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Abstract: Graph convolutional networks (GCN) have emerged as a powerful alternative tool for
analyzing hyperspectral images (HSIs). Despite their impressive performance, current works strive to
make GCN more sophisticated through either elaborate architecture or fancy training tricks, making
them prohibitive for HSI data in practice. In this paper, we present a Graph Convolutional RVFL
Network (GCRVFL), a simple but efficient GCN for hyperspectral image classification. Specifically,
we generalize the classic RVFL network into the graph domain by using graph convolution operations.
This not only enables RVFL to handle graph-structured data, but also avoids iterative parameter
adjustment by employing an efficient closed-form solution. Unlike previous works that perform
HSI classification under a transductive framework, we regard HSI classification as a graph-level
classification task, which makes GCRVFL scalable to large-scale HSI data. Extensive experiments on
three benchmark data sets demonstrate that the proposed GCRVFL is able to achieve competitive
results with fewer trainable parameters and adjustable hyperparameters and higher computational
efficiency. In particular, we show that our approach is comparable to many existing approaches,
including deep CNN models (e.g., ResNet and DenseNet) and popular GCN models (e.g., SGC
and APPNP).

Keywords: graph convolutional network; graph-level classification; hyperspectral image; RVFL
network

1. Introduction

Hyperspectral images (HSIs) are characterized by rich spectral and spatial information
that consists of hundreds of narrow spectral bands. This enables us to distinguish physical
objects at the pixel level. Over recent decades, hyperspectral imaging has become one of the
most important earth observation technologies [1]. HSI classification has also become an
active interdisciplinary topic that centralizes artificial intelligence and remote sensing [2,3].

Early HSI classification methods such as support vector machine (SVM) [4] focus on
either handcrafted shallow-level features or linear separable problems, usually leading to
poor robustness. Recently, representation learning centralized by deep neural networks
(DNN) has garnered great success in the remote sensing community [5–7]. In particular,
convolutional neural networks (CNN) [8] have become one of the most representative learn-
ing paradigms for HSI classification and building extraction [9,10] due to their powerful
ability to automatically extract spectral and spatial information.

We broadly divide convolution-based models into Euclidean models and non-Euclidean
models. Euclidean models (e.g., CNN) define convolution on the Euclidean space, and thus
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they only can handle regular inputs such as images, texts, and sequences. The state-of-
the-art Euclidean convolutional models include residual network (ResNet) [11–13], dense
network (DenseNet) [14–16], attention mechanism [17–19], and so on. The non-Euclidean
models aim at generalizing convolution into the graph domain. These types of models
are also referred to as graph convolutional networks (GCN) [20,21]. Since Euclidean
data can be regarded as special cases of graph data, GCN is a more general learning
paradigm than CNN, especially learning for structural information. Based on this insight,
many works have attempted to revisit HSI classification from the point of view of graph
representation learning.

Utilizing GCN for HSI classification offers several advantages. Firstly, it serves as a
viable alternative to CNN, providing a more efficient approach for aggregating informa-
tion from neighboring pixels. Secondly, GCN demonstrates robustness to spectral and
spatial variations in noise, owing to its consideration of long-range interdependencies.
Thirdly, GCN comes with a complete theoretical guarantee, incorporating spectral graph
theory, which proves valuable for model analysis and interpretation. In general, there are
two important problems when applying GCN to HSI classification. The first problem is
how to convert the Euclidean HSI data into graph data. A common idea is to construct
a similarity graph for the whole sample set (e.g., the kNN graph) [22], which leads to a
node-level transductive semi-supervised learning problem. However, the computation of a
pixel-level graph is usually prohibitive for large-scale HSI data due to its high computa-
tional space requirements and time complexity. To alleviate the drawback, many studies
adopt a superpixel-level graph [23–25], which can greatly reduce the number of nodes.
Nonetheless, such a process is limited not only by the absence of superpixel-level labels but
also by the reliability of superpixel segmentation. Furthermore, Hong et al. [26] introduced
MiniGCN by constructing a graph for a batch of HSI samples, enabling supervised training.
Additionally, Zhang et al. [27] introduced a local regions graph for HSI classification,
significantly reducing the graph’s size.

The second problem is how to efficiently train a GCN model. The vast majority of
existing GCN models rely on gradient descent. This often leads to local optimal solutions
and vanishing gradient issues, requiring either elaborate architecture or fancy learning
tricks. In addition, GCN usually suffers from the over-smoothing issue, in which node
feature representations become indistinguishable in different classes, which worsens as
the model depth increases. In other words, unnecessarily complex design may aggravate
over-fitting when training data are limited.

Unlike the gradient-based neural networks which need iterative parameter updating,
randomized neural networks [28,29], represented by random vector functional link net-
works (RVFL) [30], provide a simple but efficient learning scheme known as pseudoinverse
learning [31]. In an RVFL network, the hidden layers serve as an important part, but their
parameters can be generated randomly and kept fixed during training. This signifies that
RVFL only needs to concentrate on the optimization of its task-specific output layer. Over
the past decade, the RVFL network has made great progress with the explosion of artificial
intelligence techniques. Its variants, such as extreme learning machine, have been widely
used for HSI classification [32–34] due to their ease of use, training, and implementation.

However, RVFL networks are greatly limited by their representational ability when
handling complex and variable HSI data, leading to poorer results compared to those from
sophisticated CNNs and GCNs. This is because RVFL ignores important inductive biases
in both architecture and learning mechanisms. On the one hand, nearly all previous RVFL
approaches are designed for Euclidean data, thus failing to deal with structured information
efficiently. On the other hand, RVFL uses fully connected architecture without parameter
sharing, which treats inputs as equally important components and is computationally
inefficient. Many studies have demonstrated that proper use of inductive biases makes
learning algorithms more robust and effective. For example, the success of CNN and GCN
can mainly be attributed to their local information aggregation mechanism (regular local
receptive field in CNN [8] or irregular neighborhood aggregation in GCN [20]).
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Based on these insights, we propose a simple yet effective RVFL network for HSI
classification. We refer to the proposed approach as a Graph Convolutional RVFL network
(GCRVFL). The core idea behind the approach is to generalize the classic RVFL to the
non-Euclidean domain. Specifically, we introduce graph convolution into RVFL layers,
thus deriving random graph convolution and a closed-form solution. In order to process
large-scale HSI, we recast HSI classification as a graph-level classification task, resulting in
an inductive GCRVFL model. Unlike previous transductive GCN-based HSI classification
methods, our approach has better generalization ability and higher efficiency for large
HSI. To this end, we construct HSI patches as graphs, where every pixel on a patch
is seen as nodes over a graph, and edges are determined by distances between nodes.
Furthermore, we introduce a global pooling operation into GCRVFL to generate graph-
level representations. The proposed approach extends RVFL to the graph domain without
losing its simplicity in training and implementation.

The rest of the paper is structured as follows. We first briefly review graph repre-
sentation learning and RVFL networks in Section 2. Next, we introduce the details of the
proposed GCRVFL method in Section 3. Finally, in Section 4, we systematically qualitatively
and quantitively assess the proposed method, following with a conclusion in Section 5.

2. Related Works
2.1. Notations

In this paper, we use boldface lowercase italicized symbols (e.g., x), boldface uppercase
roman symbols (e.g., X), regular italicized symbols (e.g., N ), and calligraphy symbols
(e.g., G) to represent vectors, matrices, scalars, and sets, respectively. A graph structure
is expressed as G = (V , E), where V indicates the node set of the graph with vi ∈ V
and |V| = N, E represents the edge set with (vi, vj) ∈ E . We use A ∈ RN×N to denote
the adjacency matrix of G. The diagonal degree matrix of G is defined as D ∈ RN×N ,
where Dii = ∑j Aij. In the graph, L = D − A indicates the graph Laplacian matrix, and

the corresponding normalized version is Lsym = D− 1
2 LD− 1

2 . Moreover, XT denotes the
transpose of matrix X, and IN denotes an identity matrix with the size of N.

2.2. GCN

GCN [20,35] is a powerful graph representation learning architecture that extends
CNN [8] to the graph domain. The existing GCN models can be divided into two main
classes, i.e., spectral GCNs and spatial GCNs. Kift et al. [36] proposed the vanilla GCN
based on simplifying the approximation of the graph Laplacian using the Chebyshev
expansion method [37]. Technically, a typical GCN consists of a rectified linear unit
activation (ReLU) and a softmax classifier, which can be written as:

H = Softmax
(
Ã ReLU

(
ÃXW0

)
W1

)
. (1)

Here, Ã = (D + IN)
− 1

2 (A + IN)(D + IN)
− 1

2 denotes a renormalized adjacency matrix
with self-loops; W1 and W2 are trainable filter parameter matrices, which are optimized
using stochastic gradient descent. GCN models often suffer from the over-smoothing
problem when increasing the model depth, which means node feature representations
become indistinguishable in different classes [38]. Thus, most GCN models usually adopt
a shallow structure. In general, the vanilla GCN achieves its best performance with a
two-layer structure.

