measurements is much higher than for satellite data, the entire field is not
covered. Finally, most geophysical instruments must be close to the ground to measure
the SWC, and data cannot be collected over the top of more rigid vegetation, such as fully
grown corn stalks. Thus, measurements must be collected parallel to crop rows for some
types of vegetation, which may not be the desired traverse orientation.

In recent years, precision farming has begun to extensively utilize unmanned aerial
vehicle (UAV) technology to provide information on crop health and make predictions
about crop yield [29–32]. Unlike geophysical data, UAV-based data is acquired over the
entire field. UAV instruments and sensors are less expensive than geophysical instruments,
and data processing is usually simpler. Some advantages of UAV methods over satellite
data are that UAV data are much higher resolution than satellite-based methods, they are
collected below the level of most clouds, so are not obscured on cloudy days, and farmers
can acquire data at the times they deem optimal, if weather conditions permit [11–16].
UAV data can also be acquired quickly over large areas, so they can be used for near
real-time monitoring.

Although UAV-acquired data have several advantages over both geophysical and
satellite-based methods, the main disadvantage of SWC monitoring is that UAV techniques
cannot directly measure SWC. Instead, most UAV data are used to assess crop health. UAV
techniques have been used to monitor crop status [33–37], map plant water stress and crop
vitality [38–43], and predict yields in corn [44,45], rice [46,47], soybeans [31,48,49], and
wheat [32,50–52], as well as other crops. Crop health is often characterized by vegetation
indices, which are algebraic combinations of reflectance data (most often the red, green,
blue, red-edge, and near-infrared bands) acquired from a multispectral sensor.

Although UAV-based sensors do not directly measure soil properties, some researchers
have correlated point-based measurements of soil properties with UAV data. Several
researchers have correlated SWC measurements acquired with time–domain reflectometry
(TDR) with UAV imagery. Ref. [53] used multispectral and thermal UAV data to help
estimate SWC. In this study, researchers installed TDR probes at 10 locations across a
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field at depths of 15 cm, 45 cm, and 76 cm. By taking measurements at different times,
125 SWC measurements were acquired, and three machine learning models (artificial neural
networks, support vector machines, and genetic programming) were used to correlate the
SWC to the multispectral and thermal data. Ref. [54] used TDR probes to measure the
SWC in 25 plots planted with maize. In each plot, four TDR measurements were acquired
at a depth of 10 cm, and four measurements were acquired at a depth of 20 cm, for a
total of 200 TDR measurements. They also collected multispectral data (red, green, blue,
NIR, thermal, and virtual red-edge bands) using a UAV, and they used four machine
learning methods (partial least squares regression, K nearest neighbor, random forest
regression, and backpropagation neural network) to correlate reflectance data to the SWC
measurements. Ref. [55] arranged twenty soil moisture sensors in an experimental tea field
and collected soil moisture data every hour during six UAV flights where they collected
thermal images. The researchers then correlated the SWC and the thermal data using a
Radial Basis Function Neural Network model and a Principal Component Analysis (PCA)-
RBF model. In a slightly different application, Ref. [56] measured the electrical conductivity
of saturated soil at 0–10, 10–20, and 20–30 cm soil depths before and after adding a saline
solution in two experimental plots of quinoa. They then used multiple linear regression to
evaluate whether UAV-acquired hyperspectral, thermal, and Lidar data could detect the
effects of salt-treated water on plants.

Several other studies have correlated UAV-based data with gravimetric SWC mea-
surements acquired by collecting soil samples. Ref. [57] used random forest and extreme
learning methods to correlate 70 gravimetric SWC samples from a field of winter wheat at a
depth of 0–10 cm to UAV hyperspectral data. In [58], 84 and 44 soil samples were acquired
at two different times and were used to measure the gravimetric water content in a dryland
field over a depth of 0–15 cm during two UAV flights. In this study, the texture temperature
vegetation dryness index (TTVDI) was calculated using UAV-derived normalized vegeta-
tion index (NDVI), surface temperature from multispectral and thermal imagery, and soil
texture. Their results show that the TTVDI has the potential to estimate the surface SWC
from soil texture data and UAV imagery. In [59], UAV data were acquired over fields of
alfalfa and oats, while 184 soil moisture samples and 14 soil texture measurements were
collected. An artificial neural network model was used to predict the gravimetric SWC
from the UAV-based data.

The research presented here differs from most studies relating to SWC and UAV-based
data because geophysical methods are used to measure the SWC at thousands of locations
within a field. The geophysical technique used is ground penetrating radar (GPR), which
can acquire high-resolution data along traverses. Using GPR-derived estimates of SWC
provides an extensive data set which allows for more effective use of machine learning
algorithms, since sufficient data are available for both training and testing. This research is
also novel because a larger number of variables are considered than is typical; correlations
were developed using both multispectral and thermal data acquired using a UAV, SWC
measurements were acquired at two depth intervals, and UAV data were acquired before
and after precipitation. The research questions covered by this study are:

• How effectively can SWC be estimated using multispectral and thermal data acquired
from a UAV when many SWC estimates are available for training?

• Which types of UAV-based data are most useful for estimating SWC?
• How does SWC sampling depth affect estimation from UAV-acquired data?
• Does the timing of data acquisition relative to precipitation affect the accuracy of SWC

prediction?
• Are shallow SWC estimates more accurate when correlated with the UAV response

from larger vegetation (grapevines) or shorter vegetation (mown grass)?
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2. Materials and Methods
2.1. Study Area Description

The study site was a portion of a vineyard near St. James, Missouri, USA (Figure 1).
The study area covers 2 hectares, has little topographic variation, and is planted with
Concord and Cayuga grapes. The soil composition at the site is Glenstead, Rosati, and
Harville silt loams with low sand content.
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2.2. UAV Data Acquisition and Processing
2.2.1. Multispectral Data Acquisition and Processing

Multispectral (blue, green, red, red-edge, and NIR reflectance bands) and thermal
data were acquired using a UAV over the research area on 19 June 2020 (Figure 2). Five
ground control points (GCPs) were used for geo-referencing and position correction for
both multispectral and thermal UAV data sets. The ground control points were set at each
of the four corners and in the middle of the field (Figure 3a). Standard black and white
ground control points were used for the multispectral data, while ground control points
covered in aluminum foil were used for thermal data. To ensure the accurate creation
of orthomosaic maps, the thermal ground control points were constructed with different
shapes to uniquely identify each point.

UAV multispectral data acquisition was performed using a DJI Inspire 1 V2.0 UAV
and Sentera Double 4K Lock & Go Sensor. The five bands of this sensor are blue, green,
red, red-edge, and near-infrared. The flying height was 60 m with an image overlap ratio
of 80%, achieving the ground sampling distance (GSD) of 1.72 cm/pixel.

