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Abstract: With burgeoning economic development, a surging influx of greenhouse gases, notably
carbon dioxide (CO2), has precipitated global warming, thus accentuating the critical imperatives of
monitoring and predicting carbon emissions. Conventional approaches employed in the examination
of carbon emissions predominantly rely on energy statistics procured from the National Bureau of
Statistics and local statistical bureaus. However, these conventional data sources, often encapsulated
in statistical yearbooks, exclusively furnish insights into energy consumption at the national and
provincial levels, so the assessment at a more granular scale, such as the municipal and county levels,
poses a formidable challenge. This study, using nighttime light data and statistics records spanning
from 2000 to 2019, undertook a comparative analysis, scrutinizing various modeling methodologies,
encompassing linear, exponential, and logarithmic models, with the aim of assessing carbon emissions
across diverse spatial scales. A multifaceted analysis unfolded, delving into the key attributes of
China’s carbon emissions, spanning total carbon emissions, per capita carbon emissions, and carbon
emission intensity. Spatial considerations were also paramount, encompassing an examination of
carbon emissions across provincial, municipal, and county scales, as well as an intricate exploration
of spatial patterns, including the displacement of the center of gravity and the application of trend
analyses. These multifaceted analyses collectively contributed to the endeavor of predicting China’s
future carbon emission trajectory. The findings of the study revealed that at the national scale,
total carbon emissions exhibited an annual increment throughout the period spanning 2000 to 2019.
Secondly, upon an in-depth evaluation of model fitting, it was evident that the logarithmic model
emerged as the most adept in terms of fitting, presenting a mean R2 value of 0.83. Thirdly, the gravity
center of carbon emissions in China was situated within Henan Province, and there was a discernible
overall shift towards the southwest. In 2025 and 2030, it is anticipated that the average quantum
of China’s carbon emissions will reach 7.82 × 102 million and 25.61 × 102 million metric tons, with
Shandong Province emerging as the foremost contributor. In summary, this research serves as a robust
factual underpinning and an indispensable reference point for advancing the scientific underpinnings
of China’s transition to a low-carbon economy and the judicious formulation of policies governing
carbon emissions.
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1. Introduction

Today’s society faces various challenges and threats, such as resource constraints,
energy depletion, reduced food production, environmental pollution, overpopulation, and
global warming [1–3]. Amongst them, global warming has emerged as the most critical is-
sue, directly impacting the natural environment and the sustainable development of human
society and economy [4]. The factors that affect global warming are natural [5], such as solar
radiation, atmospheric radiation, and atmospheric circulation, and anthropogenic [6,7].
The predominant contributor to the rise in global temperatures and global warming is
large-scale human activities that emit substantial amounts of greenhouse gases, such as
CO2, into the atmosphere [8,9]. These greenhouse gases are highly transmissive of solar
radiation and highly absorbent of longwave radiation reflected from the Earth’s surface,
leading to an increase in global temperature, a phenomenon known as the greenhouse
effect [10,11]. The latest assessment by the Intergovernmental Panel on Climate Change
shows that the global average temperature increased by 1.09 ◦C from the second half of the
19th century to the first decades of the 21st century [12]. The main reason is the increased
concentration of CO2. Carbon emissions have become a focus of interest for all countries,
and the study of carbon emissions has garnered global attention, progressively becoming a
topic of international concern [13].

As China experiences rapid industrialization and urbanization, and with its economic
development heavily reliant on fossil energy, the country has generated significant carbon
emissions [14]. China has become the country with the highest CO2 emission in the world,
and its share of CO2 emissions has increased from 10.9% in 1990 to 28.61% in 2018 [15].
To control energy consumption and reduce CO2 emissions, China has established corre-
sponding targets and policies. Notably, the emission reduction targets for 2030 stipulate
that carbon emissions will peak by that year, and non-fossil energy will constitute 20% of
total energy consumption [16]. Concurrently, the Chinese government plans to peak carbon
emissions around 2030 [17]. Against this backdrop, China has proposed the dual carbon
goals of achieving carbon peaking and carbon neutrality, aligning with the demands of the
current era [18].

Against the backdrop of frequent global warming and environmental issues, remote
sensing technology offers several advantages, including easy accessibility, rapid updates,
and extensive coverage [19]. Consequently, remote sensing plays a pivotal role in monitor-
ing greenhouse gases and atmospheric pollutants [20]. (1) Direct calculation is based on
greenhouse gas remote sensing satellites and data [21]. The monitoring technology of these
satellites quantifies greenhouse gas concentrations through non-contact methods involving
various technologies such as Fourier transform infrared spectroscopy (FTIR), differential
absorption lidar (DIAL), laser heterodyne spectroscopy (LHS), and spatial heterodyne
spectroscopy (SHS) [22]. (2) Remote sensing observations are used for indirect accounting
and inversion of greenhouse gases [23]. Currently, optimal estimation methods and dif-
ferential optical absorption spectroscopy (DOAS)-related algorithms are the mainstream
approaches for estimating non-CO2 gas concentrations from satellite observations. The
column concentration accuracy can reach 1% for CH4, 10% for NO2, 1% for N2O, and 1%
for O3. (3) In the monitoring of atmospheric pollution particles based on remote sensing
data [24], a three-dimensional monitoring network for urban air pollution is built based on
ground environmental air automatic monitoring stations, and the environmental quality
of the entire region is simulated and analyzed using measured data from the stations [25].
This network facilitates the simulation and analysis of regional environmental quality using
measured data from stations, including inhalable particulate matter, fine particulate matter,
nitrogen dioxide, sulfur dioxide, carbon monoxide, and ozone. In summary, remote sensing
technology plays a crucial role in various aspects of atmospheric environment monitoring
such as trace gases, atmospheric particulate matter, volatile organic compounds (VOCs),
and hazardous substances [26].
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In China, CO2 emissions are generally quantified using energy statistics [13]. The
country’s vast territory and regional disparities make the collection of energy statistics
burdensome and complex [27]. Meanwhile, China’s research on carbon emissions is mainly
based on energy statistics from the National Bureau of Statistics and local statistical bureaus.
However, statistical yearbooks only provide energy consumption data at the national and
provincial levels. Data on the energy consumption of the country’s prefectural cities at
county and township levels and even smaller scales are unavailable, so research cannot
be conducted on carbon emissions at small scales [28]. Furthermore, the quality of data
statistics varies across different regions of China, and energy consumption statistics in
national and local energy statistical yearbooks are lagging [29].

With the advancement of remote sensing technology, the use of satellite data to mea-
sure carbon emissions is gaining momentum [30]. Remote sensing technology enables
the periodic and rapid acquisition of macro-level information with minimal data con-
straints [31,32]. Therefore, this technology is widely used in related fields, such as agri-
culture and forestry monitoring, weather and meteorological forecasting, hydrological
water monitoring, environmental monitoring, mapping and surveying, military reconnais-
sance, and geology and minerals [33–35]. Compared to traditional methods like statistical
approaches, remote sensing technology overcomes the spatial and temporal limitations
associated with data collection [32,36]. Thus, remote sensing technology provides data
support for studying carbon emissions at various scales [37]. Nighttime light imagery, a
special kind of remote sensing imagery, has long light sequences that effectively record
light information related to human activities [38]. Consequently, nighttime light data have
become a crucial source for carbon emission studies [39].