2.3. RVFL

RVFL is one of the most classical random neural networks, which is a special form
of the feedforward neural network [28]. The classical RVFL contains two stages: random
mapping and ridge regression. Mathematically, given input data X ∈ RN×m consisting of
N samples each with m features, the random mapping can be expressed as

H = σ(XW + b), (2)
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where H ∈ RN×L denotes the L-dimensional nonlinear mapping matrix of N samples,
σ is an activation function, W ∈ Rm×L represents a random hidden weight matrix,
and b ∈ RL indicates a bias vector. Due to RVFL containing parameter-free direct
links between the input layer and the output layer, the hidden layer output of RVFL
can be considered the concatenation of the random mapping and the initial input, i.e.,
H̃ ∈ RN×(L+m) = concat(H, X).

Then, the ridge regression layer of RVFL takes the hidden layer output H̃ as input
and predicts the corresponding labels. Thus, the output layer can be expressed in the
following form:

Y = Hβ. (3)

Here, β ∈ RL×C represents the output weight matrix with C classes, and Y ∈ RN×C denotes
the prediction matrix. In order to obtain the unique optimal solution β, Equation (3) can be
solved as follows:

β = H†Y, (4)

where H† is the Moore–Penrose generalized inverse of the matrix H. We note that RVFL
overcomes the problems of low training efficiency by avoiding iterative parameter tuning,
which is the difference from the general gradient-based training method.

3. Materials and Method
3.1. Overall Framework

Before elaborating on the details, we introduce the overall framework of the pro-
posed approach. Given HSI data, Xcube ∈ RW×H×m, composed of m spectral bands and
N = W × H pixels, our goal is to assign each pixel a certain land cover type. To this end,
we first convert the HSI classification task into a graph-level classification problem. Then,
we use a GVRVFL network to efficiently aggregate spectral and structural information
between nodes.

The overall framework of our approach is shown in Figure 1. The core idea is to
generalize the classic RVFL to the non-Euclidean domain by using graph convolution
operations, such that it can naturally aggregate the neighborhood structure. Our GCRVFL
consists of a random graph convolutional layer and a graph embedding layer followed by
a global pooling operation. In the following, we focus on the two main concerns: (1) how
to represent samples into a series of graphs, and (2) how to process graphs using the
proposed GCRVFL.

HSI Patches

Global
Avg pool

Graph-Level GCRVFL

Patch Graph

Direct links

Figure 1. Overview of the proposed GCRVF approach. We treat HSI classification as a graph-level
classification problem, where each HSI patch is converted into a series of patch graphs. We use these
graphs to train an efficient graph-level GCRVFL network by extending RVFL into the graph domain.
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3.2. Graph Construction

Existing GCN-based HSI classification methods focus on the node-level transductive
learning task, thus having poorer generalization ability and requiring an exponential
increase in the memory space. To avoid this problem, we aim to construct a local graph
on each HSI patch separately instead of constructing one global graph of the whole HSI.
Specifically, we take s × s small patches neighboring each central pixel as the sample
set, denoted as X = {Xi ∈ Rs×s×m}N

i=1. Then, we transform each HSI patch Xi into a
graph representation Gi = (Vi, Ei) by constructing a K-nearest neighbors (KNN) graph.
As illustrated in Figure 2, we regard n = s × s pixels in Xi as the node set {vj} ∈ Vi over
a graph, where each node contains an m-dimensional node feature vector, and the edge
(neighborhood relationships) set Ei is determined by node similarity. Formally, we define
the adjacent matrix A(i) of the graph Gi as

A(i)
jk =

{
1, if vk ∈ NK

(
vj
)

or vj ∈ NK(vk)

0, otherwise.
(5)

Here, NK(·) denotes neighborhood set with size of K. For example, NK
(
vj
)

indicates K
neighbors of node vj. In this paper, we determine the neighborhoods by computing the
Euclidean distance between node feature vectors. As a result, the sample set is converted
into a set of graphs, i.e., X = {Gi}N

i=1, while the pixel-wise classification task is transformed
into a graph-wise classification task that requires a classifier with the capability of handling
structured data. For this reason, the traditional RVFL networks fail in this case.

KNN Graph

Figure 2. Example of constructing patch graph with patch size of 3 × 3 and K = 3.

3.3. Random Graph Convolution

Now, we are ready to describe the GCRVFL network by following the same notations of
RVFL and GCN. The key to the GCRVFL method is to extend the classical RVFL in the graph
domain while maintaining its backbone. Suppose we have NT training graphs. For conve-
nience, we use a bigger graph G to indicate all training graphs, where every single graph
is an isolated subgraph of G and the total number of nodes is nNT . Further, the adjacent
matrix of G can be denoted as a block diagonal matrix, i.e., A = diag([A1, A2, · · · , AN ]),
and the node feature matrix is X =

[
X1, X2, · · · , XNT

]T. This enables us to process graphs
in a batch-wise manner.

Parallel to the random mapping in the classical RVFL, the goal of the random graph
convolution is to embed input graph G into a matrix, denoted as H. We let W ∈ Rm×L be
a filter parameter matrix containing L filters. All elements of W are randomly generated
according to a random probability distribution and kept fixed during training. We define
the random graph convolution as follows:

H = σ
(
ÃXW

)
, (6)

where Ã = (D + IN)
− 1

2 (A + IN)(D + IN)
− 1

2 is the normalized adjacent matrix, and σ
represents a nonlinear function. In this paper, we use ReLU as σ, which is defined as
σ(x) = max(0, x).
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Similar to the classic RVFL, we concatenate the random graph embedding with
the initial node features along the channel dimension as the hidden layer output, i.e.,
H = concat(H, X). This process is known as direct links, and ensures that the final output
is determined by both graph embedding and the initial input. According to the skip con-
nection that is frequently used to build deep neural networks [39], the operation behaves
like a regularizer to simplify the layer-by-layer information passing, thereby reducing the
risk of over-fitting and over-smoothing.

3.4. Graph Convolutional Regression

In order to obtain a graph-level prediction, we generalize the regression classifier of
RVFL into the graph domain. We call the resulting regression model graph convolutional
regression. The graph convolutional regression is defined as

Y = ρ
(
ÃH

)
β. (7)

Here, ρ is a global pooling function, which is permutation-invariant, such as an average
or sum over nodes feature. In this paper, we use a global average pooling, denoted by
ρ(Gi) =

1
n ∑j xj. The only trainable parameter matrix in our GCRVFL model is β. We solve

β by rewriting Equation (7) as the following optimization problem:

arg min
β

1
2

∥∥Ĥβ − Y
∥∥2

F +
λ

2
∥β∥2

F, (8)

where Ĥ = ρ
(
ÃH

)
is the graph-level representation of the input graphs and λ denotes

a regularization coefficient. According to the least squares theorem, Equation (8) has a
globally optimal closed-form solution.

By computing the partial derivative of Equation (8) with respect to β, we derive

0 = ĤTĤβ + λβ − ĤTY. (9)

This further obtains the closed-form solution as

β∗ =
(

ĤTĤ + λINT

)−1
ĤTY. (10)

For an unlabeled HSI patch XU , we predict its label by GCRVFL as y = ĥβ∗. We
provide the step-by-step pseudo code of the proposed approach in Algorithm 1. It can be
seen that there is no iterative operation in our method, making it efficient and easy to train,
implement, and apply.

Algorithm 1: GCRVFL
Input: HSI cube: Xcube, K, L, and λ.

1 Construct patch graphs according to Equation (5);
2 Randomly generate graph filters W;
3 Calculate random graph embedding H = concat

(
σ
(
ÃXW

)
, X

)
;

4 Calculate graph-level representation Ĥ = ρ
(
ÃH

)
;

5 Solve graph convolutional regression β∗ =
(
HTH + ˘INT

)−1HTY;
6 Predict test labels.

Output: Labels of test set.

3.5. Connection to Existing Methods

In this section, we discuss the connections between our method and existing methods.
Their visual comparison is provided in Figure 3.
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Figure 3. Connections between RVFL, GCRVFL, and Attention. These methods hold a similar
feedforward process, but adopt different prior structures (i.e., I, A, and XX) and different optimization
schemes (closed-form solution or backpropagation).

3.5.1. GCRVFL vs. RVFL

Our GCRVFL is a generalized version of the classic RVFL network in the graph domain.
Thus, GCRVFL inherits all the advantages of RVFL, including its fast learning speed and
extremely simple architecture. However, our GCRVFL greatly expands the capability of
RVFL. More precisely, the classic RVFL can only handle grid data, while our design enables
RVFL to deal with structural data. This is mainly beneficial in the graph convolution
operations. Since the weights between nodes are shared, GCRVFL does not significantly
increase the complexity compared to RVFL. Furthermore, because of the robustness of the
graph structure, GCRVFL is more robust than the classic RVFL.

3.5.2. GCRVFL vs. GCN

Both GCRVFL and GCN follow the spectral graph convolution theory. Furthermore,
the graph convolution used in both of them plays a low-pass filter role [40]. However, there
are two main differences between GCRVFL and GCN. First, GCRVFL trains parameters by
computing a closed-form solution, while GCN needs a greedily iterative gradient descent
with necessary training tricks, e.g., batch normalization [36] and an elaborate optimizer.
Thus, GCRVFL simplifies the training of GCN by using fewer trainable parameters and
hyperparameters. Second, GCRVFL includes an entirely random graph convolutional layer.
Thus, it usually needs sufficient hidden neurons to avoid overfitting and random noise.