UAV image processing was performed using the structure of the motion photogram-
metric method in Agisoft Metashape software (version 1.8.4) developed by Agisoft LLC
(St. Petersburg, Russia). In this method, images were aligned and geo-calibrated to create
orthomosaic maps. For the multispectral data, the orthomosaic maps were used to output
data for the five reflectance bands referenced above, and these data were then used to
calculate eleven commonly used vegetation indices (VIs). The equations used to calculate
each VI are given in Table 1. The one exception is the modified Normalized Difference
Water Index (NDWI), which conventionally uses infrared data (from a thermal camera), and
calculates the mean of the relevant bands, as shown in Table 1. For this project, the infrared
reflectance was replaced with NIR in the NDWI calculation. This was undertaken to better
evaluate SWC prediction using VI calculated only from data acquired with a multispectral
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camera; the impact of thermal data on SWC estimation accuracy was also considered but
was determined separately from the VI calculated using standard multispectral data. Since
the original equation of the NDWI requires data from both multispectral and thermal
cameras, this index blurs the distinction between cameras. The modified NDWI equation
used in this research uses data from only the multispectral camera.

Table 1. Reflectance values from the multispectral and thermal sensors were used to calculate
vegetation and thermal indices.

Index Equation Reference

Multispectral

Chlorophyll Index Green (CIG) CIG = (NIR/Green) − 1 [60]
Chlorophyll Index Red-Edge (CIRE) ClRE = (NIR/RedEdge) − 1 [61]
Green Leaf Index (GLI) GLI= (2Green − Red − Blue)/(2Green + Red + Blue) [62]
Green Normalized Difference Vegetation
Index (GNDVI) GNDVI = (NIR − Green)/(NIR + Green) [63]

Green–Red Vegetation Index (GRVI) GRVI = NGRDI = (Green − Red)/(Green + Red) [64]
Modified Green–Red Vegetation Index
(MGRVI) MGRVI = (Green2 − Red2)/(Green2 + Red2) [65]

Modified Normalized Difference Water
Index (NDWI)

NDWI = [(Blue + Green)/2 − (Infrared +
Red)/2]/[(Blue + Green)/2 + (Infrared + Red)/2] [66]

Normalized Difference Red-Edge Index
(NDRE) NDRE = (NIR − RedEdge) /(NIR + RedEdge) [67]

Normalized Difference Vegetation Index
(NDVI) NDVI = (NIR − Red)/(NIR + Red) [68]

Red–Green–Blue Vegetation Index (RGBVI) RGBVI = (Green2 − Blue × Red)/(Green2 + Blue × Red) [65]
Visible Atmospherically Resistant Index
(VARI) VARI = (Green − Red)/(Green + Red − Blue) [69]

Thermal Normalized Relative Canopy Temperature
Index (NRCT)

NRCT = (Ti − Tmin)/(Tmax − Tmin)
Ti represents the pixel temperature, Tmin and Tmax are
the lowest and highest temperatures obtained from
the thermal data, respectively.

[70]

2.2.2. Thermal Data Acquisition and Processing

Multispectral data were acquired first, then thermal data collection started but was
interrupted approximately halfway through the flight by a light precipitation event (rain
which totaled 0.2 mm of accumulation). Thermal data acquisition was paused for ap-
proximately one hour until all precipitation had ceased, then was resumed. Although no
precipitation was forecast and was not desired on this day, this event provided a unique
opportunity to compare the results before and after a light precipitation event, as will
be discussed in Section 3.1. It was not possible to acquire a complete set of thermal data
across the field both before and after precipitation, but this study compares the thermal
data acquired in different portions of the field before and after precipitation. Fortunately,
multispectral data could be acquired over the entire field before and after precipitation,
so these data were collected. Multispectral and thermal data were collected in east–west
trending traverses, starting from the southern end of the site, and concluding in the north
(Figure 2).
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Thermal imagery was acquired using a Zenmuse XT thermal camera. The spectral
band of the thermal camera is long-wavelength infrared. The flying height of the thermal
image is 60 m, and the image overlap of the front and side is 85%, which provided a GSD
of 5.37 cm/pixel.

For the thermal imagery, the values in the thermal orthomosaic were converted to
temperature values (degrees Celsius) using the Agisoft Raster Calculator. In addition to the
temperature data, the Normalized Relative Canopy Temperature (NRCT) index was also
calculated, as described in Table 1.

2.3. GPR Data Acquisition

GPR data were acquired using a bistatic PulseEkko system with 250 MHz and 500
MHz antennas. These frequencies were chosen because the sampling depth was greater
than that of higher frequencies, while the antennas were easier to pull along the traverses
than lower frequency antennas, which require the transmitting and receiving antennas to be
moved separately. The GPR wavelet used to estimate the SWC was the groundwave, which
is the energy that travels directly between the transmitting and receiving antennas. GPR
groundwave energy has been successfully used to map SWC by many researchers [71–80]
and is an established near-surface technique. To collect the groundwave data used in
this study, five variable-offset surveys were first acquired in different locations around
the field to establish an optimal antenna separation. The optimal antenna separation was
established by choosing a separation where the groundwave was not superimposed with
the airwave but still had sufficient amplitude to be easily identified during data analysis.
Then, common-offset data were collected at this antenna separation at 10 cm intervals along
the traverses shown in Figure 3a. Data were acquired continuously along the traverses, but
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some data had to be omitted due to interference between the groundwave and shallow
reflections, so the traverses shown in Figure 3a show some areas of missing data. Similar to
the thermal data, GPR data acquisition was paused during the light precipitation event.
GPR data acquisition began on the eastern side of the field and progressed to the west, so
the data acquired on the eastern portion of the field were obtained before precipitation.
Data on the western side of the site were acquired after precipitation, as shown in Figure 3b.
GPR data were acquired in the grassy area between grapevines but were closer to the
grapevines than the center of the row (Figure 3c). Data were acquired at this location to
avoid ruts due to machinery in the center of the row.

For each common-offset GPR measurement, the airwave and groundwave arrival
times were identified, and the travel time of the groundwave was used to estimate the
apparent dielectric permittivity (Ka) using the method described in [73]. The SWC was
estimated from the apparent dielectric permittivity using Topp’s equation:

SWC = 4.3 ∗ 10−6K3
a − 5.5 ∗ 10−4K2

a + 2.92 ∗ 10−2Ka − 5.3 ∗ 10−2 (1)

which is an empirical model that was developed using a range of soils, is independent of
soil texture, density, and temperature, and has an error estimate of 0.013 [81]. Due to its
accuracy and ease of use, Topp’s equation is often used in studies of agricultural SWC.
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Figure 3. (a) Multispectral map (before rain) with GPR traverses, which are shown as yellow lines.
The red boxes mark the position of the ground control points. (b) GPR traverses acquired before
the rain are shown as white lines, and the traverses acquired after the rain are shown as black lines.
(c) GPR data (as shown by the yellow line) were collected in the grassy area between vines but were
not in the center of the row.