This research aims to control the total amount of carbon emissions in China and
explore the patterns and development trends of energy carbon emissions. The study
focuses on three main objectives: (1) Using statistical and nighttime light data from 2000 to
2019, a model for fitting carbon emissions and nighttime lighting is constructed to estimate
carbon emissions at different scales (province, city, and county). This task compensates
for the limitations of statistical data. (2) The basic characteristics of total carbon emissions,
per capita carbon emissions, and carbon emission intensity at different scales (province,
city, and county) in 2000, 2005, 2010, 2015, and 2019 are examined. Carbon emission
characteristics are analyzed using spatial center of gravity migration, trend changes, and
spatial aggregation methods. (3) Based on the grey prediction model GM (1, 1), provincial-
scale carbon emissions for 2025 and 2030 are forecasted using carbon emission data from
2000 to 2019. This research aims to provide a reference for the scientific and sustainable
development of a low-carbon economy in China and for the formulation of corresponding
carbon emission reduction policies by regional governments.

2. Materials
2.1. Study Area

As the world’s most populous country, China is undergoing rapidly growing urban-
ization as it enters the 21st century [40]. By the end of 2019, mainland China comprised
360 prefecture-level cities and 2774 county-level cities [41]. This research excludes Tibet,
Hong Kong, Macau, and Taiwan due to regional differences and the unavailability of
statistics in these areas (Figure 1). To align with available official statistics and to reflect
the continuous changes in China’s carbon emissions, the study covers a period of 20 years,
from 2000 to 2019.
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spatial resolution of 1 km. Both the oversaturation issue of DMSP/OLS data and the 
noise problem in NPP/VIIRS data had been addressed. The continuity and availability of 
the data were conducive to the extraction of information on cities and towns across the 
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The original DMSP/OLS and NPP/VIIRS data present challenges due to variations 
in sensors, spatiotemporal resolutions, data processing methods, and pixel interpreta-
tions, which pose difficulties in integrating long-term nighttime lighting data. These da-
ta issues significantly constrain the potential applications of nighttime light data and 
may also impact the effectiveness of research relying on such data. Therefore, research-
ers conducted a series of data processing steps on DMSP/OLS images from 2000 to 2013 
and monthly NPP/VIIRS images from 2012 to 2020. Through preprocessing, mutual cor-
rection, and saturation correction techniques applied to DMSP/OLS images, annual 
DMSP/OLS datasets were obtained. Simultaneously, preprocessing steps including out-
lier processing and median-based annual synthesis on NPP/VIIRS images were per-
formed to obtain annual NPP/VIIRS datasets. Finally, by fusing the annual EANTLI da-
taset with the NPP/VIIRS dataset through spatial resolution integration, fitting function 
construction and continuous corrections were made resulting in long-term nighttime 
light datasets [42]. 

2.2.2. Statistical Data 
To calculate carbon emissions from energy consumption at different scales (prov-

inces, municipalities, and districts), annual statistics were obtained from the National 
Bureau of Statistics of the People’s Republic of China. Data on 11 energy sources were 
collected based on the China Energy Statistical Yearbook from 2000 to 2019, as well as 
from provincial and local energy balances (including autonomous regions and munici-
palities directly under the central government, but excluding Tibet, Taiwan, Hong Kong, 
and Macao) from the relevant city statistics. Additionally, the carbon emission factors for 
different energy sources were derived from the IPCC Guidelines for National Green-
house Gas Inventories. 

  

Figure 1. Research area.

2.2. Study Data
2.2.1. Nighttime Light Data

Data were obtained from the Long Time Series Nighttime Light Dataset of China
(2000–2020) published by Zhong Xiaoya in the Global Change Research Data Publishing
and Repository [42]. This dataset for China was based on the calibration and fusion of
DMSP/OLS annual moonlight image data and NPP/VIIRS monthly image data, with a
spatial resolution of 1 km. Both the oversaturation issue of DMSP/OLS data and the noise
problem in NPP/VIIRS data had been addressed. The continuity and availability of the
data were conducive to the extraction of information on cities and towns across the country
over an extended period.

The original DMSP/OLS and NPP/VIIRS data present challenges due to variations in
sensors, spatiotemporal resolutions, data processing methods, and pixel interpretations,
which pose difficulties in integrating long-term nighttime lighting data. These data issues
significantly constrain the potential applications of nighttime light data and may also impact
the effectiveness of research relying on such data. Therefore, researchers conducted a series
of data processing steps on DMSP/OLS images from 2000 to 2013 and monthly NPP/VIIRS
images from 2012 to 2020. Through preprocessing, mutual correction, and saturation
correction techniques applied to DMSP/OLS images, annual DMSP/OLS datasets were
obtained. Simultaneously, preprocessing steps including outlier processing and median-
based annual synthesis on NPP/VIIRS images were performed to obtain annual NPP/VIIRS
datasets. Finally, by fusing the annual EANTLI dataset with the NPP/VIIRS dataset through
spatial resolution integration, fitting function construction and continuous corrections were
made resulting in long-term nighttime light datasets [42].

2.2.2. Statistical Data

To calculate carbon emissions from energy consumption at different scales (provinces,
municipalities, and districts), annual statistics were obtained from the National Bureau of
Statistics of the People’s Republic of China. Data on 11 energy sources were collected based
on the China Energy Statistical Yearbook from 2000 to 2019, as well as from provincial and
local energy balances (including autonomous regions and municipalities directly under
the central government, but excluding Tibet, Taiwan, Hong Kong, and Macao) from the
relevant city statistics. Additionally, the carbon emission factors for different energy sources
were derived from the IPCC Guidelines for National Greenhouse Gas Inventories.
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3. Methods

Figure 2 illustrates the technical route of this study, which encompasses the following:
(1) data collection and processing; (2) carbon emission model construction and comparison;
(3) application of the results, which mainly includes carbon emission analysis at differ-
ent scales, pattern analysis, and center of gravity analysis; and (4) prediction of carbon
emissions for the years 2025 and 2030 using the grey model.
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3.1. Carbon Emission Modeling
3.1.1. Accounting for Energy Carbon Emissions in China

To calculate China’s carbon emissions from energy consumption, the most authorita-
tive international carbon emission calculation method was used in this study. To calculate
the total amount of carbon emissions from each variety of energy sources, this method
was to convert the total consumption of various energy sources into the consumption
of standard coal by folding the standard coal coefficient, and then use the standard coal
multiplied by the respective carbon emission coefficients [43]. The CO2 emissions are
calculated using the following formula:

E =
j

∑
i=1

ENi × EFi ×
44
12

(1)

where E is the emission of CO2 from j energy sources (×104 t), ENi is the energy consump-
tion of the energy source category (×104 t), EFi is the carbon emission factor of the energy
source category, i is the type of energy source, and j is the number of energy sources.

The energy types, reference coefficient of standard coal, and carbon emission coeffi-
cients are shown in Table 1.
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Table 1. The energy types, reference coefficient of standard coal, and carbon emission coefficients.