3.5.3. GCRVFL vs. Attention Mechanism

From the point of view of the attention mechanism, our GCRVFL can be regarded as
a spatial attention-induced RVFL network. For each input HSI patch, the matrix manipu-
lation of Ãi multiplied by Xi, i.e., ÃiXi, is equivalent to a spatial attention process, where
Ãi = XiXT

i . That is, Ãi is a normalized attention score matrix, which indicates the pair-wise
importance between input pixels. Due to the sparsity of Ãi, those trivial pixels are filtered
while embedding in GCRVFL is being calculated. This property of GCRVFL is important
for HSI classification, especially for the patches consisting of mixed-class pixels. It should
be noted that our attention score matrix can be precomputed, making it more efficient than
a trainable attention mechanism.

3.6. Data Sets

We selected three HSI data sets to assess GCRVFL. Notably, utilizing patched samples
from a single HSI introduces overlaps between training and test sets, leading to potential in-
formation leakage during training. To mitigate this concern, we employed non-overlapping
public partitions as recommended in [6]. The chosen data sets are as follows:

• Houston 2013: This data set was acquired by the ITRES CASI-1500 sensor over the
University of Houston campus and the neighboring urban area [41]. The Houston
imagery consists of 349 × 1905 samples and the spatial resolution is 2.5 m by pixel. It
has 144 spectral bands in the 380 nm to 1050 nm region, and contains 15 classes with
15,029 labeled samples. Table 1 lists 15 challenging land-cover and land-use categories
as well as the number of training and testing samples. Figure 4a shows a false-color
image and the map of training and testing samples.

• Indian Pines 2010: This data set was captured by the ProSpecTIR sensor over Purdue
University, Indiana in 2010, and includes a variety of different crops. The Indian
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Pines 2010 imagery consists of 445 × 750 samples and the spatial resolution is 2 m
by pixel. This scene contains 360 spectral bands ranging from 400 to 2450 nm, and is
composed of 16 classes with 198,074 labeled samples. Table 2 shows 16 different land
cover categories and the number of training and testing samples. Figure 4b depicts the
false-color scene and the corresponding visualization of training and testing samples.

• Salinas: This data set was collected by AVIRIS sensors over Salinas Valley, California.
The Salinas imagery consists of 512 × 217 samples and the spatial resolution is 3.7 m
by pixel. It has 224 spectral bands in the 400 nm to 2500 nm region, and includes
16 classes with 54,129 labeled samples. Table 3 presents the number of training and
testing samples with 16 different classes; those samples’ visualizations are exhibited
in Figure 4c.

(a) Houston 2013

(b) Indian Pines 2010

(c) Salinas

Figure 4. Visualization of the (a) Houston 2013, (b) Indian Pines 2010, and (c) Salinas data sets. For
each data set, the first, second, and third images denote the false-color image, the training map, and
the testing map, respectively. Note that the Houston 2013 and Salinas images were rotated 90 degree
for better presentation.

Table 1. Land-Cover classes of the Houston 2013 data set with the standard training and testing sets
for each class.

Class No. Class Name Training Testing

1 Healthy Grass 198 1053
2 Stressed Grass 190 1064
3 Synthetic Grass 192 505
4 Tree 188 1056
5 Soil 186 1056
6 Water 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059
10 Highway 191 1036
11 Railway 181 1054
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Table 1. Cont.

Class No. Class Name Training Testing

12 Parking Lot1 192 1041
13 Parking Lot2 184 285
14 Tennis Court 181 247
15 Running Track 187 473

Total 2832 12,197

Table 2. Land-Cover classes of the Indian Pines 2010 data set with the standard training and testing
sets for each class.

Class No. Class Name Training Testing

1 Corn_high 726 2661
2 Corn_mid 465 1275
3 Corn_low 66 290
4 Soy_bean_high 324 1041
5 Soy_bean_mid 2548 35,317
6 Soy_bean_low 1428 27,782
7 Residues 368 5427
8 Wheat 182 3205
9 Hay 1938 48,107
10 Grass/Pasture 496 5048
11 Cover_crop_1 400 2346
12 Cover_crop_2 176 1988
13 Woodlands 1640 46,919
14 Highway 105 4758
15 Local road 52 450
16 Buildings 40 506

Total 10,954 187,120

Table 3. Land-Cover classes of the Salinas data set with the standard training and testing sets for
each class.

Class No. Class Name Training Testing

1 Brocoli_green_weeds_1 20 1989
2 Brocoli_green_weeds_2 20 3706
3 Fallow 20 1956
4 Fallow_rough_plow 20 1374
5 Fallow_smooth 20 2658
6 Stubble 20 3939
7 Celery 20 3559
8 Grapes_untrained 20 11,251
9 Soil_vinyard_develop 20 6183
10 Corn_senesced_green_weeds 20 3258
11 Lettuce_romaine_4wk 20 1048
12 Lettuce_romaine_5wk 20 1907
13 Lettuce_romaine_6wk 20 896
14 Lettuce_romaine_7wk 20 1050
15 Vinyard_untrained 20 7248
16 Vinyard_vertical_trellis 20 1787

Total 320 53,809

4. Experiments

In this section, we first conduct extensive experiments for analyzing the hyper-
parameters involved in GCRVFL. Subsequently, we assess the performance of our proposed
GCRVFL, comparing it with numerous classic and state-of-the-art approaches, across three
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HSI data sets. Each method undergoes evaluation ten times with distinct random seeds,
and the reported metric is the average classification accuracy. To ensure a thorough perfor-
mance evaluation, we employ three widely recognized evaluation metrics: overall accuracy
(OA), average accuracy (AA), and the kappa coefficient (Kappa).

4.1. Analysis of Hyper-Parameter Sensitivity
4.1.1. Impact of the Number of Hidden Neurons L

The number of hidden neurons is one of the most important hyper-parameters in
neural networks. For this purpose, we exhibit the OA changing trends of GCRVFL with the
different number of hidden neurons L on the Houston 2013, Indian Pines 2010, and Salinas
data sets (Figure 5). In this experiment, we vary the number of hidden neurons from 23

to 210 with an interval of a power of two. Figure 5 illustrates that, on the whole, GCRVFL
tends to achieve better accuracy as the number of hidden neurons increases, although
the changing trend of OA on Indian Pines 2010 is relatively slow and gentle. However,
performance is degraded when the number of hidden neurons is larger than 210. This
phenomenon reveals that it was the dense hidden layer with limited labeled samples that
caused the over-fitting problem of the model.

24 26 28 210

# Hidden Neurons

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y

Ind. Pines Houston-2013 Salinas

Figure 5. Influence of the hyper-parameter L on the Houston 2013, Indian Pines 2010 (i.e., Ind. Pines),
and Salinas data sets.

4.1.2. Impact of λ

Figure 6 exhibits the impact of hyper-parameter λ on the Houston 2013, Indian Pines
2010, and Salinas data sets. We find that the regulation coefficient has a certain influence
on HSI classification on the whole. More specifically, GCRVFL is insensitive to regulation
coefficient λ when its value is less than 2−1, whereas the classification accuracy of GCRVFL
degrades on the Houston 2013 and Salinas data sets when λ is more than 2−1. This is
because too large of a value for the regularization coefficient λ leads to the problem of
under-fitting for GCRVFL. Although the performance trend of GCRVFL on the Indian
Pines 2010 data set appears to be gentle when λ varies in the range of

[
2−8, 2−7, · · · , 24],

experience shows that λ should be chosen within
[
2−5, 2−1].



Remote Sens. 2024, 16, 37 11 of 23

2 7 2 5 2 3 2 1 21 23

0.75

0.80

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y

Ind. Pines Houston-2013  Salinas

Figure 6. Influence of the hyper-parameter λ on the Houston 2013, Indian Pines 2010 (i.e., Ind. Pines),
and Salinas data sets.

4.1.3. Impact of the Number of Neighbors K

The number of neighbors is also a crucial hyper-parameter for HSI classification
performance. We explore the performance trend of our proposed GCRVFL with different
numbers of the nearest neighbors K on the Salinas data set. Figure 7 shows the experimental
results as a violin plot, where K = [0, 3, 5, · · · , 30, 40]. In Figure 7, the white node denotes
the median of classification accuracy, the black bar represents the first quartile to third
quartile data (i.e., 25∼75%), and the upper and lower bound of the violin plot indicate the
maximum and minimum value of obtained results. As can be seen, varying parameter K
yields a slight performance improvement. When K is selected as 20, GCRVFL achieves the
best accuracy. However, when K is greater than 30, the performance of GCRVFL begins
to decline. The reason for this deterioration of performance is that the constructed graph
collects noise edges, resulting in the inaccurate judgment of the information. For HSI data,
parameter K signifies the property of the constructed graph, thus its value should not be
selected to be too large.

4.1.4. Impact of Activation Function

The results of GCRVFL with different activation functions on the three HSI data sets
are listed in Table 4. We use Sigmoid, Tahn, and ReLu as activation functions, and also carry
out the experiment without an activation function. From the value of the three metrics in
Table 4, it can be clearly seen that GCRVFL with the ReLu function generally outperforms
the models using other activation functions by a substantial margin. It can also be seen
that the classification performance of GCRVFL without using any activation function is the
worst on all three HSI data sets. Therefore, ReLu is chosen as an activation function in all
our experiments.
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Figure 7. Influence of hyper-parameter K on the Salinas data set.