The penetration depth of the GPR groundwave is a function of frequency [71], and
the penetration depth of the 500 MHz and 250 MHz antennas are ~18 cm and ~30 cm,
respectively [23]. Thus, the SWC measurements acquired with these two frequencies
provide information about two depth intervals within the root zone.

2.4. Using Machine Learning to Correlate UAV-Based Data with SWC

Before the different data sets acquired in this research could be correlated, it was
necessary to upscale the higher resolution UAV-based data to the same scale as the ground-
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based measurements. First, the multispectral and thermal data were upscaled to have the
same pixel size of 15 cm by 12 cm, which allowed a better comparison of these data sets
and reduced the computational requirements for further upscaling to the GPR footprint.
For the 250 MHz GPR data, which has larger antennas and a greater antenna separation,
the length of each measurement was 136 cm (the length of two antennas plus the distance
between them) and the width was 38 cm (the width of the antenna). For the 500 MHz GPR
data, the length and width were 84 cm and 23 cm, respectively. To correlate these data with
the UAV-based measurements, each multispectral and thermal pixel whose centroid fell
within the footprint of a GPR measurement was found. Upscaling was performed using
SQL, where all multispectral and thermal data points whose pixel centroid location fell
with a rectangle defined by the GPR centroid ±0.5 × GPR antenna width and ±0.5 × GPR
antenna length were arithmetically averaged for comparison with that GPR measurement.

The machine learning method chosen to predict the SWC using UAV-based measure-
ments was the random forest method. The random forest algorithm can efficiently handle
large data sets and has provided more accurate predictions than some other machine
learning algorithms [82–84]. Furthermore, random forest models are more stable with
less training time than other methods, and they are typically easier to interpret [85]. The
random forest method has been used in several studies that correlate remote sensing data
with soil properties. In [54], random forest regression provided a more accurate prediction
of SWC from UAV-based data than partial least squares regression, K nearest neighbor,
and backpropagation neural networks. Ref. [86] found that the random forest algorithm
performed better than the elastic net, general linear, or robust linear models for predicting
SWC using UAV-acquired data. Ref. [87] used the random forest algorithm for predicting
soil moisture in a peat bog. Ref. [88] used the random forest model with UAV-based data
to predict SMC and soil electrical conductivity. Refs. [89,90] used random forest methods
to estimate soil salinity using UAV hyperspectral imagery. Ref. [91] used a random forest
algorithm with satellite data to predict soil pH, soil organic matter, and clay content. The
random forest method was chosen for this study since this data set had a large number of
measurements, preliminary analysis showed that non-linear correlations would likely be
necessary, and understanding the relationships between input and output variables was
desired. Other ML methods were not applied, so it should be noted that one of these other
methods might yield better results for this experiment, but only one method was used here
for the sake of brevity.

In this research, the random forest method was used to predict SWC, where multi-
spectral reflectance data, vegetation indices, thermal data, and thermal indices were used
as inputs to the model. First, all variables were normalized to a range from 0 to 1. Then,
the data were randomly divided into five quintiles. Five quintiles were used to reduce
the effects of outliers in any one quintile. For each quintile, 80% of the data were used for
training, and the remaining 20% were used for testing. This division of data for training
and testing was based on previous studies that suggested that this was the optimal division
for allowing sufficient training to occur without overfitting the data [92]. The mean squared
error (MSE), root mean square error (RMSE), and Pearson correlation coefficient (R2) were
calculated for the 20% of data used for testing for each quintile. The arithmetic average
of these values for all five quintiles was calculated and used as the representative value.
The MSE is a common metric for calculating error; since it is a squared value, positive
and negative values are weighted equally and do not cancel each other out. The RMSE is
similar, but since it has the same units as the input variable, it is more intuitive to evaluate.
The Pearson correlation coefficient was used since it is unitless and therefore provides an
evaluation of correlation that is easy to understand without any reference to units.

To explore the efficacy of different data types, SWC prediction was first conducted
using only multispectral data: blue, green, red, red-edge, and NIR, and the vegetation
indices listed in Table 1. The thermal data were then added as inputs, and the random forest
algorithm was repeated to see what additional benefit could be derived from the thermal
data. Finally, machine learning was repeated a third time, this time using multispectral, VI,
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and the NRCT thermal index as inputs. The multispectral data were investigated first since
these data are the least expensive and the most commonly acquired. The final analysis,
using multispectral, VI, and NRCT data, was performed to determine if the thermal index
would provide better predictions of the SWC than using simple temperature values.

As described in Section 2.2, the multispectral data were collected separately before and
after the precipitation event. A comparison of the multispectral data acquired before and
after precipitation showed little change in either the statistical or spatial distributions of
reflectance values, which indicates that data repeatability was high. Although not intended,
the precipitation event provided an opportunity to compare multispectral data sets, and
the similarity of data acquired before and after precipitation served as a useful check of
data quality. Thermal data were collected only once across the field, and the thermal data
collection was interrupted by light precipitation. Although the precipitation was minimal,
the temperature difference before and after precipitation was significant enough (Figure 2c)
that the temperature data sets before and after precipitation had to be considered separately
for prediction purposes. To perform machine learning, two sets of UAV-based files were
therefore used. The multispectral data and thermal data acquired before precipitation were
used for the southern half of the site, while the data sets acquired after precipitation were
used for the northern half. Separate prediction results are provided for each half of the field.

While the UAV data were acquired starting on the southern side of the field and
moving north, the GPR data were acquired starting from the eastern side of the field
and working westward. Therefore, the portion of the field that had both GPR and UAV-
based data acquired before precipitation was the southeast quadrant. The portion of
the field that had all data acquired after precipitation was the northwest quadrant. To
be consistent with all data sets, predictions were conducted separately for the southeast
and northwest portions of the field. In addition to these quadrants, predictions were
also completed for the entire southern half of the field (multispectral and thermal data
acquired before precipitation, part of the GPR data acquired before precipitation, and partly
acquired after precipitation) and for the entire northern half of the field (multispectral and
thermal data acquired after precipitation, part of the GPR data acquired before precipitation,
and partly acquired after precipitation). The different portions of the field that were
analyzed separately are shown in Figure 4. Although the authors recognize that less
accurate predictions should be expected when some of the SWC data were acquired
before precipitation and some were acquired afterward, these predictions were attempted
because the change in the average SWC (as estimated by the difference in the average
SWC in the northwest and southeast portions of the field) was fairly small (∆SWC = 0.024)
compared to the variability of the SWC across the field. Additionally, comparing predictions
for the southeast quadrant with predictions made from the entire southern half of the
field, or comparing predictions from the northwest quadrant with predictions from the
entire northern half of the field, provides information on how this method may work
when the SWC measurements are less accurate, as is often the case with other types of
SWC measurements.