Type of Energy Reference Coefficient of
Standard Coal (kJ/kg) Carbon Emission Coefficients

raw coal 0.7143 0.7559
refined coal 0.7143 0.9000

coke (processed coal used in
blast furnace) 0.9714 0.8550

coke oven gas 0.6143 0.3548
crude oil 1.4286 0.5857

petrol 1.4714 0.5538
diesel 1.4714 0.5714

diesel oil 1.4571 0.5921
fuel oil 1.4286 0.6185

liquefied petroleum gas 1.7143 0.5042
refinery dry gas 1.5714 0.4602

petroleum 1.3300 0.4483

3.1.2. Extraction of DN Values

Extensive research has shown that the total nighttime light intensity value (T) and
carbon emissions have a good correlation [44]. T is the sum of DN values in a region. In
this study, the indicator of total T in the study area was selected to fit the energy carbon
emissions. The image element values of EANTLI nighttime lighting data were extracted
using the provincial administrative boundaries from 2000 to 2019. The T-value of the study
area was calculated subsequently. The T-value is calculated using the following formula:

T =
n

∑
i=0

DNi (2)

where DNi is the value of the image element in region i and n is the number of image
elements.

3.1.3. Model Calculations at Different Scales

In this study, exponential, linear, and logarithmic models were constructed. The best
model was selected to achieve the calculation of carbon emissions at different scales using
the coefficient of determination (R2). In the fitting comparison, the correlation coefficients
of the exponential, linear, and logarithmic models were very high (R2 were all more
than 0.7). Among them, the logarithmic fit was the best, and the mean value of R2 was
0.83. To calculate and convert the sum of carbon dioxide emissions and DN values, the
logarithmic model was selected in this study. The constructed model was calculated using
the following formula:

The provincial conversion model is as follows:

Eij= K × ln(T ij

)
− B (3)

The downscaled municipal and county conversion model is as follows:

Eij =
Tkj

Tij
K × ln(T ij)− B (4)

where Eij is the carbon emissions of province i in year j, Tkj is the total value of city and
county k in year j, Tij is the total value of nighttime light, K is the provincial simulation
coefficient, and B is the simulation intercept.
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3.2. Correlation Analysis

The Pearson correlation coefficient (R) can reflect the degree and direction of correlation
between two variables [45]. In this study, the correlation coefficient between the total
intensity value of nighttime lighting and carbon emissions from energy consumption from
2000 to 2019 was calculated. The correlation coefficient calculation formula is as follows:

R =

n
∑

i=1

(
Xi − X

)(
Yi − Y

)
√

n
∑

i=1

(
Xi − X

)2(Yi − Y
)2

(5)

where R is the correlation coefficient, n is the length of the time series, X is the monthly
average total intensity value of night lights, and Y is the carbon emission value of energy
consumption.

3.3. Center of Gravity Migration Model

The concept of the center of gravity migration model comes from mechanics in physics
and represents a mathematical weighted average. Its application to geography began with
calculating the population center of gravity, expressed through latitude and longitude
coordinates. By using a migration model based on the center of gravity, we could simulate
temporal changes in carbon emissions’ center of gravity, providing a more intuitive repre-
sentation of their spatial and temporal dynamics within the study area [46]. To investigate
China’s changing carbon emissions patterns, this model was used to calculate the carbon
emissions’ center of gravity between 2000 and 2019. The center of gravity migration model
is the following formulas:

Xt =

n
∑

i=1
Eitxit

n
∑

i=1
Eit

(6)

Yt =

n
∑

i=1
Eityit

n
∑

i=1
Eit

(7)

where Xt is the latitude of the center of gravity of China’s carbon emissions in year t, Yt is
the longitude of the center of gravity of China’s carbon emissions in year t, Eit is the carbon
emissions on grid i in year t, xit is the latitude coordinate of the center of grid i in year t,
and yit is the longitude coordinate of the center of grid i in year t.

3.4. Trend Analysis

Trend analysis is a method of predicting the trend of a variable over time by performing
a linear regression analysis [45]. To analyze the growth trend of carbon emissions in differ-
ent regions, the following formula is used to calculate the trend (slope) of carbon emissions:

slope =

n ×
n
∑

i=1
xiti −

(
n
∑

i=1
xi

)(
n
∑

i=1
ti

)
n ×

n
∑

i=1
ti

2 −
(

n
∑

i=1
ti

)2 (8)

where slope is the trend in carbon emissions, xi is the scaled exponential value, n is the
length of the study period, and ti is the year from 2000 to 2019. Positive slope values
indicate an increase in carbon emissions, while negative slope values indicate a decrease.
Therefore, the slope value can display the trend of carbon emissions during the study
period. To further classify carbon emissions, trends were categorized into more refined
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levels including negative growth type, slow growth, slower growth, medium growth, faster
growth, and rapid growth. The specific classification standards are shown in Table 2. x is
the average value of the slope, and s is the standard deviation.

Table 2. Criteria for classifying the type of growth in carbon emissions.

Type of Carbon Growth Delineation Criterion

negative growth slope < 0
slow growth 0 ≤ slope < x~0.5 s

slower growth x~0.5 s ≤ slope < x + 0.5 s
medium growth x + 0.5 s ≤ slope < x + 1.5 s

faster growth x + 1.5 s ≤ slope < x + 2.5 s
rapid growth slope ≥ x + 2.5 s

3.5. Predictive Modeling

Grey theory posits that all random variables are grey quantities and grey processes that
change within a certain range and over a certain period. Data processing does not aim to
establish the statistical law and probability distribution of data; it processes the original data
so that they become regular time series data, on the basis of which a mathematical model is
established. The GM series model is the basic model of grey prediction theory. In particular,
the GM (1, 1) model is widely used in the field of predicting carbon emissions [47]. The
GM (1, 1) is as follows:

Suppose X(0) as a time sequence:

X(0) = (x(0)(1), x(0)(2), · · · , x(0)(n)) (9)

where X(0) is a nonnegative series

X(0) = (x(0)(1), x(0)(2), · · · , x(0)(n)) (10)

where x(0)(k) ≥ 0, k =1, 2, · · · , n.
X(1) can be obtained as 1-AGO series of X(0):

X(1) = (x(1)(1), x(1)(2), · · · , x(1)(n)) (11)

where x(1)(k) = ∑k
i=1 x(0)(i), k =1, 2, · · · , n.

Z(1) is the adjacent mean value generation sequence of X(1), also called the background
value:

Z(1) = (z(1)(2), z(1)(3), · · · , z(1)(n)) (12)

where z(1)(k) = 0.5x(1)(k) + 0.5x(1)(k − 1), k =2, 3, · · · , n.
The basic form of the GM (1, 1) model can be defined as

x(0)(k) + az(1)(k) = b (13)

The grey model can be written as the matrix form:

Y = Bâ (14)

Applying the least squares method, the estimated coefficients [a, b]T can be calculated as

Y =


x(0)(2)
x(0)(3)

...
x(0)(n)

 B =


−z(1)(2) 1
−z(1)(3) 1

...
...