Table 4. Performance comparison of GCRVFL under different activation functions.The best results
are in bold.

Data Set Metrics Sigmoid Tahn None ReLU

Houston

OA 56.63 ± 0.02 76.26 ± 0.55 51.94 ± 4.02 84.78 ± 1.24
AA 60.10 ± 0.02 79.65 ± 0.50 56.31 ± 3.38 87.16 ± 1.00
Kappa × 100 53.50 ± 0.00 74.30 ± 0.57 48.68 ± 4.10 83.52 ± 1.35

Ind. Pines

OA 79.61 ± 0.00 80.81 ± 0.11 79.48 ± 0.00 89.21 ± 0.32
AA 48.70 ± 0.01 61.90 ± 0.51 52.06 ± 0.00 87.34 ± 0.05
Kappa × 100 74.70 ± 0.00 76.43 ± 0.12 74.80 ± 0.00 86.80 ± 0.40

Salinas

OA 74.92 ± 4.28 85.76 ± 1.57 73.21 ± 2.08 92.46 ± 0.06
AA 77.60 ± 1.52 90.84 ± 0.80 72.81 ± 1.59 96.51 ± 0.03
Kappa × 100 72.03 ± 4.54 84.13 ± 1.76 70.10 ± 2.16 91.60 ± 0.10

4.1.5. Impact of the Size of Patch

The size of the input image patch has important significance for neural networks. We
conduct the experiment on the three HSI data sets with different input patch sizes. As
depicted in Figure 8, GCRVFL tends to obtain better test accuracy results on the whole
when the input patch size grows. However, the classification performance falls off on
the Houston 2013 data set when the input patch size is set to 11 × 11. This is due to the
fact that a larger image patch inevitably contains pixels of other classes, resulting in some
negative influence on HSI classification. Furthermore, valuable spatial information can not
be captured efficiently when the patch size is rather small. Therefore, for the appropriate
use of spatial information, we set the size of the input image patch to 7 × 7 on the three
HSI data sets in our experiments.
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Figure 8. Influence of the size of patch on the Houston 2013, Indian Pines 2010, and Salinas data sets.

4.1.6. Influence of the Number of Principal Components

In this section, we explore the performance of our proposed model with different
numbers of principal components (PCs). In Figure 9a, we show the variance ratio of
the top 10 PCs on the three data sets. We can see that the first PC provides over 65%
variance ratio for all data sets, while top 2 PCs reach 95%. It preserves a 99.9% variance
ratio when using 10 PCs. As illustrated in Figure 9b, PC-3, PC-6, and PC-10 denote the
principal components that we preserved. When ten principal components are employed
to condense the spectral information, our proposed model obtains the best results on the
three HSI data sets. If the number of principal components selected is lower than ten, the
performance of our proposed model tends to be decreased. This is because the model
cannot exploit the discriminant and nonlinear features effectively, and thus some valuable
spectral information is ignored. As a result, in our experiments, ten principal components
are chosen in our model for better performance.
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Figure 9. Influence of different principal components on the Houston 2013, Indian Pines 2010, and
Salinas data sets. (a) Variance ratio of top 10 PCs. (b) Classification with varying PCs.

4.2. Main Results
4.2.1. Baselines and Setup

We compare the proposed GCRVFL model with nine existing baselines: three classi-
cal classification methods—random forest (RF) [42], support vector machine (SVM) [43],
and RVFL [44]; three regular convolution based methods—CNN-2D [45], ResNet [39], and
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DenseNet [46]; and three popular graph convolutional learning methods—GCN [36], SGC [40],
and APPNP [47]. The parameter configurations for these methods are detailed below.

• RF: 200 decision trees are used in a RF classifier.
• SVM: The implementation of scikit-learn is used, where the radial basis function

(RBF) kernel is adopted. Fivefold cross-validation is utilized to select the two hyper-
parameters, σ and λ. The kernel width σ varies in the range of

[
2−4, 2−3, · · · , 24], and

the regularization coefficient λ varies in the range of
[
10−2, 10−1, · · · , 104].

• RVFL: The number of neurons is set as 512, and the regularization coefficient λ is
tuned by grid searching in the range of

[
10−4, 10−1, · · · , 103].

• CNN-2D: Two 2D convolutional blocks are used followed by a fully connected layer
with 512 neurons and a softmax classifier. Each convolutional block involves a 2D
conventional layer, a batch normalization layer, a max-pooling layer, and a ReLU
activation layer. The filters used in the convolutional layers are 3 × 3 × 64 and
3 × 3 × 128, respectively.

• ResNet: The network consists of two residual blocks, each containing two convolu-
tional layers with 3 × 3 × 64 kernels. The same classification head as that of CNN-2D
is used.

• DenseNet: Two dense blocks are used in the model. Each block consists of two
convolutional layers with 3 × 3 × 64 kernels.

• GCN: A graph convolutional layer is adopted with 512 neurons followed by a ReLu
activation in our case. The learning rate is set as 0.002, and the number of training
epochs is set to 500.

• SGC: A simplified convolution is used with a feature propagation of 5 steps, followed
by a softmax classifier.

• APPNP: For the APPNP, the teleport probability α of PageRank is set to 0.1, the number
of power iteration steps is set to 5, and the other network configurations are the same
as those of GCN and SGC.

We configure the hyperparameters for the proposed GCRVFL based on the sensitivity
analysis conducted in the previous subsection. The specific settings for the three data
sets are provided in Table 5. All baseline methods are implemented using Python 3.5 and
assessed on hardware comprising an Intel i5-6500 3.20 GHz CPU with 8 GB RAM and an
NVIDIA GeForce 1050 GPU with 4 GB RAM.

Table 5. Settings of hyperparameters in GCRVFL.

Data Sets Houston 2013 Indian Pines 2010 Salinas

L 512 512 512
λ 0.005 0.05 0.005
K 5 5 5
s 7 7 7

In data preprocessing, we perform PCA to reduce spectral bands into 10 by preserving
at least 99% of the cumulative percentage of variance (CPV). We construct spectral–spatial
samples by using a neighborhood with an input size of 7 × 7 pixels for all HSI data sets.
All samples are standardized by scaling feature values into [0, 1] before use.

4.2.2. Quantitative Results

The first experiment is conducted on the Houston 2013 data set. The quantitative
results obtained by different algorithms are shown in Table 6. For each row, results in bold
font indicate the best performance. As we can observe, the classical classifiers (e.g., RF,
SVM, and RVFL) achieve similar performance. Benefiting from the powerful ability of
deep learning techniques, CNN-2D, ResNet, DenseNet, GCN, SGC, and APPNP exhibit
significantly higher classification accuracy than the three conventional classifiers. How-
ever, SGC shows the worst classification performance because it removes the nonlinear
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transformation and compresses the weight matrix between convolution layers. Based on
evaluation metrics OA, AA, and Kappa, the proposed GCRVFL achieves the best results. In
particular, the proposed model achieves 100% on the Soil, Tennis Court, and Running Track
classes. Furthermore, GCRVFL greatly improves RVFL by 6.8, 6.82, and 7.37 percentage
points for OA, AA, and Kappa evaluation metrics, respectively. These results demonstrate
that graph convolution is beneficial to improving the learning capability of the classical
RVFL on HSI classification to a great extent.

The second experiment is carried out on the Indian Pines 2010 data set. Table 7 shows
the quantitative results obtained by different methods. For the traditional classifiers, RVFL
has slight advantages over RF but nevertheless is inferior to SVM. There is a similar trend
between CNN-2D, ResNet, DenseNet, GCN, and APPNP in classification performance.
The five algorithms based on deep learning are superior to the three traditional classifiers.
GCRVFL outperforms all competitors in terms of OA, AA, and Kappa. Specifically, GCRVFL
has significant performance improvement on those challenging classes with few training
samples (e.g., Local road and Buildings). These results demonstrate that global optimal
solutions obtained by GCRVFL promote the model’s excellent learning ability, which is its
principal difference from comparison algorithms that can only obtain local approximate
solutions. Moreover, graph convolution is efficient for capturing the spectral–spatial
information of HSI.

The third experiment is performed on the Salinas data set. The quantitative results
obtained by different models are summarized in Table 8. Despite using fewer training
samples, GCRVFL also achieves the best results among all competitors in terms of three
evaluation metrics compared to other deep learning models. It should be noted that RF
obtains better results than ResNet and DenseNet. This phenomenon indicates that the deep
learning model requires more labeled samples in the training procedure to achieve better
performance, while the RF based on ensemble learning is less dependent on the proportion
of training samples. GCN, SGC, and APPNP also show good classification performance,
which signifies that the efficient feature extraction ability of graph convolution on the data
will be helpful for HSI classification.