In addition to considering SWC prediction based on the timing of precipitation, the re-
lationship between taller and shorter vegetation and SWC prediction was also investigated.
To do this, random forest regression was first conducted using reflectance data and SWC
values that were acquired at the same locations. These models represent the short vegeta-
tion. Next, the reflectance data acquired over the grapevines directly adjacent to the SWC
measurements were used for SWC prediction. These models represent taller vegetation,
and the SWC measurements were acquired under or near the edge of the grapevine canopy.
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Figure 4. Data were analyzed separately for four areas: the southeast quadrant, the northwest
quadrant, the southern half, and the northern half. Red lines are used to distinguish each quadrant,
while a blue line separates the northern and southern halves.

3. Results
3.1. Soil Water Content

The SWC across the vineyard varied for both the 500 MHz and 250 MHz data. Table 2
shows the summary statistics for SWC estimates obtained from both GPR frequencies for
data acquired before and after precipitation. As expected, the SWC was slightly lower
before precipitation (SE quadrant) and slightly higher after precipitation (NW quadrant)
for both sampling depths, while the data sets that were collected partially before and
partially after precipitation (southern and northern halves) showed intermediate SWC.
The shallower soil (measured by the 500 MHz data) was slightly wetter than the deeper
soil for all data sets. A greater SWC difference was observed in the shallower 500 MHz
data before and after precipitation, which indicates that the small amount of precipitation
received did not penetrate very far into the subsurface or influence a deeper soil volume.
SWC variability was somewhat higher for the shallower measurements in the drier soil,
while the deeper/larger volume measurements showed approximately the same variability
for all data sets. Figures 5a and 6a show the SWC distribution across the study area for
both frequencies.

Table 2. Summary statistics for SWC estimates.

SWC from 500 MHz GPR (Sampling Depth ~ 18 cm)

Southeast Quadrant Southern Half Northwest Quadrant Northern Half

Mean SD Count Mean SD Count Mean SD Count Mean SD Count
0.174 0.053 6217 0.191 0.052 10,541 0.218 0.040 2491 0.180 0.049 7283

SWC from 250 MHz GPR (Sampling Depth ~ 30 cm)

Southeast Quadrant Southern Half Northwest Quadrant Northern Half

Mean SD Count Mean SD Count Mean SD Count Mean SD Count
0.164 0.042 6265 0.168 0.044 10,724 0.188 0.042 2571 0.159 0.046 6590
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Figure 5. SWC calculated from 500 MHz GPR data. The numbers on the axes are the UTM coordinate
system. (a) SWC directly from the GPR measurements. (b) SWC predictions based only on multi-
spectral data. (c) SWC predictions based on multispectral data and temperature from thermal data.
(d) SWC predictions based on multispectral data and the NRCT thermal index.
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Figure 6. SWC calculated from 250 MHz GPR data. The numbers on the axes are the UTM coordinate
system. (a) SWC directly from the GPR measurements. (b) SWC predictions based only on multi-
spectral data. (c) SWC predictions based on multispectral data and temperature from thermal data.
(d) SWC predictions based on multispectral data and the NRCT thermal index.

3.2. SWC Prediction Using Random Forest Method

Table 3 shows the correlation coefficient (R2) and RMSE for predictions of SWC for
the 20% of data used for testing using different input parameters, sampling depths, and
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timing of precipitation. The prediction results for each of these scenarios are discussed
below and are shown in Figures 5 and 6 for the 500 MHz and 250 MHz results, respectively.
The same SWC prediction scale is used for all sub-figures, although the scales between
Figures 5 and 6 are slightly different.

Table 3. SWC prediction at two sampling depths.

Prediction of SWC from 500 MHz GPR (Sampling Depth ≈ 0.18 m)

Southeast Quadrant Southern Half Northwest Quadrant Northern Half

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Multispectral 0.404 0.135 0.424 0.145 0.555 0.146 0.449 0.134

Multispectral + Thermal 0.557 0.117 0.555 0.128 0.727 0.114 0.574 0.118

Multispectral + Thermal
index NRCT 0.548 0.118 0.565 0.127 0.727 0.114 0.584 0.116

Prediction of SWC from 250 MHz GPR (Sampling Depth ≈ 0.30 m)

Southeast Quadrant Southern Half Northwest Quadrant Northern Half

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Multispectral 0.628 0.100 0.582 0.109 0.799 0.084 0.759 0.078

Multispectral + Thermal 0.743 0.084 0.704 0.092 0.879 0.066 0.830 0.066

Multispectral + Thermal
index NRCT 0.735 0.084 0.696 0.093 0.882 0.065 0.831 0.066

3.2.1. Input Parameters

As described in Section 2.4, the random forest models were conducted using dif-
ferent input parameters: only multispectral data, multispectral with thermal data, and
multispectral with NRCT data. Multispectral data included reflectance data as well as
the vegetation indices described in Table 1. Table 3 shows that for both GPR frequencies
(corresponding to two different SWC sampling depths) and for all soil moisture conditions
(before precipitation, after precipitation, or mixed), using only multispectral data provides
a reasonable degree of prediction accuracy, but the accuracy increases substantially when
thermal data are also included.

To further evaluate which types of multispectral or thermal data were most useful
for SWC prediction, the random models were run multiple times for each set of input
parameters (only multispectral data, multispectral and thermal data, and multispectral and
NRCT). To establish a benchmark for accuracy, estimation was first performed using all
the parameters in a given category (i.e., all the multispectral data). Then, random forest
prediction was repeated, but one of the input parameters was omitted from the model. This
was repeated until predictions had been run for all parameters, omitting one parameter
each time. The parameters that resulted in the greatest increase in prediction error due
to their omission were considered the most important. Table 4 shows which parameters
were most important for predicting the SWC for the southeast quadrant (all data acquired
before precipitation), the northwest quadrant (all data acquired after precipitation), and the
northern and southern halves (mixed data acquisition) for the 500 MHz SWC data. Table 5
repeats this analysis for the 250 MHz SWC data.