−z(1)(n) 1

 â =

[
a
b

]
(15)
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The whitening equation is defined as

dx(1)

dt
+ ax(1) = b (16)

With x(1)(1) = x(0)(1), the predicted value x̂(1)(k + 1) is calculated as

x̂(1)(k + 1) =
(

x(1)(0)− b
a

)
e−ak +

b
a

(k = 1, 2, · · · , n) (17)

4. Results

This section primarily presents the results and application analysis of carbon emis-
sion calculation, aiming to explore the characteristics of China’s carbon emissions from
2000 to 2019. Firstly, we conducted calculations for total carbon emissions, per capita
carbon emissions, and carbon emission intensity to analyze their respective characteristics.
Secondly, models were developed to calculate total carbon emissions at various scales,
including provinces, cities, and counties. Additionally, per capita carbon emissions and
provincial-level carbon emission intensity were calculated to conduct a spatial scale analysis
of China’s carbon emissions. Lastly, through the utilization of a shift-of-focus model along
with trend analysis and prediction techniques for carbon emission data, the spatial pattern
of China’s carbon emissions was analyzed while its spatiotemporal dynamic changes were
also studied.

4.1. Carbon Emission Calculation Based on Statistical Data
4.1.1. National-Scale Carbon Emission Calculation

A. National-scale carbon emissions

The total amount of carbon emissions from energy emissions in China is depicted in
Figure 3. From 2000 to 2019, with the exception of 2015, there was a consistent increase in
total carbon emissions, escalating from 4.42 Gt in 2000 to 15.83 Gt in 2019. The average
annual growth rate during this period was 7.08%. Notably, the growth rate was more
rapid between 2003 and 2006, and again in 2013, with an average annual growth rate of
approximately 14.56%. The highest growth rate recorded was observed in the year 2004,
reaching 17.36%. Subsequently, carbon emissions exhibited a slower pace of growth from
2014 to 2019, with an average annual growth rate of 1.44%. In 2015, there was a notable
decline, with a negative growth rate of −1.06%.
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B. National-scale per capita carbon emissions

China’s per capita carbon emissions are presented in Figure 4. Per capita carbon
emissions indicated an increasing trend from 2000 to 2019. In 2000, the per capita carbon
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emissions were 3.49 tons per person, which rose to 11.23 tons per person by 2019. The
average annual growth rate during this period was 6.48%. Notably, positive growth rates
were recorded from 2000 to 2013 and from 2017 to 2020, with an average annual growth
rate of approximately 7.87%. The highest growth rate occurred in the year 2004 (16.67%).
Conversely, negative growth rates were observed from 2014 to 2016, resulting in an average
annual decline of −0.92%. The largest negative growth rate was registered in the year 2015
(−1.55%).
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C. National-scale carbon emission intensity

The term “carbon emission intensity” is defined as the amount of carbon emitted
per unit of economic output, where higher carbon intensity indicates less efficient energy
use and greater utilization of energy and other resources for the same level of output. In
practical research, carbon emissions per unit of gross national product are often utilized to
calculate intensity values. Figure 5 illustrates China’s national carbon emission intensity
and its growth rate from 2000 to 2019. During this period, China experienced a downward
trend in carbon emission intensity, with a decrease in total emissions from 4.41 tons per
CNY 10,000 to 1.60 tons per CNY 10,000. This corresponded to an average annual reduction
rate of 5.09%. These findings signify a notable decline in China’s carbon emission intensity
over the study period, largely attributable to its economic development.
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4.1.2. Provincial-Scale Carbon Emission Calculation

A. Correlation analysis between nighttime lighting and carbon emissions at the provincial
scale

To choose a more effective indicator from night light data to fit carbon emissions, this
study used the total T-value for correlation with the calculated carbon emission data of each
administrative district. The results of this correlation, measured by the Pearson correlation
coefficient (R), between the total T-value and carbon emissions are presented in Table 3.

Table 3. Pearson’s correlation coefficients between total T-value and carbon emissions.

Provinces R Provinces R

Beijing 0.875 Henan 0.824
Tianjin 0.925 Hubei 0.835
Hebei 0.919 Hunan 0.779
Shanxi 0.856 Guangdong 0.955

Inner Mongolia 0.777 Guangxi 0.949
Liaoning 0.916 Hainan 0.927

Jilin 0.838 Chongqing 0.798
Heilongjiang 0.403 Sichuan 0.771

Shanghai 0.885 Guizhou 0.832
Jiangsu 0.980 Yunnan 0.803

Zhejiang 0.910 Shanxi 0.992
Anhui 0.965 Gansu 0.977
Fujian 0.931 Qinghai 0.966
Jiangxi 0.950 Ningxia 0.950

Shandong 0.879 Xinjiang 0.962

average value 0.878
variance 0.012

The correlation between the total T-value and carbon emissions at the province level
not only passed the significance level test but also had a high average R-value of 0.878
with a minor variation of 0.012. Except for Heilongjiang, every province had an R-value
greater than 0.7. The regions with R-values above 0.9 were Tianjin, Hebei, Liaoning, Jiangsu,
Zhejiang, Anhui, Guangdong, Guangxi, Hainan, Shaanxi, Gansu, Qinghai, Ningxia, and
Xinjiang. These results indicate a robust connection between the T-value and overall
carbon emissions, suggesting the feasibility of estimating China’s carbon emissions from
its nighttime lighting data.

Owing to the large size of China and the pronounced regional variations in resources,
climate, and economics between provinces, three models (logarithmic, exponential, and
linear models) were compared to determine the best fit. Ultimately, DN values and the
overall carbon dioxide emissions at the province level were computed and fitted. Figure 6
illustrates the fitting impacts of various function models.
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In the fitting comparison, the correlation coefficients of the exponential, linear, and
logarithmic models were relatively high, with the mean value of their R2 being more than
0.7. The logarithmic model had the best fitting effect, and the mean value of R2 was 0.83.
Therefore, the logarithmic model was chosen as the calculation model for carbon emissions
at the provincial-, municipal-, and county-level scales. The parameters of the logarithmic
model for each province are shown in Table 4.

Table 4. Results of logarithmic fitted equations by province.

Province K B R2 Province K B R2

Beijing 10,323 −123,246 0.784 Henan 44,159 −549,038 0.824
Tianjin 18,796 −229,368 0.855 Hubei 20,609 −234,537 0.829
Hebei 96,166 −1,000,000 0.876 Hunan 15,023 −162,156 0.788
Shanxi 97,614 −1,000,000 0.742 Guangdong 97,592 −1,000,000 0.955
Inner

Mongolia 68,284 −849,388 0.675 Guangxi 15,718 −182,095 0.962

Liaoning 69,561 −891,158 0.861 Hainan 4930 −52,555 0.946
Jilin 22,061 −264,133 0.742 Chongqing 6937.1 −70,012 0.803

Heilongjiang 15,572 −176,999 0.186 Sichuan 13,922 −149,693 0.803
Shanghai 14,669 −169,436 0.861 Guizhou 7679.2 −67,440 0.865
Jiangsu 56,584 −744,330 0.957 Yunnan 12,616 −141,700 0.765

Zhejiang 27,813 −343,871 0.938 Shaanxi 35,147 −431,815 0.959
Anhui 19,060 −218,990 0.992 Gansu 13,832 −155,499 0.976
Fujian 19,154 −231,076 0.992 Qinghai 5176.1 −53,851 0.967
Jiangxi 12,202 −133,406 0.941 Ningxia 16,676 −184,892 0.814