4.2.3. Qualitative Comparison of Different Methods

In order to further evaluate the classification results, we visualize the classification
maps obtained by different approaches on the Houston 2013, Indian Pines 2010, and
Salinas data sets, as depicted in Figures 10–12. In general, traditional classifiers (e.g., RF,
SVM, and RVFL) yield poor classification maps on the three data sets due to more salt
and pepper noise, while the other deep learning-based models generate smoother maps.
More specifically, the classification maps obtained by APPNP have fewer noisy points
than CNN-2D, ResNet, and DenseNet on the Indian Pines 2010 and Salinas data sets.
Taken overall, our proposed GCRVFL obtains smoother and cleaner maps with desirable
edge details in comparison with other approaches. This indicates that GCRVFL’s graph
convolution technique makes it easier to extract the features of HSI data; furthermore, the
acquisition of a global optimal solution contributes to achieving robust representations,
thereby generating a more accurate classification map. Moreover, due to the characteristic
of the spatial attention mechanism, some trivial pixels or mixed-class pixels are filtered
when calculating the embedding of GCRVFL. This is also an important reason why the
classification maps obtained by GCRVFL perform better among all competitors.
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Table 6. Classification results by different methods on the Houston 2013 data set. The best results are in bold.

Class No. RF SVM RVFL CNN-2D ResNet DenseNet GCN SGC APPNP GCRVFL

1 82.05 ± 0.00 82.01 ± 0.05 82.71 ± 0.12 82.68 ± 0.36 82.89 ± 0.21 82.99 ± 0.17 83.10 ± 0.00 82.86 ± 0.05 83.10 ± 0.00 81.90 ± 0.92
2 83.58 ± 0.04 83.46 ± 0.16 83.00 ± 0.33 83.52 ± 1.14 83.87 ± 0.99 84.33 ± 0.76 83.78 ± 0.49 83.55 ± 0.47 85.01 ± 0.05 83.53 ± 1.35
3 99.74 ± 0.09 99.74 ± 0.13 99.60 ± 0.18 96.24 ± 1.47 95.56 ± 1.59 94.61 ± 1.92 98.06 ± 0.34 93.86 ± 0.00 97.23 ± 0.00 99.72 ± 0.10
4 86.99 ± 0.04 87.07 ± 0.29 90.16 ± 0.47 87.92 ± 1.61 85.15 ± 3.95 86.78 ± 4.02 84.02 ± 0.80 82.77 ± 1.33 86.93 ± 0.09 89.03 ± 0.82
5 97.60 ± 0.12 97.62 ± 0.18 97.94 ± 0.10 99.70 ± 0.23 99.77 ± 0.31 99.90 ± 0.20 99.83 ± 0.09 99.01 ± 0.14 99.86 ± 0.05 100.00 ± 0.00
6 95.80 ± 0.57 96.15 ± 0.78 94.41 ± 0.83 94.55 ± 1.43 95.17 ± 1.51 94.83 ± 2.41 95.24 ± 0.28 90.21 ± 0.00 95.10 ± 0.00 95.80 ± 0.00
7 82.56 ± 0.80 82.26 ± 0.62 70.68 ± 1.12 72.36 ± 2.60 78.71 ± 4.29 77.93 ± 2.82 75.17 ± 1.24 70.43 ± 0.09 76.49 ± 0.93 74.59 ± 1.16
8 41.09 ± 0.43 42.01 ± 1.51 48.16 ± 7.04 64.71 ± 9.08 75.95 ± 12.37 68.93 ± 13.56 71.36 ± 1.44 48.58 ± 0.43 69.37 ± 0.14 48.36 ± 2.14
9 72.18 ± 0.89 72.08 ± 0.63 65.49 ± 0.87 74.04 ± 1.87 74.27 ± 3.30 76.51 ± 3.64 81.70 ± 1.33 46.55 ± 1.51 81.40 ± 1.89 89.86 ± 2.83
10 55.02 ± 2.58 54.39 ± 1.11 53.36 ± 2.84 59.11 ± 7.75 63.30 ± 14.31 55.73 ± 4.55 49.15 ± 1.29 62.50 ± 0.14 48.46 ± 0.29 93.32 ± 5.58
11 88.96 ± 0.24 89.58 ± 0.72 85.72 ± 1.18 78.93 ± 1.62 76.12 ± 1.99 79.22 ± 3.76 77.93 ± 0.27 55.03 ± 0.38 77.80 ± 0.66 83.68 ± 1.77
12 84.05 ± 1.51 85.30 ± 1.18 81.92 ± 2.03 91.19 ± 3.16 93.99 ± 2.03 95.31 ± 1.51 93.18 ± 0.68 63.45 ± 0.34 94.00 ± 0.53 85.42 ± 6.28
13 73.22 ± 0.17 72.67 ± 1.14 57.09 ± 1.28 81.54 ± 3.14 77.30 ± 3.55 81.30 ± 2.52 76.77 ± 0.68 69.65 ± 0.18 74.74 ± 1.40 82.18 ± 3.41
14 99.19 ± 0.00 99.11 ± 0.40 97.04 ± 0.45 98.91 ± 0.60 99.07 ± 1.43 98.46 ± 2.01 98.79 ± 0.00 97.37 ± 0.20 99.19 ± 0.00 100.00 ± 0.00
15 96.97 ± 0.10 97.12 ± 0.14 97.82 ± 0.30 96.49 ± 1.89 95.60 ± 1.76 95.62 ± 2.45 99.03 ± 0.22 92.18 ± 0.85 97.46 ± 0.42 100.00 ± 0.00

OA 79.69 ± 0.23 79.84 ± 0.13 77.98 ± 0.53 81.41 ± 1.31 82.98 ± 1.61 82.47 ± 1.06 81.93 ± 0.15 72.20 ± 0.23 82.08 ± 0.11 84.78 ± 1.24
AA 82.60 ± 0.16 82.71 ± 0.15 80.34 ± 0.38 84.13 ± 1.12 85.12 ± 1.27 84.83 ± 0.98 84.47 ± 0.17 75.87 ± 0.13 84.41 ± 0.17 87.16 ± 1.00

Kappa × 100 77.97 ± 0.25 78.15 ± 0.14 76.15 ± 0.57 79.93 ± 1.40 81.60 ± 1.72 81.09 ± 1.12 80.50 ± 0.17 70.15 ± 0.25 80.65 ± 0.15 83.52 ± 1.35

Table 7. Classification results by different methods on the Indian Pines 2010 data set. The best results are in bold.

Class No. RF SVM RVFL CNN-2D ResNet DenseNet GCN SGC APPNP GCRVFL

1 87.51 ± 0.29 85.23 ± 0.00 91.33 ± 0.55 90.74 ± 1.70 85.54 ± 2.41 82.79 ± 5.31 94.10 ± 0.04 80.91 ± 5.22 94.29 ± 0.11 90.77 ± 1.22
2 90.82 ± 0.17 91.14 ± 0.00 65.12 ± 3.48 99.39 ± 0.28 99.68 ± 0.60 97.59 ± 3.29 100.00 ± 0.00 99.96 ± 0.04 100.00 ± 0.00 100.00 ± 0.00
3 97.24 ± 0.00 95.52 ± 0.00 97.24 ± 0.00 97.66 ± 1.14 99.07 ± 1.40 99.89 ± 0.16 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
4 71.89 ± 0.25 72.53 ± 0.00 48.25 ± 0.97 86.36 ± 0.84 86.41 ± 2.72 84.73 ± 2.45 93.23 ± 0.34 85.64 ± 2.83 92.60 ± 0.19 83.77 ± 0.19
5 72.76 ± 0.55 81.02 ± 0.00 89.18 ± 0.26 78.08 ± 1.38 80.71 ± 3.85 77.33 ± 4.02 75.10 ± 0.08 71.01 ± 1.22 76.58 ± 1.08 79.94 ± 0.82
6 87.13 ± 0.08 90.32 ± 0.00 74.53 ± 0.46 81.92 ± 1.51 92.04 ± 4.85 94.84 ± 3.17 96.08 ± 0.01 83.95 ± 4.28 94.33 ± 1.71 95.84 ± 1.45
7 53.06 ± 0.60 45.92 ± 0.00 29.32 ± 1.80 71.72 ± 1.45 77.52 ± 2.69 76.66 ± 4.54 75.26 ± 0.06 77.39 ± 2.89 75.47 ± 0.21 74.66 ± 0.15
8 25.34 ± 0.09 25.55 ± 0.00 23.57 ± 0.05 24.29 ± 0.33 25.95 ± 1.59 23.35 ± 2.54 23.31 ± 0.09 41.05 ± 8.56 23.49 ± 0.09 24.99 ± 0.00
9 71.13 ± 0.51 84.53 ± 0.00 85.89 ± 0.20 85.84 ± 0.76 82.88 ± 5.25 82.18 ± 1.62 86.00 ± 0.05 80.52 ± 4.17 86.07 ± 0.56 86.73 ± 0.08
10 84.50 ± 0.45 81.38 ± 0.01 60.95 ± 0.83 94.85 ± 0.73 89.22 ± 5.66 92.21 ± 2.25 95.04 ± 0.19 89.86 ± 2.46 95.00 ± 0.80 97.89 ± 0.23
11 66.98 ± 0.37 81.84 ± 0.00 39.23 ± 1.53 93.15 ± 0.46 94.06 ± 1.34 95.68 ± 1.89 86.68 ± 0.79 88.51 ± 3.01 86.40 ± 1.41 92.86 ± 0.11
12 100.00 ± 0.00 99.40 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.52 ± 0.23 100.00 ± 0.00 100.00 ± 0.00
13 96.66 ± 0.10 96.51 ± 0.00 94.82 ± 0.39 95.52 ± 1.48 92.97 ± 3.65 96.43 ± 1.26 93.56 ± 0.50 90.08 ± 0.75 93.98 ± 0.11 97.97 ± 0.17
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Table 7. Cont.