Table 4 shows that for the shallower SWC measurements (500 MHz data), a few re-
flectance bands or VI are consistently important. When only multispectral measurements
are used, the NIR reflectance is important for both individual quadrants of the field (be-
fore and after precipitation) and for the two halves of the field (mixed before and after
precipitation). The red reflectance band is also important for most of these areas. Overall,
the NIR, red, and green bands are the most important for the multispectral data, as all the
most influential parameters were either these bands individually or a combination of these
bands (NDVI, MGRVI, CIG). When either temperature data (thermal) or NRCT data were
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added to the prediction parameters, the temperature-based measurements were the most
influential for SWC prediction. Including the thermal data changed which multispectral
bands were most influential; when the thermal data were included, the blue reflectance
band became important, both as a direct reflectance band and because it is an input to
VI such as VARI, MGRVI, and NDWI, which use a combination of blue, green, red, and
NIR bands.

Table 5 shows that the deeper SWC measurements (250 MHz data) differ somewhat
in which parameters are most influential. When only multispectral data are considered,
different parameters are important for different portions of the field; the only parameter
that is important for most portions of the field is CIG, which uses the NIR and green
bands. Similar to the 500 MHz data, when temperature or NRCT data are added, these
data are the most influential parameters for predicting SWC. Other important parameters
vary depending on the portion of the field considered, but CIG and green, red, and blue
reflectance bands are typically the most important.

Table 4. The relative importance of different types of UAV-based data for SWC prediction from
500 MHz data.

The Most Important UAV-Based Data for Predicting SWC, 500 MHz GPR

Ranking
Southeast Quadrant Northwest Quadrant

Multispectral Multispectral +
Thermal

Multispectral +
NRCT Multispectral Multispectral +

Thermal
Multispectral +

NRCT

1 NIR band Thermal
temperature NRCT NIR band Thermal

temperature NRCT

2 NDVI Green band Red-edge band MGRVI VARI VARI
3 Red band Blue band Green band Green band Green band NDVI

Ranking
Southern Half Northern Half

Multispectral Multispectral +
Thermal

Multispectral +
NRCT Multispectral Multispectral +

Thermal
Multispectral +

NRCT

1 Red band Thermal
temperature NRCT Red band Thermal

temperature NRCT

2 CIG Red band NDWI CIG Blue band Blue band
3 NIR band CIG NDVI NIR band VARI NDWI

Table 5. The relative importance of different types of UAV-based data for SWC prediction from
250 MHz data.

The Most Important UAV-Based Data for Predicting SWC, 250 MHz GPR

Ranking
Southeast Quadrant Northwest Quadrant

Multispectral Multispectral +
Thermal

Multispectral +
NRCT Multispectral Multispectral +

Thermal
Multispectral +

NRCT

1 GLI Thermal
temperature NRCT MGRVI Thermal

temperature NRCT

2 CIG CIG Blue band Red band NDRE Green band
3 Green band VARI CIG Green band Red band NDVI

Ranking
Southern Half Northern Half

Multispectral Multispectral +
Thermal

Multispectral +
NRCT Multispectral Multispectral +

Thermal
Multispectral +

NRCT

1 Red-edge band Thermal
temperature NRCT CIG Thermal

temperature NRCT

2 NIR band CIG Red band RGBVI NDWI Blue band
3 CIG Green band Green band Blue band Green band NDVI
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3.2.2. Sampling Depth

Comparing prediction results for SWC estimates obtained from the 500 MHz and
250 MHz GPR data can provide insights into how the depth of the SWC measurement
affects correlations with the multispectral and thermal data. Table 3 shows that for all soil
moisture conditions, the SWC calculated with the 250 MHz data (sampling depth of ~30 cm)
is more easily predicted using multispectral and thermal data than the SWC calculated
with the shallower (~18 cm) penetration depth of 500 MHz antennas. Possible explanations
for the better performance of the 250 MHz data are discussed in Section 4.2. The lower
correlation coefficients and higher RMSE of the 500 MHz data indicate that this higher
frequency may not produce estimates that are accurate enough for many applications.

3.2.3. Soil Moisture/Precipitation

Table 3 shows that for both GPR frequencies, the best predictions of SWC occurred
when both the SWC and multispectral/thermal data were acquired after precipitation
(northwest quadrant). Intermediate levels of correlation were observed when the SWC
data were acquired partially before and partially after precipitation (northern and southern
halves, considered separately), and the least correlation occurred when both the SWC and
multispectral/thermal data were acquired before precipitation (southeast quadrant). As
discussed in Section 4.3, this may be due to changes in the reflectance of the vegetation
after precipitation.

3.3. Impact of Short vs. Tall Vegetation on SWC Prediction

The SWC in the root zone is affected by both more shallowly rooted vegetation (such
as grass) and by larger vegetation (such as grapevines) which have both shallow and
deep roots [93,94]. Some researchers who studied whether multispectral data acquired in
orchards could be used to predict SWC used the response of the tree canopy and filtered out
the response from grass or bare soil [41]. In this study, SWC measurements were acquired
slightly to one side of the grapevines instead of near the grapevine trunks (Figure 3c). SWC
measurements were collected at this location to allow the GPR antennas to be pulled contin-
uously down the rows while maintaining full contact with the ground, which is necessary
for high-quality data. The ground cover where the SWC measurements were acquired
was short (mown) grass. To determine whether the SWC was more highly correlated to
the grapevines, whose roots extended into the areas where the SWC was measured, or
to the short grass, machine learning predictions were also performed by correlating the
SWC measurements with the multispectral and thermal data collected directly adjacent
to the SWC measurements but fully over the grapevines. The sample footprint remained
the same for upscaling, but the location of each multispectral and thermal measurement
used in the prediction was slightly to the west of the actual SWC measurement location
so that the UAV-based measurements aligned fully with the grapevine canopy. Table 6
shows the results of these predictions. A comparison of Tables 3 and 6 shows that for all
sampling depths and SWC (wet or dry) combinations, the SWC could be predicted more
accurately when the UAV-based measurements were acquired over the shorter vegetation
(and directly over the SWC measurements) than when these measurements were acquired
over the larger vegetation closest to the SWC measurements.
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Table 6. SWC prediction metrics when UAV-based data are collected over the grapevines.

Prediction of SWC from 500 MHz GPR Using Grapevine Canopy Data

Data Set
Southeast Quadrant Southern Half Northwest Quadrant Northern Half

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Multispectral 0.262 0.151 0.284 0.162 0.45 0.162 0.479 0.131
Multispectral + Thermal 0.427 0.133 0.457 0.141 0.564 0.145 0.578 0.118
Multispectral + NRCT 0.432 0.133 0.435 0.144 0.565 0.144 0.575 0.118

Prediction of SWC from 250 MHz GPR Using Grapevine Canopy Data

Data Set
Southeast Quadrant Southern Half Northwest Quadrant Northern Half

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Multispectral 0.514 0.115 0.423 0.128 0.66 0.110 0.664 0.092
Multispectral + Thermal 0.68 0.093 0.579 0.109 0.785 0.087 0.776 0.076
Multispectral + NRCT 0.688 0.092 0.571 0.110 0.778 0.089 0.772 0.076

4. Discussion
4.1. Input Parameters

Tables 3–5 show that multispectral data can be used for SWC prediction, but that the
prediction accuracy increases significantly when thermal data are added to the ML algo-
rithm. In this study, temperature data and NRCT provided approximately the same amount
of increased prediction accuracy (Table 3), indicating that normalizing the temperature
data made little difference in prediction accuracy. Tables 4 and 5 show that temperature or
NRCT were the most important single parameters for estimating SWC when multiple data
types were investigated.