Shandong 160,087 −2,000,000 0.779 Xinjiang 58,191 −748,947 0.896

B. Provincial-scale carbon emissions

In this study, spatial distribution maps of provincial carbon emissions in China were
generated based on the logarithmic model (Figure 7). From 2000 to 2019, China’s provinces
had an overall trend of rising carbon emissions. China’s total carbon emissions in 2000
were less than 2.0 × 102 million tons in 22 provinces. By 2005, there were only 11 provinces
left. By 2010, only five provinces in China—Beijing, Chongqing, Hainan, Ningxia, and
Qinghai—had carbon emissions below 2.0 × 102 million tons. The provinces of Beijing,
Hainan, and Qinghai had less than 2.0 × 102 million tons by 2015. The provinces of
Beijing, Chongqing, Hainan, and Qinghai fell short of this threshold by 2019. In 2010,
the total carbon emissions of Shandong, Hebei, and Jiangsu amounted to 1.24 × 102,
9.40 × 102, and 8.31 × 102 million tons, respectively. The number of provinces surpassing
the threshold of 8.00 × 102 million tons reached five in 2015 and increased to seven
provinces by 2019. By 2019, Shandong Province exhibited the highest carbon emissions at a
level of 1.77 × 102 million tons while all other provinces remained below the threshold of
1.30 × 102 million tons.

By further calculating the annual average of the total carbon emissions of each province,
a bar chart depicting the average carbon emissions was generated (Figure 8). The average
value of the total carbon emissions of each province was 3.84 × 102 million tons from 2000
to 2019. Shandong had the highest annual average of carbon emissions at 11.1 × 102 million
tons, while Hainan had the lowest at 53.7 million tons. Zhejiang, Henan, Inner Mongolia,
Guangdong, Liaoning, Shanxi, Jiangsu, Hebei, and Shandong all exceeded the average
level of carbon emissions.
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C. Provincial carbon emissions per capita

The provincial per capita carbon emissions were calculated from 2000 to 2019 (Figure 9).
Overall, there was an increasing trend in provincial per capita carbon emissions during
this period. In 2000, only eight provinces, namely Beijing, Tianjin, Shanghai, Heilongjiang,
Jilin, Liaoning, Inner Mongolia, and Shanxi, had per capita carbon emissions of more
than 5 t/person. The remaining 22 provinces had less than that amount. Shanxi had the
highest per capita carbon emission at 9.86 t/person. By 2005, five provinces—Shanghai,
Inner Mongolia, Shanxi, Ningxia, and Liaoning—had carbon emissions within the range
of 10–20 t/person, while 11 southern regions (excluding Guizhou) still emitted less than
5 t/person. Other provinces fell between these two ranges. In 2010, the number of provinces
with average per capita carbon emissions of less than 5 t/person was reduced to only
two provinces, Guangxi and Jiangxi, and the per capita carbon emissions of Inner Mongolia,
Ningxia, and Shanxi were greater than 20 t/person. In 2015, the per capita carbon emissions
of all provinces were greater than 5 t/person, with Ningxia topping 40 t/person. The per
capita carbon emissions of two provinces, Shanxi and Xinjiang, resided in the range of
30–40 t/person. The per capita carbon emissions of three provinces, namely Liaoning,
Tianjin, and Shanghai, ranged between 20 and 30 t/person. Additionally, the number of
provinces with per capita carbon emissions below 20 t/person decreased to 14. In 2019, the
per capita carbon emissions in coastal areas exceeded 10 t/person, while the number of
provinces with per capita emissions ranging from 5 to 10 t/person decreased to 10. Notably,
Inner Mongolia and Ningxia exhibited significantly higher levels at 51.56 t/person and
64.39 t/person, respectively.

The histogram of the average value of per capita carbon emissions in 30 provinces
from 2000 to 2019 was obtained by further calculation (Figure 10). The mean value of per
capita carbon emissions across all provinces over a span of two decades was 10.29 t/person.
Notably, Guangxi had the lowest per capita carbon emission at 4.17 t/person, while Ningxia
recorded the highest at 27.87 t/person. Eight provinces, namely Ningxia, Inner Mongolia,
Shanxi, Xinjiang, Tianjin, Liaoning, Shanghai, Shandong, Hebei, and Qinghai, had per
capita carbon emissions exceeding the national average.
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bei, Liaoning, and Jilin exhibited a range of 10–20 t/CNY 10,000, while the remaining 19 
provinces demonstrated values below 10 t/CNY 10,000. In 2010, seven provinces, Beijing, 
Jiangsu, Shanghai, Zhejiang, Fujian, Jiangxi, and Shandong, had a carbon emission in-
tensity below 2 t/CNY 10,000. In 2015, 15 provinces had a carbon emission intensity of 
less than 1 t/CNY 10,000; 9 provinces had a carbon emission intensity between 1 and 2 
t/CNY 10,000; and 6 provinces, Gansu, Ningxia, Inner Mongolia, Shanxi, Heilongjiang, 
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Figure 9. Carbon emissions per capita at the provincial level in China (2000, 2005, 2010, 2015, 2019).
(a) Provincial carbon emissions per capita in 2000. (b) Provincial carbon emissions per capita in 2005.
(c) Provincial carbon emissions per capita in 2010. (d) Provincial carbon emissions per capita in 2015.
(e) Provincial carbon emissions per capita in 2019.
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D. Provincial carbon intensity

Figure 11 shows the provincial carbon emission intensity in China from 2000 to 2019.
The carbon emission intensity of China’s provinces exhibited a declining trend from 2000
to 2019. In 2000, Ningxia exhibited the highest carbon emission intensity at 120.91 t/CNY
10,000. The carbon emission intensity of four provinces, Shanxi, Inner Mongolia, Ningxia,
and Xinjiang, was located in the range of 40–80 t/CNY 10,000. There were seven provinces
located in the range of 20–40 t/CNY 10,000, namely Hebei, Liaoning, Shandong, Guizhou,
Shaanxi, Gansu, and Qinghai. Three provinces, Beijing, Shanghai, and Guangdong, had
carbon emission intensities below 10 t/CNY 10,000. In 2005, Ningxia still had the high-
est carbon emission intensity, at 41.19 t/CNY 10,000. The carbon emission intensity of
three provinces, Shanxi, Inner Mongolia, and Xinjiang, decreased to 20–40 t/CNY 10,000.
The provinces of Qinghai, Gansu, Shaanxi, Guizhou, Hebei, Liaoning, and Jilin exhibited
a range of 10–20 t/CNY 10,000, while the remaining 19 provinces demonstrated values
below 10 t/CNY 10,000. In 2010, seven provinces, Beijing, Jiangsu, Shanghai, Zhejiang,
Fujian, Jiangxi, and Shandong, had a carbon emission intensity below 2 t/CNY 10,000. In
2015, 15 provinces had a carbon emission intensity of less than 1 t/CNY 10,000; 9 provinces
had a carbon emission intensity between 1 and 2 t/CNY 10,000; and 6 provinces, Gansu,
Ningxia, Inner Mongolia, Shanxi, Heilongjiang, and Liaoning, had a carbon emission in-
tensity between 2 and 10 t/CNY 10,000. In 2019, only Shanxi exceeded 2 tons per CNY
10,000, while Heilongjiang, Jilin, Liaoning, and Gansu ranged from 1 to 2 tons. The other
25 provinces had intensities below 1 ton.