Class No. RF SVM RVFL CNN-2D ResNet DenseNet GCN SGC APPNP GCRVFL

14 91.15 ± 0.14 86.07 ± 0.00 89.17 ± 0.09 98.62 ± 0.62 97.84 ± 1.60 98.85 ± 0.76 97.08 ± 0.34 98.81 ± 0.85 98.32 ± 0.25 99.88 ± 0.01
15 95.26 ± 0.28 43.56 ± 0.00 72.22 ± 1.19 98.00 ± 1.17 97.22 ± 3.04 94.15 ± 7.65 99.89 ± 0.11 99.33 ± 0.44 99.33 ± 0.00 100.00 ± 0.00
16 41.70 ± 1.70 1.38 ± 0.00 5.40 ± 0.99 21.34 ± 6.12 14.80 ± 10.54 5.01 ± 1.62 13.83 ± 1.38 13.54 ± 2.47 15.42 ± 1.78 72.13 ± 4.15

OA 80.42 ± 0.19 85.36 ± 0.00 82.82 ± 0.13 85.60 ± 0.39 86.15 ± 2.20 86.58 ± 0.94 86.74 ± 0.11 81.94 ± 0.21 86.92 ± 0.09 89.21 ± 0.32
AA 77.07 ± 0.21 72.62 ± 0.00 66.64 ± 0.39 82.34 ± 0.41 82.24 ± 0.81 81.36 ± 0.38 83.07 ± 0.10 81.25 ± 0.52 83.20 ± 0.03 87.34 ± 0.05

Kappa × 100 76.03 ± 0.21 82.00 ± 0.00 78.77 ± 0.17 82.54 ± 0.48 83.21 ± 2.59 83.67 ± 1.14 83.85 ± 0.15 78.25 ± 0.35 84.10 ± 0.10 86.80 ± 0.40

Table 8. Classification results by different methods on the Salinas data set. The best results are in bold.

Class No. RF SVM RVFL CNN-2D ResNet DenseNet GCN SGC APPNP Ours

1 98.70 ± 0.49 95.53 ± 0.88 93.27 ± 1.11 97.87 ± 2.11 98.54 ± 1.27 98.58 ± 1.29 99.21 ± 0.53 94.10 ± 5.19 99.66 ± 0.40 99.87 ±0.03
2 98.11 ± 1.82 91.68 ± 3.53 90.83 ± 2.69 94.27 ± 7.20 98.06 ± 2.30 97.54 ± 1.73 99.96 ± 0.05 98.05 ± 1.38 99.83 ± 0.17 99.53 ± 0.34
3 88.66 ± 5.50 82.43 ± 2.14 75.89 ± 2.87 97.48 ± 1.59 99.18 ± 0.62 97.99 ± 2.09 99.69 ± 0.32 90.49 ± 5.67 99.60 ± 0.42 99.31 ± 0.08
4 99.29 ± 0.35 98.66 ± 0.54 95.68 ± 2.46 99.05 ± 1.07 98.94 ± 0.60 99.23 ± 0.47 99.07 ± 0.51 97.44 ± 1.73 99.24 ± 0.25 99.34 ± 0.22
5 96.31 ± 0.88 87.98 ± 3.10 85.01 ± 3.45 93.12 ± 3.66 95.76 ± 0.87 96.06 ± 1.09 97.86 ± 1.88 94.06 ± 6.34 98.21 ± 0.99 96.82 ± 0.36
6 99.28 ± 0.48 99.59 ± 0.27 96.75 ± 2.28 99.30 ± 0.93 99.95 ± 0.09 99.84 ± 0.14 99.88 ± 0.22 99.99 ± 0.01 99.93 ± 0.12 99.86 ± 0.14
7 98.93 ± 0.23 98.83 ± 0.34 96.62 ± 1.16 96.94 ± 2.58 99.76 ± 0.19 98.77 ± 1.10 98.95 ± 0.97 95.18 ± 6.38 99.15 ± 0.69 99.13 ± 0.70
8 67.26 ± 5.90 57.85 ± 3.45 56.01 ± 4.84 71.46 ± 7.33 58.73 ± 14.83 58.56 ± 12.21 74.55 ± 9.95 71.68 ± 7.38 83.78 ± 9.81 79.67 ± 0.08
9 99.14 ± 0.36 95.18 ± 1.85 93.42 ± 2.26 98.39 ± 1.63 99.93 ± 0.11 99.28 ± 0.69 99.73 ± 0.34 96.84 ± 2.94 99.95 ± 0.06 99.98 ± 0.02
10 79.96 ± 3.17 73.66 ± 4.10 71.12 ± 5.94 89.71 ± 4.45 92.55 ± 3.05 89.68 ± 3.54 92.01 ± 2.37 88.95 ± 5.51 92.55 ± 1.72 92.17 ± 0.21
11 92.48 ± 2.04 83.53 ± 2.64 82.16 ± 3.10 96.76 ± 3.23 98.97 ± 1.28 98.95 ± 1.07 99.64 ± 0.63 98.13 ± 1.52 99.41 ± 0.64 99.33 ± 0.38
12 98.12 ± 1.43 81.92 ± 7.26 77.71 ± 5.22 97.59 ± 3.10 98.79 ± 1.42 98.65 ± 0.76 99.70 ± 0.31 96.62 ± 2.76 99.76 ± 0.28 99.06 ± 0.52
13 97.81 ± 0.49 92.17 ± 3.42 81.18 ± 5.10 97.43 ± 2.56 98.19 ± 1.97 98.88 ± 0.56 98.75 ± 1.05 96.27 ± 2.79 99.75 ± 0.16 99.55 ± 0.00
14 90.93 ± 2.20 89.22 ± 2.14 78.51 ± 8.84 97.02 ± 2.09 99.60 ± 0.27 98.61 ± 0.47 99.79 ± 0.19 95.60 ± 3.62 99.83 ± 0.13 99.52 ± 0.48
15 59.64 ± 7.55 52.80 ± 6.67 51.44 ± 4.78 69.44 ± 6.35 57.27 ± 13.08 58.48 ± 12.33 84.58 ± 5.13 61.54 ± 12.91 72.57 ± 9.43 82.12 ± 0.59
16 93.72 ± 2.22 95.99 ± 0.98 90.65 ± 2.48 98.38 ± 0.79 97.87 ± 1.20 97.81 ± 0.85 98.25 ± 0.62 97.34 ± 1.08 98.42 ± 0.70 98.85 ± 0.48

OA 84.86 ± 0.74 79.13 ± 0.92 76.51 ± 0.98 87.62 ± 1.74 84.51 ± 1.69 84.25 ± 1.06 91.74 ± 1.68 86.10 ± 1.47 92.17 ± 1.34 92.46 ± 0.06
AA 91.15 ± 0.75 86.06 ± 0.39 82.27 ± 0.62 93.39 ± 0.85 93.26 ± 0.65 92.93 ± 0.28 96.35 ± 0.39 92.02 ± 1.05 96.35 ± 0.39 96.51 ± 0.03

Kappa × 100 83.16 ± 0.81 76.82 ± 1.04 73.90 ± 1.08 86.24 ± 1.92 82.78 ± 1.83 82.48 ± 1.12 90.84 ± 1.84 84.54 ± 1.64 91.28 ± 1.45 91.60 ± 0.10
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Figure 10. The classification maps obtained by different models on the Houston 2013 data set.
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Figure 11. The classification maps obtained by different models on the Indian Pines 2010 data set.
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Figure 12. The classification maps obtained by different models on the Salinas data set.

4.2.4. Comparison with the State of the Art

To demonstrate the effectiveness of GCRVFL, we conducted experiments on the Hous-
ton 2013 data set, comparing its performance with five state-of-the-art methods: RNN [48],
MiniGCN [26], ViT [5], and SpectralFormer [6]. The results are reported in Table 9. Remark-
ably, our proposed GCRVFL achieves competitive results despite its surprisingly simpler
architecture compared to state-of-the-art methods. State-of-the-art models, such as ViT,
often employ elaborate architectures that can be powerful when abundant training data
are available. However, these models may suffer from overfitting on the Houston data
set, necessitating the introduction of complex training tricks. For instance, SpectralFormer
adopts cross-layer adaptive fusion. In contrast, our GCRVFL features a straightforward
architecture with diverse neurons. This design not only provides comparable performance
but also proves to be more user friendly and efficient for practical applications.

Table 9. Performance comparison with state-of-the-art methods on Houston 2013 data set.

Class No. GCRVFL RNN MiniGCN ViT Spectral Former

1 81.90 82.34 98.39 82.81 83.48
2 83.53 94.27 92.11 96.62 95.58
3 99.72 99.60 99.60 99.80 99.60
4 89.03 97.54 96.78 99.24 99.15
5 100.00 93.28 97.73 97.73 97.44
6 95.80 95.10 95.10 95.10 95.10
7 74.59 83.77 57.28 76.77 88.99
8 48.36 56.03 68.09 55.65 73.31
9 89.86 72.14 53.92 67.42 71.86

10 93.32 84.17 77.41 68.05 87.93
11 83.68 82.83 84.91 82.35 80.36
12 85.42 70.61 77.23 58.50 70.70
13 82.18 69.12 50.88 60.00 71.23
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Table 9. Cont.