Table 4 shows that when only multispectral data are used to estimate SWC, the NIR,
red, and green reflectance bands were the most important parameters for most of the field
for the shallower soil (500 MHz). CIG (calculated using NIR and green reflectance) was also
an important parameter. Since healthy vegetation usually strongly reflects green and NIR
wavelengths, and soil has a stronger red reflectance, the strong correlation between SWC
and these parameters is probably indicative of the correlation between vegetation vigor
(strong direct correlation with green and NIR reflectance and strong inverse correlation
with red reflectance) and SWC. For the deeper SWC measurements (250 MHz), similar
reflectance bands or VI are still important (especially CIG), but the blue reflectance band
is more significant since it occurs both as an individual reflectance band and within VI
such as GLI and RGBVI. The increased importance of the blue band for predicting SWC
from the 250 MHz GPR data may be related to the ability of the blue reflectance band to
distinguish soil from vegetation [95]. For the 250 MHz data, the sample footprint is wider
than for the 500 MHz data, and the 250 MHz footprint sometimes included areas of bare soil
nearer to the grapevine trunks (Figure 3c). Since the SWC in bare soil is usually different
than the SWC where cover crops exist [73], the blue reflectance band may be beneficial in
distinguishing this difference.

When thermal data are included in the SWC estimation, the VARI (calculated from
green, blue, and red reflectance bands) and the green and blue bands were the most
important parameters after the thermal input for both the shallower and deeper SWC
estimates. This indicates that including thermal data reduces the significance of the NIR
reflectance for SWC estimation; these bands may respond to similar vegetative or soil
properties. However, both NDWI and NDVI are important parameters, especially for
the deeper 250 MHz measurements. Since these parameters both use NIR as input (as
calculated for this study), this implies that NIR still offers useful correlations with SWC
and should not be omitted even when thermal data are also collected.
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4.2. Sampling Depth

Table 3 indicates that a more accurate prediction of the SWC was possible with samples
that had a greater sampling depth (SWC from 250 MHz GPR, sampling interval from 0 to
~30 cm) as compared to shallower samples (SWC from 500 MHz GPR, sampling interval
from 0 to ~18 cm). The higher correlation of multispectral and thermal data with the deeper
SWC data may occur because more of the vegetation root structure occurs somewhat deeper
in the surface. For grapevines, most small roots are at a depth of 10 to 60 cm, while larger
roots occur at depths of 18 to 80 cm [93]. Approximately 30–40% of the grapevine roots
occur in the interval from the surface to 30 cm depth [96], and grapevine roots extend from
the vine outward to more than a meter over this depth interval [97], which includes the
zone sampled by the GPR. In addition to vine roots, the roots of most grasses that grow
between the rows extend to a depth of more than 50 cm, although the highest grass root
density is within the uppermost 10 cm [98]. The sampling depth of the 500 MHz data
would therefore encompass primarily small grapevine roots and grass, while the 250 MHz
sampling depth encompasses both small and large grapevine roots and grass roots. Since
the vegetation vigor measured by the reflectance data is partially determined by the plant
root structure, samples that encompass a greater percentage of the root structure are more
likely to correlate to vegetation vigor. Thus, the SWC estimates acquired with the 250 MHz
antenna are expected to better correlate with multispectral data.

Another possible reason that the 250 MHz data better correlates with multispectral
data is that the sampling volume of the 250 MHz data is greater than that of the 500 MHz
data. Both the footprint and the sampling depth of the 250 MHz antennas are larger than
that of the 500 MHz antennas; the approximate volume measured by the 250 MHz antennas
is 0.04 m3, while that of the 500 MHz antennas is 0.01 m3. The larger sampling volume of the
250 MHz antennas means that some small-scale SWC variability is lost within the sampling
volume, whereas the smaller 500 MHz data show more variability. Table 2 supports this
assumption since the standard deviation of the SWC is usually less for the 250 MHz than
for the 500 MHz data. Prediction is generally easier when variability is less, so the higher
correlation of the 250 MHz data may be the result of sample volume.

4.3. Average SWC/Precipitation

The unique timing of data acquisition for this project (before and immediately af-
ter a light precipitation event) permits the evaluation of the effects of average SWC and
precipitation on SWC prediction. Since UAVs are usually flown only in clear, sunny con-
ditions [31,34,35,37,38,40,41,46,49–52], the effect of precipitation is not usually considered.
The data from this study indicates that both average SWC and recent precipitation change
the SWC prediction accuracy.

To evaluate the effects of average SWC, wet or dry quadrants of the field can be
compared to the half-sections of the field. For example, a more accurate prediction of
SWC occurred over the southern half of the field than over the SE quadrant, although all
UAV-based data for the southern half of the field were acquired before precipitation. The
SE quadrant of the field was drier than the southern half of the field, which shows that
the SW quadrant was wetter than the SE quadrant. Higher SWC prediction accuracy in
the southern half, as compared to the SE quadrant, shows that wetter soils allowed better
prediction of the SWC than drier soil. Similarly, the NW quadrant was wetter than the
northern half of the field, and prediction of the SWC was better in this quadrant than
in the northern half, although all UAV-based data for the northern half of the field were
acquired after precipitation. One reason that prediction accuracy might be better in wetter
soils is that wetter soils could allow more accurate sensing of root density. When more
water is available in the soil, more water can be absorbed by the roots. Since the GPR
measurements do not distinguish between water held in soil pores versus water held by
plant roots, the measured SWC could be a proxy for root density if there are many roots in
the measured volume. Since vegetation vigor is strongly influenced by roots, correlations
between multispectral data and SWC are expected to be higher when root density is greater.
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Another possible explanation for the increased SWC prediction accuracy in wetter soils is
that increased SWC caused differences in soil texture to be accentuated. In the vadose zone,
finer-grained soils will absorb and retain moisture, while coarser-grained soils more easily
allow water to be transmitted through them. The small amount of precipitation received
during this study might have served to better distinguish differences in soil texture, and
long-term vegetation vigor may be influenced by the soil texture.