The average carbon emission intensity value of 30 provinces from 2000 to 2019 was ob-
tained through further calculations (Figure 12). Over the course of 20 decades, each province
exhibited an average carbon emission intensity value of 7.37 t/CNY 10,000. Among them,
Beijing had the lowest carbon emission intensity of 1.60 t/CNY 10,000. Ningxia had the
highest carbon emission intensity, at 28.46 t/CNY 10,000. Thirty percent of the provinces
exceed the national average for all provinces, including four provinces (Ningxia, Inner Mon-
golia, Shanxi, and Xinjiang). The aforementioned phenomenon highlighted the necessity of
enhancing energy efficiency in these provinces.
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Chongqing and other urban agglomerations of Sichuan–Chongqing; (4) Shanghai–
Nanjing–Hangzhou city cluster; (5) Ordos, Hohhot, Baotou, Yulin; (6) Changchun, Har-
bin, Dalian, and other urban agglomerations in Northeast China; (7) the Pearl River Del-
ta. In 2015, some cities in Xinjiang began to show high carbon emissions, and the carbon 
emissions of cities in various regions of the country showed significant growth. In 2019, 
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4.2. Carbon Emission Calculation Based on Remote Sensing Data of Nighttime Lighting
4.2.1. Municipal-Scale Carbon Emission Calculation

Municipal-scale carbon emission accounting was carried out based on the logarithmic
model. Figure 13 displays the municipal-scale carbon emissions. The municipal-scale
carbon emissions showed an increasing trend in 2000, 2005, 2010, 2015, and 2019, with
mean values of 1.35 × 107 t, 2.38 × 107 t, 3.53 × 107 t, 4.15 × 107 t, and 4.71 × 107 t.
Meanwhile, the carbon emissions of 30.00%, 29.17%, 30.56%, 32.50%, and 32.22% of the
cities were higher than the average value. In 2000, carbon emissions below 1.5 × 107 t were
observed in only 73.33% of cities, while the remaining two cities (Beijing and Shanghai)
exhibited significantly higher emissions exceeding 1 × 108 t. In 2005, a decrease was noted
as only 55.00% of cities had carbon emissions below 1.5 × 107 t, whereas the number of cities
surpassing the threshold of 1 × 108 t rose to 13, with Shanghai accounting for emissions
greater than 2 × 108 t. By 2010, less than half (40.56%) of China’s cities demonstrated
carbon emissions below the level of 1.5 × 107 t. Meanwhile, the number of cities with
carbon emissions greater than 1 × 108 t increased rapidly to 27. Increasingly concerning
trends persisted through to 2015 when approximately one-third (33.61%) of Chinese cities
reported carbon emissions at or below the threshold value set at 1.5 × 107 t, while 37 cities
exceeded an emission level greater than that specified by 1 × 108 t. In 2019, 29.72% of
Chinese cities had carbon emissions less than 1.5 × 107 t, accounting for less than one-third,
while the number of cities with carbon emissions greater than 1 × 108 t increased to 48.

Spatial analysis revealed that high-carbon-emission areas were distributed in five
major regions in 2000, namely the Heilongjiang–Liaoning–Jilin, Beijing–Tianjin–Hebei,
Shanghai–Nanjing–Hangzhou, Pearl River Delta, and Sichuan–Chongqing urban agglom-
erations. By 2005, the number of cities with high carbon emissions continued to rise within
five major regions while also witnessing the emergence of high-value city clusters in areas
such as Shandong Peninsula and Shanxi. In 2010, the number of high-value cities increased
rapidly, with a notable concentration observed in seven specific regions: (1) Beijing–Tianjin–
Hebei urban agglomerations; (2) Shandong Peninsula city cluster; (3) Chongqing and
other urban agglomerations of Sichuan–Chongqing; (4) Shanghai–Nanjing–Hangzhou
city cluster; (5) Ordos, Hohhot, Baotou, Yulin; (6) Changchun, Harbin, Dalian, and other
urban agglomerations in Northeast China; (7) the Pearl River Delta. In 2015, some cities
in Xinjiang began to show high carbon emissions, and the carbon emissions of cities in
various regions of the country showed significant growth. In 2019, the number of cities
with large carbon emissions continued to increase; in particular, the carbon emissions in
Beijing–Tianjin–Hebei, Shandong Peninsula, Shanxi, Inner Mongolia, Erdos City, Jiangsu,
and Shanghai increased more significantly.
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emissions in 2000. (b) Municipal carbon emissions in 2005. (c) Municipal carbon emissions in 2010.
(d) Municipal carbon emissions in 2015. (e) Municipal carbon emissions in 2019.

4.2.2. County-Scale Carbon Emission Calculation

County-scale carbon emission accounting was carried out based on the logarithmic
model. Figure 14 shows the county-scale carbon emissions. China’s county-scale carbon
emissions increased in 2000, 2005, 2010, 2015, and 2019, with annual averages of 1.71 × 106 t,
3.03 × 106 t, 4.52 × 106 t, 5.32 × 106 t, and 6.04 × 106 t. In these years, the emissions of
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70.21%, 69.82%, 68.73%, 69.06%, and 69.46% of counties (districts) were lower than the
average value.
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In 2000, 98.45% of the counties in China had carbon emissions lower than 1 × 107 t.
Six counties had carbon emissions greater than 2 × 107 t, and only Pudong New Area had
carbon emissions greater than 3 × 107 t. In 2005, carbon emissions lower than 1 × 107 t
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were observed in 93.98% of the counties. The number of counties with carbon emissions
exceeding 2 × 107 t had risen to 25, while the number of counties with carbon emissions
surpassing 3 × 107 t had increased to 7. In 2010, 87.85% of counties had carbon emissions
less than 1 × 107 t, while the number of counties with carbon emissions greater than
2 × 107 t increased to 71, and the number of counties with carbon emissions greater than
3 × 107 t increased to 21. In 2015, 86.51% of counties had carbon emissions below 1 × 107 t,
while the number of counties with emissions exceeding 2 × 107 t increased to 113, and
the number of counties with emissions exceeding 3 × 107 t increased to 35. By contrast,
in 2019, only 83.77% of counties had carbon emissions below the threshold of 1 × 107 t,
while the number of counties with emissions greater than or equal to both thresholds rose
significantly. There were 146 counties for the former and 61 for the latter.