Class No. GCRVFL RNN MiniGCN ViT Spectral Former

14 100.00 98.79 98.38 98.79 98.79
15 100.00 95.98 98.52 98.73 98.73

OA 84.78 83.23 81.71 80.41 86.14
AA 87.16 85.04 83.09 82.50 87.48

Kappa × 100 83.52 81.83 80.18 78.76 84.97

4.3. Training Time

To showcase the efficiency advantage of our proposed GCRVFL compared to the
baselines, we summarize the training times of the different methods in Table 10. GCRVFL’s
time complexity is comparable to other GCN-based methods, yet it utilizes a closed-form
solution for training. The complexities of these methods are highly dependent on the
scale of the input graph. In contrast, gradient-based deep methods like CNN-2D, ResNet,
and DenseNet, which involve a large number of parameters and coupled operations, are
challenging to compute in terms of time complexities as they far exceed those in GCRVFL.
It is worth noting that we precompute all the adjacency matrices for the training set to
avoid repetitive calculations before training. As shown in Table 10, our proposed GCRVFL
exhibits the shortest training time, outpacing other deep learning-based models (e.g.,
CNN-2D, ResNet, DenseNet, GCN, SGC, and APPNP), especially in comparison to the
three graph-based models. This efficiency arises because our proposed model avoids
iteratively updating the output layer parameters, instead obtaining them through closed-
form solutions. Additionally, the random generation of hidden parameters contributes to
the overall faster training speed.

Table 10. The training time of different methods on three HSI data sets (in seconds). The last row
denotes the time complexity of different methods, where Ccnn, CResNet, and CDenseNet indicate the
complexity of the corresponding base block and T = s × s.

Data Set RF SVM RVFL CNN-2D ResNet DenseNet GCN SGC APPNP GCRVFL

Houston 2013 1.202 0.085 0.068 41.429 74.707 74.213 505.971 183.757 446.336 0.846
Indian Pines 2010 4.346 0.496 0.244 141.581 248.961 287.809 1812.658 562.704 1428.152 3.852

Salinas 0.650 0.028 0.016 9.456 9.086 10.683 145.545 45.995 134.625 0.341

Time Complexity O(N log(N)) O(N2) O(N · L)
O(N ·

Depth ·
Ccnn)

O(N ·
Depth ·
CResNet)

O(N ·
Depth ·

CDenseNet)
O(T2 · L) O(T3)

O(Depth ·
T2)

O(T2 · L)

5. Conclusions and Future Work

In this paper, we proposed a simple yet efficient HSI classification technique termed
GCRVFL. The presented model not only inherits the performance advantage of GCN,
but also simplifies GCN by extending the classic RVFL network into the graph domain,
where the closed-form solution of the output layer simplifies the GCN model. In order to
enable GCRVFL to process large-scale HSI, we consider HSI classification as a graph-level
classification task, instead of a node-level task. Experimental results demonstrate that our
presented GCRVFL can achieve more accurate performance while consuming less training
time and significantly reducing training costs in comparison with many competitors.

In future work, we plan to explore a compelling research direction by extending
GCRVFL to deeper architectures for hyperspectral image (HSI) classification. Additionally,
there is significant potential in applying GCRVFL to various remote sensing tasks, including
but not limited to building extraction.



Remote Sens. 2024, 16, 37 21 of 23

Author Contributions: Conceptualization, Z.Z. and Y.C.; funding acquisition, Y.M. and Y.C.; in-
vestigation, Y.C. and X.L.; project administration, M.Z. and Y.M.; supervision, X.L.; visualization,
Z.Z.; writing—original draft, Z.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was partly supported by the Knowledge Innovation Program of Wuhan-
Shuguang Project under Grant No. 2023020201020414, the Open Research Fund Program of LIES-
MARS under Grant No. 22S04, the National Natural Science Foundation of China under Grant No.
61973285, the Hubei Provincial Natural Science Foundation of China under Grant No. 2023AFB415,
and the National Postdoctoral Researcher Program of China under Grant No. GZC20233138.

Data Availability Statement: The data presented in this study are available in this article.

Acknowledgments: The authors would like to thank Melba Crawford for providing the Indian
Pines 2010 Data and the National Center for Airborne Laser Mapping, the Hyperspectral Image
Analysis Laboratory at the University of Houston, and the IEEE GRSS Image Analysis and Data
Fusion Technical Committee for providing the Houston data sets.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Salcedo-Sanz, S.; Ghamisi, P.; Piles, M.; Werner, M.; Cuadra, L.; Moreno-Martínez, A.; Izquierdo-Verdiguier, E.; noz Marí, J.M.;

Mosavi, A.; Camps-Valls, G. Machine learning information fusion in Earth observation: A comprehensive review of methods,
applications and data sources. Inf. Fusion 2020, 63, 256–272. [CrossRef]

2. Ghamisi, P.; Maggiori, E.; Li, S.; Souza, R.; Tarablaka, Y.; Moser, G.; De Giorgi, A.; Fang, L.; Chen, Y.; Chi, M.; et al. New
Frontiers in Spectral-Spatial Hyperspectral Image Classification: The Latest Advances Based on Mathematical Morphology,
Markov Random Fields, Segmentation, Sparse Representation, and Deep Learning. IEEE Geosci. Remote Sens. Mag. 2018, 6, 10–43.
[CrossRef]

3. Yang, J.; Du, B.; Zhang, L. From center to surrounding: An interactive learning framework for hyperspectral image classification.
ISPRS J. Photogramm. Remote Sens. 2023, 197, 145–166. [CrossRef]

4. Okwuashi, O.; Ndehedehe, C.E. Deep support vector machine for hyperspectral image classification. Pattern Recognit. 2020,
103, 107298. [CrossRef]

5. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929.2021.

6. Hong, D.; Han, Z.; Yao, J.; Gao, L.; Zhang, B.; Plaza, A.; Chanussot, J. SpectralFormer: Rethinking Hyperspectral Image
Classification With Transformers. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5518615. [CrossRef]

7. Jia, N.; Tian, X.; Gao, W.; Jiao, L. Deep Graph-Convolutional Generative Adversarial Network for Semi-Supervised Learning on
Graphs. Remote Sens. 2023, 15, 3172. [CrossRef]

8. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in
convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [CrossRef]

9. Guo, M.; Liu, H.; Xu, Y.; Huang, Y. Building Extraction Based on U-Net with an Attention Block and Multiple Losses. Remote
Sens. 2020, 12, 1400. [CrossRef]

10. Meng, Y.; Chen, S.; Liu, Y.; Li, L.; Zhang, Z.; Ke, T.; Hu, X. Unsupervised Building Extraction from Multimodal Aerial Data Based
on Accurate Vegetation Removal and Image Feature Consistency Constraint. Remote Sens. 2022, 14, 1912. [CrossRef]

11. Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual Attention Network for Image Classifica-
tion. In Proceedings of the The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,
21–26 July 2017.

12. Oskouei, A.G.; Balafar, M.A.; Motamed, C. RDEIC-LFW-DSS: ResNet-based deep embedded image clustering using local feature
weighting and dynamic sample selection mechanism. Inf. Sci. 2023, 646, 119374. [CrossRef]

13. Zhan, L.; Li, W.; Min, W. FA-ResNet: Feature affine residual network for large-scale point cloud segmentation. Int. J. Appl. Earth
Obs. Geoinf. 2023, 118, 103259. [CrossRef]

14. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.

15. Li, B.; Xiao, C.; Wang, L.; Wang, Y.; Lin, Z.; Li, M.; An, W.; Guo, Y. Dense nested attention network for infrared small target
detection. IEEE Trans. Image Process. 2022, 32, 1745–1758. [PubMed] [CrossRef]

16. Li, Z.; Yan, C.; Sun, Y.; Xin, Q. A densely attentive refinement network for change detection based on very-high-resolution
bitemporal remote sensing images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4409818. [CrossRef]

17. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.u.; Polosukhin, I. Attention is All you Need.
In Advances in Neural Information Processing Systems 30; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; pp. 5998–6008.

http://doi.org/10.1016/j.inffus.2020.07.004
http://dx.doi.org/10.1109/MGRS.2018.2854840
http://dx.doi.org/10.1016/j.isprsjprs.2023.01.024
http://dx.doi.org/10.1016/j.patcog.2020.107298
http://dx.doi.org/10.1109/TGRS.2021.3130716
http://dx.doi.org/10.3390/rs15123172
http://dx.doi.org/10.1016/j.patcog.2017.10.013
http://dx.doi.org/10.3390/rs12091400
http://dx.doi.org/10.3390/rs14081912
http://dx.doi.org/10.1016/j.ins.2023.119374
http://dx.doi.org/10.1016/j.jag.2023.103259
http://www.ncbi.nlm.nih.gov/pubmed/35994532
http://dx.doi.org/10.1109/TIP.2022.3199107
http://dx.doi.org/10.1109/TGRS.2022.3159544