The effects of precipitation on multispectral data are not often analyzed, but this study
suggests that precipitation may also affect the prediction of SWC based on multispectral
data. This conclusion can be drawn by considering data from both halves of the field.
Both halves have SWC values that were partially collected before the light precipitation
event and partially collected afterward, but the SWC for the northern half of the field
was predicted using multispectral and thermal data acquired after precipitation, while
the SWC for the southern half of the field was predicted using multispectral and thermal
data acquired before precipitation. The average SWC values in both halves of the field are
very similar (differing by only 0.01), as shown in Table 2. However, SWC predictions were
better in the northern half of the field (Table 3), suggesting that the light precipitation event
influenced prediction.

The light precipitation event may have influenced SWC prediction by washing away
the dust that may have accumulated on the leaves or grass. Healthy vegetation usually has
strong reflectance in green, red-edge, and NIR wavelengths. Chlorophyll strongly reflects
green wavelengths but reduces the reflection from blue wavelengths. Water usually has
higher reflectance in the blue and green wavelengths but absorbs red-edge and NIR wave-
lengths [99,100]. If the precipitation removed dust from the leaves/grass, the chlorophyll
could be more easily detected, and a strong reflectance would be expected in the green
wavelength, while a lower reflectance would occur in the blue wavelength. However, if
water remained on the leaves, the blue reflectance might increase from that source. Table 7
shows the mean value of multispectral reflectance data for the entire field before and after
precipitation. This table shows a slight increase in green reflectance and a more significant
decrease in blue reflectance, as well as a decrease in NIR. These results indicate that for
this site, the effects of chlorophyll could be more easily observed after precipitation, but
residual water on the leaves may have reduced other wavelengths, like NIR.

Table 7. Mean reflectance over the entire field before and after precipitation.

Blue Green Red Red-Edge NIR

Before precipitation 43.42 96.414 65.093 140.19 63.766
After precipitation 40.194 97.197 63.984 138.879 59.88

4.4. Impact of Short vs. Tall Vegetation on SWC Prediction

A comparison of Tables 3 and 6 shows that predictions of SWC were generally more
accurate when multispectral and thermal data were acquired directly over the SWC mea-
surement point than when these measurements were acquired over the grapevines imme-
diately adjacent to the measurements. This suggests that although the grapevine vigor is
clearly related to nearby SWC (Table 6), the effects of cover crops (such as grass at this site)
are also significant. This result matches that found by other researchers [73,97,101,102],
where cover crops were found to have a significant impact on the SWC in vineyards. It is
probable that a better correlation between multispectral data acquired over the vines and
SWC might have resulted if SWC was measured over a deeper interval than was performed
in this study, since grapevines have been shown to develop deeper root systems than the
cover crops (grass in this study) in vineyards where cover crops are regularly used [101].

4.5. Other Factors

While outside the scope of this experiment, it is important to note that other factors
can also impact soil water content, and thus may change the accuracy of SWC prediction
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using these methods. One factor to consider is crop type. This experiment was conducted
on a vineyard with a cover crop, and while previous research showed that this technique
could be effective in row crops such as maize and soybeans [88], it is not clear if this
technique will work on non-row crops or non-agricultural vegetation. Allowing weeds
to grow between the rows of a cash crop might also have a different impact on SWC than
cover crops. Another consideration is farming practices; frequent tilling or compaction due
to agricultural equipment might change the soil structure and could reduce the efficacy of
this technique. Irrigation practices must also be considered, as drip irrigation could result
in SWC heterogeneity that may decrease the correlation between UAV-based reflectance
measurements and actual soil conditions.

Another factor that should be considered is the accuracy of the SWC measurements
obtained with geophysical methods. While GPR groundwaves are non-invasive and there-
fore do not introduce inaccuracy resulting from soil disturbance during probe insertion,
the estimates of SWC are made using geophysical parameters rather than a direct mea-
surement of soil water. A petrophysical relationship must therefore be used to convert
from geophysical parameters to SWC. While the petrophysical relationship used in this
study to convert dielectric permittivity to SWC is very commonly applied to agricultural
soils, a site-specific petrophysical relationship would be more accurate; higher accuracy
SWC estimates might improve the correlation with UAV data. Another consideration for
applying this technique is that UAV flight parameters must be chosen carefully to provide
sufficiently detailed orthomosaic images. If insufficient ground control points are used, or
if the UAV is flown too high or too quickly, the data may be insufficient to construct an
accurate orthomosaic, which will also affect the final estimation accuracy.

5. Conclusions

This study showed that UAV-mounted sensors can be used for SWC prediction using
machine learning techniques when a sufficiently large number of SWC measurements are
available. Of the data types tested in this study, thermal data were the most important for
predicting SWC, although multispectral data were also necessary for accurate predictions.
Reflectance data (red, green, blue, and NIR) correlated with SWC measurements as well
as or better than most VI, indicating that these bands ought to be included in machine
learning techniques. Predictions of SWC were more accurate for deeper and larger volume
SWC measurements than for shallower, smaller measurements. The value of the SWC
measurement as well as the timing of the UAV flight also influenced prediction accuracy;
accuracy was better in wetter soils and after precipitation. Finally, accuracy was highest
when considering the multispectral data acquired directly over the SWC measurement
instead of using the larger vegetation canopy directly adjacent to the SWC measurement.
It should also be noted that although the correlation coefficients between estimated and
actual SWC were quite high for the data acquired under optimal conditions (wetter soil
and deeper measurements), collecting data under different conditions may result in lower
correlations. Also, the RMSE was still relatively high, so this method may be better for
indicating the spatial distribution of SWC and for selecting the locations for conventional
measurements if very accurate SWC values are needed.

The methodology used in this study has potential to provide SWC estimates with
much higher resolution than is currently available from remote sensing data. Higher
resolution SWC estimates could be used to better guide precision agriculture by directing
the timing and volume of infiltration as well as the timing of nutrient application. This
technique could also be applied to environmental and climate change studies, since SWC
is a critical parameter in climate modeling and heat flux calculations. Finally, UAV-based
estimates of SWC could also be helpful for predicting natural hazards, such as floods and
landslides. For floods, the SWC is important because it strongly influences the partitioning
of precipitation into infiltration or surface runoff. SWC affects landslides because soil
strength and weight are greatly affected by SWC, and these factors affect slope stability.
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87. Lendzioch, T.; Langhammer, J.; Vlček, L.; Minařík, R. Mapping the Groundwater Level and Soil Moisture of a Montane Peat Bog
Using UAV Monitoring and Machine Learning. Remote Sens. 2021, 13, 907. [CrossRef]

88. Guan, Y.; Grote, K.; Schott, J.; Leverett, K. Prediction of Soil Water Content and Electrical Conductivity Using Random Forest
Methods with UAV Multispectral and Ground-Coupled Geophysical Data. Remote Sens. 2022, 14, 1023. [CrossRef]