The overall trend of county-level carbon emissions in China indicated a higher con-
centration in the eastern regions compared to the western regions, and a greater magnitude
in the northern areas relative to the southern areas. In 2000, the number of high-carbon-
emission areas at the county scale was low, and these areas had a dotted distribution.
In 2005, high-carbon-emission areas increased, scattered in areas such as Beijing–Tianjin–
Hebei, Shandong Peninsula, Jiangsu, Zhejiang, Shanghai, and the Pearl River Delta. In
2010, the number of high-carbon-emission areas increased rapidly, and these areas were
characterized by a patchy distribution. The high values of carbon emissions were mainly
concentrated in the following regions. (1) Tianjin, Shandong, Liaoning; (2) Shanghai;
(3) Foshan, Zhongshan; (4) Ordos. Other high-value areas were sporadically located in
the central and western parts of China. By 2015, high-carbon-emission areas continued to
expand, especially the high-carbon-emission area in Ordos, which was centered around
Alxa Left Banner, Etuoke Banner, and Dongsheng District. In 2019, urban areas such as
Shaya County, Kuche County, Shihezi City, and Hami City in Xinjiang began to experi-
ence high carbon emissions, while the other major carbon emission centers significantly
expanded. High-carbon-emission areas in the central and western regions still showed a
dotted distribution, such as Banan District in Chongqing, Chenghua District in Chengdu,
and Furong District in Changsha.

4.3. Analysis of the Spatial Dependence of China’s Energy Carbon Emissions

In this study, the CO2 emission data from 2000 to 2019 were selected to calculate the
centroid of China’s CO2 emissions, incorporating carbon emission weights corresponding
to administrative boundaries as a means of capturing spatial variations in China’s carbon
emissions. Utilizing the center of gravity model, several key outcomes were obtained: the
latitude and longitude coordinates of China’s CO2 emissions center of gravity from 2000 to
2019 (Table 5), the migration distance and rate of this center of gravity (Table 6), and the
migration trajectory of this center of gravity (Figure 15).

Table 5. Latitude and longitude coordinates of the center of gravity of carbon emissions.

Year 2000 2001 2002 2003 2004

Longitude 115.74 115.63 115.44 115.43 115.35
Latitude 34.47 34.41 34.30 34.24 34.16

Year 2005 2006 2007 2008 2009

Longitude 115.50 115.41 115.33 115.38 115.33
Latitude 34.20 34.137 34.06 34.08 34.00

Year 2010 2011 2012 2013 2014

Longitude 115.37 115.34 115.29 115.23 115.23
Latitude 34.00 34.00 34.04 34.00 33.98

Year 2015 2016 2017 2018 2019

Longitude 115.31 115.34 115.32 115.30 115.31
Latitude 33.96 33.94 33.91 33.93 33.97
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Table 6. Distance and rate of carbon emission transport.

Year 2000–2005 2005–2010 2010–2015 2015–2019

Distance (km) 37.00 25.29 7.23 1.29
Speed (km/y) 7.40 5.06 1.45 0.32

Remote Sens. 2024, 16, 23 22 of 28 
 

 

Table 5. Latitude and longitude coordinates of the center of gravity of carbon emissions. 

Year 2000 2001 2002 2003 2004 
Longitude 115.74 115.63 115.44 115.43 115.35 
Latitude 34.47 34.41 34.30 34.24 34.16 

Year 2005 2006 2007 2008 2009 
Longitude 115.50 115.41 115.33 115.38 115.33 
Latitude 34.20 34.137 34.06 34.08 34.00 

Year 2010 2011 2012 2013 2014 
Longitude 115.37 115.34 115.29 115.23 115.23 
Latitude 34.00 34.00 34.04 34.00 33.98 

Year 2015 2016 2017 2018 2019 
Longitude 115.31 115.34 115.32 115.30 115.31 
Latitude 33.96 33.94 33.91 33.93 33.97 

Table 6. Distance and rate of carbon emission transport. 

Year 2000–2005 2005–2010 2010–2015 2015–2019 
Distance (km) 37.00 25.29 7.23 1.29 
Speed (km/y) 7.40 5.06 1.45 0.32 

 
Figure 15. Carbon emission transport pathway in China. 

4.4. Trend Analysis of Carbon Emissions in China 
Figure 16 reflects the trend of carbon emissions growth at different scales in China 

from 2000 to 2019. The types of slow change (slow growth and slower growth) were 
more prevalent than rapid change (faster growth and rapid growth) and medium-speed 
change. Three provinces exhibited medium growth rates. The types of rapid changes 
were distributed in most parts of North China and the northern part of Central China. 
The type of slow change was distributed in the central and western regions and the 
northeast region. Among them, Shandong belonged to the category of rapid growth. In-
ner Mongolia and Jiangsu were faster-growing regions. Shanxi, Xinjiang, Hebei, and 
Guangdong were medium-growth models. The provinces exhibiting slower growth in-
cluded Jilin, Liaoning, Yunnan, Guizhou, Sichuan, Hunan, Shaanxi, Zhejiang, and Fu-
jian. Meanwhile, Heilongjiang, Hainan, Gansu, Qinghai, Beijing, and Tianjin were char-
acterized by slow growth. 

Figure 15. Carbon emission transport pathway in China.

As illustrated in Figure 15, the gravity center of carbon emission was located in Henan
Province from 2000 to 2019. From 2000 to 2005, the gravity center of carbon emission shifted
37 km to the southwest, corresponding to 7.40 km/y. In the next 5 years, the same trend
was observed but with a rate of 5.06 km/y. The move of this center further slowed down
in 2010–2015 at a rate of 1.45 km/y to the southwest. However, this trend was slightly
reversed from 2015 to 2019, with an average moving rate of 0.32 km/y to the northwest. The
above analysis suggests that the gravity center of carbon emission shifted to the southwest,
with a distance of 68.68 km, corresponding to 3.61 km/y.

4.4. Trend Analysis of Carbon Emissions in China

Figure 16 reflects the trend of carbon emissions growth at different scales in China from
2000 to 2019. The types of slow change (slow growth and slower growth) were more preva-
lent than rapid change (faster growth and rapid growth) and medium-speed change. Three
provinces exhibited medium growth rates. The types of rapid changes were distributed in
most parts of North China and the northern part of Central China. The type of slow change
was distributed in the central and western regions and the northeast region. Among them,
Shandong belonged to the category of rapid growth. Inner Mongolia and Jiangsu were
faster-growing regions. Shanxi, Xinjiang, Hebei, and Guangdong were medium-growth
models. The provinces exhibiting slower growth included Jilin, Liaoning, Yunnan, Guizhou,
Sichuan, Hunan, Shaanxi, Zhejiang, and Fujian. Meanwhile, Heilongjiang, Hainan, Gansu,
Qinghai, Beijing, and Tianjin were characterized by slow growth.