Remote Sens. 2024, 16, 37 22 of 23

18. Cai, Y.; Liu, X.; Cai, Z. BS-Nets: An End-to-End Framework for Band Selection of Hyperspectral Image. IEEE Trans. Geosci.
Remote Sens. 2020, 58, 1969–1984. [CrossRef]

19. Zhao, C.; Qin, B.; Feng, S.; Zhu, W.; Sun, W.; Li, W.; Jia, X. Hyperspectral image classification with multi-attention transformer
and adaptive superpixel segmentation-based active learning. IEEE Trans. Image Process. 2023, 32, 3606–3621. [PubMed] [CrossRef]

20. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural
Netw. Learn. Syst. 2021, 32, 4–24. [PubMed] [CrossRef]

21. Ding, Y.; Guo, Y.; Chong, Y.; Pan, S.; Feng, J. Global Consistent Graph Convolutional Network for Hyperspectral Image
Classification. IEEE Trans. Instrum. Meas. 2021, 70, 5501516. [CrossRef]

22. Cai, Y.; Zhang, Z.; Cai, Z.; Liu, X.; Jiang, X.; Yan, Q. Graph Convolutional Subspace Clustering: A Robust Subspace Clustering
Framework for Hyperspectral Image. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4191–4202. [CrossRef]

23. Wan, S.; Gong, C.; Zhong, P.; Du, B.; Zhang, L.; Yang, J. Multiscale Dynamic Graph Convolutional Network for Hyperspectral
Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3162–3177. [CrossRef]

24. Ding, Y.; Zhao, X.; Zhang, Z.; Cai, W.; Yang, N.; Zhan, Y. Semi-Supervised Locality Preserving Dense Graph Neural Network
With ARMA Filters and Context-Aware Learning for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022,
60, 5511812. [CrossRef]

25. Yin, J.; Liu, X.; Hou, R.; Chen, Q.; Huang, W.; Li, A.; Wang, P. Multiscale Pixel-Level and Superpixel-Level Method for
Hyperspectral Image Classification: Adaptive Attention and Parallel Multi-Hop Graph Convolution. Remote Sens. 2023, 15, 4235.
[CrossRef]

26. Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Plaza, A.; Chanussot, J. Graph Convolutional Networks for Hyperspectral Image
Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5966–5978. [CrossRef]

27. Zhang, X.; Chen, S.; Zhu, P.; Tang, X.; Feng, J.; Jiao, L. Spatial Pooling Graph Convolutional Network for Hyperspectral Image
Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5521315. [CrossRef]

28. Zhang, L.; Suganthan, P. A comprehensive evaluation of random vector functional link networks. Inf. Sci. 2016, 367–368, 1094–1105.
[CrossRef]

29. Zhang, Z.; Cai, Y.; Gong, W. Evolution-Driven Randomized Graph Convolutional Networks. IEEE Trans. Syst. Man Cybern. Syst.
2022, 52, 7516–7526. [CrossRef]

30. Gao, R.; Du, L.; Suganthan, P.N.; Zhou, Q.; Yuen, K.F. Random vector functional link neural network based ensemble deep
learning for short-term load forecasting. Expert Syst. Appl. 2022, 206, 117784. [CrossRef]

31. Malik, A.K.; Ganaie, M.A.; Tanveer, M.; Suganthan, P.N.; Initiative, A.D.N.I. Alzheimer’s Disease Diagnosis via Intuitionistic
Fuzzy Random Vector Functional Link Network. IEEE Trans. Comput. Soc. Syst. 2022, 1–12. [CrossRef]

32. Cai, Y.; Zhang, Z.; Yan, Q.; Zhang, D.; Banu, M.J. Densely Connected Convolutional Extreme Learning Machine for Hyperspectral
Image Classification. Neurocomputing 2020, 434, 21–32. [CrossRef]

33. Zhou, Y.; Wei, Y. Learning Hierarchical Spectral-Spatial Features for Hyperspectral Image Classification. IEEE Trans. Cybern.
2016, 46, 1667–1678. [CrossRef]

34. Cao, F.; Yang, Z.; Ren, J.; Ling, W.; Zhao, H.; Sun, M.; Benediktsson, J.A. Sparse Representation-Based Augmented Multinomial
Logistic Extreme Learning Machine With Weighted Composite Features for Spectral-Spatial Classification of Hyperspectral
Images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6263–6279. [CrossRef]

35. Zhang, Z.; Cui, P.; Zhu, W. Deep Learning on Graphs: A Survey. IEEE Trans. Knowl. Data Eng. 2020, 56, 6263–6279. [CrossRef]
36. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th

International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017.
37. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering.

In Proceedings of the Advances in Neural Information Processing Systems; Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R.,
Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2016; Volume 29, pp. 3844–3852.

38. Chen, D.; Lin, Y.; Li, W.; Li, P.; Zhou, J.; Sun, X. Measuring and relieving the over-smoothing problem for graph neural
networks from the topological view. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA,
7–12 February 2020; Volume 34, pp. 3438–3445.

39. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

40. Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying Graph Convolutional Networks. In Proceedings of the
International Conference on Machine Learning, Long Beach , CA, USA, 9–15 June 2019; pp. 6861–6871.

41. Debes, C.; Merentitis, A.; Heremans, R.; Hahn, J.; Frangiadakis, N.; van Kasteren, T.; Liao, W.; Bellens, R.; Pižurica, A.; Gautama,
S.; et al. Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2014, 7, 2405–2418. [CrossRef]

42. Mekha, P.; Teeyasuksaet, N. Image Classification of Rice Leaf Diseases Using Random Forest Algorithm. In Proceedings of the
2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical,
Electronics, Computer and Telecommunication Engineering, Cha-am, Thailand, 3–6 March 2021, pp. 165–169. [CrossRef]

43. Fauvel, M.; Chanussot, J.; Benediktsson, J.A. A spatial-spectral kernel-based approach for the classification of remote-sensing
images. Pattern Recognit. 2012, 45, 381–392. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2019.2951433
http://www.ncbi.nlm.nih.gov/pubmed/37368812
http://dx.doi.org/10.1109/TIP.2023.3287738
http://www.ncbi.nlm.nih.gov/pubmed/32217482
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://dx.doi.org/10.1109/TIM.2021.3056750
http://dx.doi.org/10.1109/TGRS.2020.3018135
http://dx.doi.org/10.1109/TGRS.2019.2949180
http://dx.doi.org/10.1109/TGRS.2021.3100578
http://dx.doi.org/10.3390/rs15174235
http://dx.doi.org/10.1109/TGRS.2020.3015157
http://dx.doi.org/10.1109/TGRS.2022.3140353
http://dx.doi.org/10.1016/j.ins.2015.09.025
http://dx.doi.org/10.1109/TSMC.2022.3158276
http://dx.doi.org/10.1016/j.eswa.2022.117784
http://dx.doi.org/10.1109/TCSS.2022.3146974
http://dx.doi.org/10.1016/j.neucom.2020.12.064
http://dx.doi.org/10.1109/TCYB.2015.2453359
http://dx.doi.org/10.1109/TGRS.2018.2828601
http://dx.doi.org/10.1109/TKDE.2020.2981333
http://dx.doi.org/10.1109/JSTARS.2014.2305441
http://dx.doi.org/10.1109/ECTIDAMTNCON51128.2021.9425696
http://dx.doi.org/10.1016/j.patcog.2011.03.035


Remote Sens. 2024, 16, 37 23 of 23

44. Igelnik, B.; Pao, Y.H. Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE
Trans. Neural Netw. 1995, 6, 1320–1329. [CrossRef] [PubMed]

45. Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral Images Based on
Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [CrossRef]

46. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. arXiv 2018,
arXiv:1608.06993

47. Klicpera, J.; Bojchevski, A.; Günnemann, S. Predict then Propagate: Graph Neural Networks meet Personalized PageRank. In
Proceedings of the International Conference on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019.

48. Hang, R.; Liu, Q.; Hong, D.; Ghamisi, P. Cascaded Recurrent Neural Networks for Hyperspectral Image Classification. IEEE
Trans. Geosci. Remote Sens. 2019, 57, 5384–5394. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/72.471375
http://www.ncbi.nlm.nih.gov/pubmed/18263425
http://dx.doi.org/10.1109/TGRS.2016.2584107
http://dx.doi.org/10.1109/TGRS.2019.2899129

	Introduction
	Related Works
	Notations
	GCN
	RVFL

	Materials and Method 
	Overall Framework
	Graph Construction
	Random Graph Convolution
	Graph Convolutional Regression
	Connection to Existing Methods
	GCRVFL vs. RVFL
	GCRVFL vs. GCN
	GCRVFL vs. Attention Mechanism

	Data Sets

	Experiments
	Analysis of Hyper-Parameter Sensitivity
	Impact of the Number of Hidden Neurons L
	Impact of 
	Impact of the Number of Neighbors K
	Impact of Activation Function
	Impact of the Size of Patch
	Influence of the Number of Principal Components

	Main Results
	Baselines and Setup
	Quantitative Results
	Qualitative Comparison of Different Methods 
	Comparison with the State of the Art

	Training Time

	Conclusions and Future Work 
	References