89. Zhu, C.; Ding, J.; Zhang, Z.; Wang, Z. Exploring the Potential of UAV Hyperspectral Image for Estimating Soil Salinity: Effects of
Optimal Band Combination Algorithm and Random Forest. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 279, 121416.
[CrossRef] [PubMed]

90. Hu, J.; Peng, J.; Zhou, Y.; Xu, D.; Zhao, R.; Jiang, Q.; Fu, T.; Wang, F.; Shi, Z. Quantitative Estimation of Soil Salinity Using
UAV-Borne Hyperspectral and Satellite Multispectral Images. Remote Sens. 2019, 11, 736. [CrossRef]

91. Yuzugullu, O.; Lorenz, F.; Fröhlich, P.; Liebisch, F. Understanding Fields by Remote Sensing: Soil Zoning and Property Mapping.
Remote Sens. 2020, 12, 1116. [CrossRef]

92. Gholamy, A.; Kreinovich, V.; Kosheleva, O. Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical
Explanation. Departmental Technical Reports (CS) 2018. Available online: https://scholarworks.utep.edu/cs_techrep/1209/
(accessed on 5 November 2023).

93. Rijal, J.P.; Bergh, J.C. Food-Finding Capability of Grape Root Borer (Lepidoptera: Sesiidae) Neonates in Soil Column Bioassays. J.
Entomol. Sci. 2016, 51, 54–68. [CrossRef]

94. Smart, D.R.; Schwass, E.; Lakso, A.; Morano, L. Grapevine Rooting Patterns: A Comprehensive Analysis and a Review. Am. J.
Enol. Vitic. 2006, 57, 89–104. [CrossRef]

95. U.S. Geological Survey. What Are the Best Landsat Spectral Bands for Use in My Research?|U.S. Geological Survey. Available
online: https://www.usgs.gov/faqs/what-are-best-landsat-spectral-bands-use-my-research (accessed on 15 March 2022).

96. Bordoni, M.; Vercesi, A.; Maerker, M.; Ganimede, C.; Reguzzi, M.C.; Capelli, E.; Wei, X.; Mazzoni, E.; Simoni, S.; Gagnarli, E.; et al.
Effects of Vineyard Soil Management on the Characteristics of Soils and Roots in the Lower Oltrepò Apennines (Lombardy, Italy).
Sci. Total Environ. 2019, 693, 133390. [CrossRef]

https://doi.org/10.1016/j.fcr.2015.03.010
https://doi.org/10.1016/j.jhydrol.2004.06.031
https://doi.org/10.1002/hyp.1351
https://doi.org/10.1029/2003WR002045
https://doi.org/10.1016/S0022-1694(01)00336-5
https://doi.org/10.3390/w9070521
https://doi.org/10.1016/j.geoderma.2013.02.010
https://doi.org/10.1109/JSTARS.2011.2165939
https://doi.org/10.1029/2009WR008815
https://doi.org/10.14456/EA.2020.31
https://doi.org/10.1016/j.jhydrol.2007.04.013
https://doi.org/10.1029/WR016i003p00574
https://doi.org/10.1016/j.patrec.2005.08.011
https://doi.org/10.1016/j.rse.2011.12.003
https://doi.org/10.3390/rs70708368
https://doi.org/10.1016/j.geoderma.2011.10.010
https://doi.org/10.1016/j.compag.2022.107262
https://doi.org/10.3390/rs13050907
https://doi.org/10.3390/rs14041023
https://doi.org/10.1016/j.saa.2022.121416
https://www.ncbi.nlm.nih.gov/pubmed/35689848
https://doi.org/10.3390/rs11070736
https://doi.org/10.3390/rs12071116
https://scholarworks.utep.edu/cs_techrep/1209/
https://doi.org/10.18474/JES15-21.1
https://doi.org/10.5344/ajev.2006.57.1.89
https://www.usgs.gov/faqs/what-are-best-landsat-spectral-bands-use-my-research
https://doi.org/10.1016/j.scitotenv.2019.07.196


Remote Sens. 2024, 16, 61 23 of 23

97. Morlat, R.; Jacquet, A. Grapevine Root System and Soil Characteristics in a Vineyard Maintained Long-Term with or without
Interrow Sward. Am. J. Enol. Vitic. 2003, 54, 1–7. [CrossRef]

98. Brown, R.N.; Percivalle, C.; Narkiewicz, S.; DeCuollo, S. Relative Rooting Depths of Native Grasses and Amenity Grasses with
Potential for Use on Roadsides in New England. HortScience 2010, 45, 393–400. [CrossRef]

99. Spectral Reflectance. Available online: http://gsp.humboldt.edu/olm/Courses/GSP_216/lessons/reflectance.html (accessed on
15 March 2022).

100. Mondejar, J.P.; Tongco, A.F. Near Infrared Band of Landsat 8 as Water Index: A Case Study around Cordova and Lapu-Lapu City,
Cebu, Philippines. Sustain. Environ. Res. 2019, 29, 16. [CrossRef]

101. Celette, F.; Gaudin, R.; Gary, C. Spatial and Temporal Changes to the Water Regime of a Mediterranean Vineyard Due to the
Adoption of Cover Cropping. Eur. J. Agron. 2008, 29, 153–162. [CrossRef]

102. López-Vicente, M.; Pereira-Rodríguez, L.; da Silva-Dias, R.; Raposo-Díaz, X.; Wu, G.-L.; Paz-González, A. Role of Cultivars and
Grass in the Stability of Soil Moisture and Temperature in an Organic Vineyard. Geoderma Reg. 2023, 33, e00631. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.5344/ajev.2003.54.1.1
https://doi.org/10.21273/HORTSCI.45.3.393
http://gsp.humboldt.edu/olm/Courses/GSP_216/lessons/reflectance.html
https://doi.org/10.1186/s42834-019-0016-5
https://doi.org/10.1016/j.eja.2008.04.007
https://doi.org/10.1016/j.geodrs.2023.e00631

	Introduction 
	Materials and Methods 
	Study Area Description 
	UAV Data Acquisition and Processing 
	Multispectral Data Acquisition and Processing 
	Thermal Data Acquisition and Processing 

	GPR Data Acquisition 
	Using Machine Learning to Correlate UAV-Based Data with SWC 

	Results 
	Soil Water Content 
	SWC Prediction Using Random Forest Method 
	Input Parameters 
	Sampling Depth 
	Soil Moisture/Precipitation 

	Impact of Short vs. Tall Vegetation on SWC Prediction 

	Discussion 
	Input Parameters 
	Sampling Depth 
	Average SWC/Precipitation 
	Impact of Short vs. Tall Vegetation on SWC Prediction 
	Other Factors 

	Conclusions 
	References