4.5. Projections of Energy Carbon Emissions

The forecast of China’s carbon emissions based on the grey prediction model is de-
picted in Figure 17. In 2025, the average value of China’s carbon emissions was 7.82 × 102

million tons. The provinces with emissions higher than the average value were Shandong
(25.61 × 102 million tons), Jiangsu (16.39 × 102 million tons), Inner Mongolia (17.00 × 102

million tons), Hebei (15.54 × 102 million tons), Shanxi Province (14.16 × 102 million tons),
Guangdong (12.70 × 102 million tons), Liaoning (11.54 × 102 million tons), Xinjiang (10.89
× 102 million tons), Henan (10.15 × 102 million tons), and Zhejiang (8.76 × 102 million
tons). In 2030, the average value of China’s carbon emissions was 9.44 × 102 million tons.
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The provinces with emissions higher than the average value were Shandong (31.88 × 102

million tons), Jiangsu (20.10 × 102 million tons), Inner Mongolia (21.76 × 102 million tons),
Hebei (18.50 × 102 million tons), Shanxi Province (16.77 × 102 million tons), Guangdong
(15.22 × 102 million tons), Xinjiang (14.34 × 102 million tons), Liaoning (13.41 × 102 million
tons), Henan (11.68 × 102 million tons), and Zhejiang (10.39 × 102 million tons). Spa-
tial analysis indicates China’s high-carbon-emission areas in 2025 and 2030 were mainly
distributed in the northern part of the country.
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5. Discussion

With the rapid urbanization and economic development in China from 2000 to 2019,
both national and provincial scales witnessed a continuous increase in total carbon emis-
sions and per capita carbon emissions (Figures 3 and 4) [48]. However, advancements in
science and technological innovation have led to improved energy utilization efficiency,
resulting in a decline in the intensity of carbon emissions over time (Figure 5) [49]. To
enhance our understanding of controlling total carbon emissions, this study investigated
the relationship between carbon emissions and nighttime light brightness (Table 3). A
model was constructed to assess carbon emissions at smaller scales (municipal and county
levels) and analyze their spatial distribution characteristics (Figure 6).

China’s carbon emissions displayed a discernible spatial pattern, characterized by
higher levels in the northern regions compared to the southern regions and greater emission
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levels in the eastern areas relative to the western ones [50]. Shandong Province, as a promi-
nent industrial hub with highly carbon-intensive energy structures, ranked highest among
all provinces for its substantial contribution to national carbon emissions (Figure 7) [51].
The center of gravity for China’s overall carbon emissions was located within Henan
Province, but had been shifting towards the southwest due to various factors (Figure 15).
Those included the attraction of industries and population resulting in increased energy de-
mand. Moreover, national policies aimed at addressing regional imbalances had facilitated
industrial structure adjustments along with the relocation of traditional heavy industries
towards the southwest region, further contributing to this phenomenon [52].

In this study, carbon emissions were calculated not only at the national and provincial
levels but also at the municipal and county levels (Figures 13 and 14). This finding compen-
sated for the lack of data at the city and county scales, thereby facilitating precise focus by
national and local governments on achieving carbon emission control. The investigation of
China’s spatial distribution characteristics of carbon emissions holds significant importance
in elucidating their spatial patterns and historical dynamics. In light of China’s “dual car-
bon” goal, this research predicted that by 2025 and 2030 [53], the average carbon emissions
would be 7.82 × 102 million tons and 9.44 × 102 million tons, respectively. These predic-
tions provide valuable data support for formulating energy conservation and emission
reduction policies in China.

As a prominent economic hub with a substantial population, Shandong has experi-
enced a consistent rise in carbon emissions attributed to its robust economic development.
The province’s electric power industry is highly developed, particularly its coal-based
sector which significantly contributes to its overall carbon emissions [54]. Located on the
eastern coast of China, Shandong plays a crucial role as an industrial center encompass-
ing 41 major industrial categories. Shandong exhibits both the highest current level of
carbon emissions and the highest predicted future increases for two reasons (Figure 17):
(1) The dominance of heavy industry in Shandong’s economy will persist, leading to sig-
nificant combustion of fossil fuels and consequent escalation in CO2 emissions. (2) Plans
are underway for major manufacturing industries such as automobile manufacturing and
chemical materials within different industrial parks or bases, which will further contribute
to elevated levels of carbon emissions.

The research still has some limitations, and the following issues need to be addressed:
(1) The calculation of carbon emissions only considers energy consumption factors, neglect-
ing carbon emission factors associated with construction, population, industry, and other
aspects. (2) This research primarily focuses on carbon sources. However, it is crucial to
consider the impact of carbon sinks on carbon emissions. Since the Industrial Revolution,
there has been a substantial decline in forests and grasslands. Therefore, exploring mon-
itoring methods for carbon sinks is imperative. (3) While this study accounts for carbon
emissions at the city and county levels, further exploration is needed regarding accounting
methods for smaller scales such as towns and villages as well as specific point sources of
carbon emissions.

6. Conclusions

Utilizing nighttime light remote sensing, energy statistics, population spatial dis-
tribution, GDP spatial distribution, and other data, this study measured the total CO2
emissions at national and provincial levels over the past 20 years using national statistics
data. Nighttime-class EANTLI nighttime light data from 2000 to 2019 were utilized; the sum
of DN values (T) was extracted; and the total CO2 emissions and DN values were adopted
to conduct a correlation analysis and linear, exponential, and logarithmic fitting. The best
function was selected for conversion model construction. The provincial conversion model
was improved; the total CO2 emissions at municipal and county levels where data are
missing were measured; and the characteristics of China’s carbon emissions (total carbon
emissions, per capita carbon emissions, and carbon emission intensity), spatial scale of
carbon emissions (national, provincial, municipal, and county scales), and spatial pattern
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of carbon emissions (center of gravity migration and trend analysis) were analyzed. Then,
the carbon emissions in China were forecasted. The conclusions are as follows:

(1) Nationally, from 2000 to 2019, the total amount of carbon emissions generally increased
annually. The total amount rose from 4.42 Gt to 15.83 Gt, with an average annual
growth rate of 7.08%. Per capita carbon emissions showed an increasing trend, rising
from 3.49 t/person to 11.23 t/person, with an average annual growth rate of 6.48%.
The overall trend of China’s carbon emission intensity during 2000~2019 displayed a
decreasing trend, decreasing from 4.41 tons per CNY 1 million to 1.60 tons per CNY
1 million, with an average annual decrease of 5.09%.

(2) The fitting comparison indicated that the correlation coefficients of the exponential,
linear, and logarithmic models were high, with their mean R2 value exceeding 0.7.
The logarithmic model exhibited the best fitting effect, with a mean R2 value of 0.83.
Therefore, a logarithmic model was chosen for the conversion calculation of energy
carbon emissions and the sum of DN values.

(3) The center of gravity of carbon emissions was located within Henan Province in China,
with a general tendency to move from west to south. The migration of the center of
gravity of carbon emissions indicated an increasing proportion and higher growth
rate of carbon emissions in the western and southern regions compared to other parts
of the country.

(4) Based on the grey prediction model GM (1, 1), China’s carbon emissions for 2025
and 2030 were predicted. In 2025, the average value of China’s carbon emissions is
predicted to be 7.82 × 102 million tons, with Shandong Province having the high-
est emissions at 225.61 × 102 million tons. In 2030, the average value is expected
to be 9.44 × 102 million tons, with Shandong Province remaining the highest at
31.88 × 102 million tons.

As a result of an analysis of the spatial scale of carbon emissions, a carbon emission
accounting model was constructed, which solved the problem of a large amount of missing
statistical data at the city and county levels during carbon emission accounting. By using
nighttime light data to measure carbon emissions, a more detailed scale of carbon emissions
could be obtained. This achieved the clarity and targeting of China’s total carbon emission
control goals. To better achieve the goal of carbon neutrality, China needs to emphasize
the need to comprehensively consider the impact of different environments, industrial
structures, and socio-economic characteristics during formulation. The results of this study
offer valuable insights for the scientific development of China’s low-carbon economy and
the strategic formulation of carbon emission policies.
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