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Abstract: In the United States (US), salt marshes are especially vulnerable to the effects of projected
sea level rise, increased storm frequency, and climatic changes. Sentinel-2 data offer the opportunity
to observe the land surface at high spatial resolutions (10 m). The Sentinel-2 data, encompassing
Cumberland Island National Seashore, Fort Pulaski National Monument, and Canaveral National
Seashore, were analyzed to identify temporal changes in salt marsh presence from 2016 to 2020.
ENVI-derived unsupervised and supervised classification algorithms were applied to determine
the most appropriate procedure to measure distant areas of salt marsh increases and decreases.
The Normalized Difference Vegetation Index (NDVI) was applied to describe the varied vegetation
biomass spatially. The results from this approach indicate that the ENVI-derived maximum likelihood
classification provides a statistical distribution and calculation of the probability (>90%) that the
given pixels represented both water and salt marsh environments. The salt marshes captured by the
maximum likelihood classification indicated an overall decrease in salt marsh area presence. The
NDVI results displayed how the varied vegetation biomass was analogous to the occurrence of salt
marsh changes. Areas representing the lowest NDVI values (−0.1 to 0.1) corresponded to bare soil
areas where a salt marsh decrease was detected.
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1. Introduction

Coastal salt marshes are some of the most vulnerable and threatened natural ecosys-
tems [1–3]. These ecosystems serve as wetlands in the upper coastal intertidal zone between
the upland coastal plain and aquatic brackish waters, helping to control ecosystem function
and structure. In this transition zone, salt marshes experience the impacts of alternat-
ing high and low tides, causing salt marsh diebacks following extreme precipitation and
flooding events [4–6]. As these salt marshes evolve, changes in channelization occur, con-
tributing to the hydrologic dynamic [7,8]. Salt marsh migration alters hydrologic processes,
which are part of a multidimensional hydrogeological framework [9,10]. In addition, these
events have made salt marshes highly susceptible to geomorphological changes that cause
erosional effects and subsidence in response to an increased sea level rise [11]. As the
climatic regime effects serve as a prominent factor in altering these ecosystems, increased
anthropogenic activity impacts these systems tangentially [12–14]. The South Atlantic
salt marshes of the United States (US) are representative of some of the most vulnerable
salt marshes globally. Spanning the coasts of North Carolina (NC), South Carolina (SC),
Georgia (GA), and Florida (FL), approximately 1 million acres (404,686 hectares (ha)) of salt
marshes are threatened by climate change and the human-induced impact that degrades
salt marsh environments [15].

Globally, salt marshes are decreasing, with a loss of approximately 25% to 50% of their
vegetative cover [16–18]. Over the past 300 years, global salt marshes have declined in
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area by 87%, and they have declined 54% since 1900 [19]. A recent study suggested that
approximately 561 square miles (1453 square kilometers) of salt marshes have been removed
over the past 20 years worldwide [20]. By 2060, the National Oceanic and Atmospheric
Administration (NOAA) estimates that 14% to 34% of existing South Atlantic salt marshes
could be lost [21]. These studies have shown how vital Spartina salt marshes are, and
due to their increased vulnerability, proper mitigation is imperative to provide natural
coastal resource management. Traditionally, salt marshes have been analyzed through
field-based techniques; however, due to limited access to some areas, the use of remote
sensing has been implemented [22,23]. Remote sensing techniques offer the opportunity to
monitor short- and long-term landscape changes under high spatial resolutions to provide
mapping accuracy. Specifically, salt marsh environments have been analyzed using data
collected from various satellites to distinctively characterize how they have changed over
time [24–28].

The development of salt marsh monitoring has evolved due to the increase in changes
to the ecomorphodynamic response due to climate change [29–31]. Coastal salt marshes are
experiencing extreme temperatures, changes in storm frequency and intensity, sediment
redistribution, changes in nutrient inputs, and the oscillation of high and low tides [32–37].
These processes consequently impact salt marsh growth and resilience as well as the ability
to provide the necessary barrier for aquatic life and resources. When this occurs, the
geomorphic characterization of these regions is altered, causing changes to the hydro-
logic/hydrogeologic interface [37–40]. Modeling and field-based techniques have been
used and have been shown to be useful in understanding vegetative changes [10,41,42].
Field-based techniques have provided valuable data; however, the collection of data has
become more difficult in densely vegetated areas, and as such, the use of remote sensing-
based tools has been introduced [10,41,42]. Remote sensing-based salt marsh monitoring
has become a catalyst in providing long-term datasets to assess the variability and trends
occurring in salt marshes. Through satellite observations, imagery products provide
multi-temporal datasets for salt marsh monitoring. Sentinel datasets provide high spatial
resolutions with efficient temporal sampling to identify rapid changes [43]. Unmanned
aerial vehicles (UAVs) have been used to measure the influence of morphological changes
on salt marshes [44]. Furthermore, large-scale computing using Google Earth, a cloud-based
platform, has made it easy to access large geospatial datasets in a suitable fashion [45,46].
As current research and monitoring of salt marshes continue to progress, challenges remain.
Can coupled-based classification schemes identify small-scale changes? Can validation
techniques be implemented to increase accuracy? How can coupled-based classification
scheme approaches improve accuracy? As these questions persist, the instituted approach
aims to provide solutions to these questions. The ability to use field-based data and manu-
ally selected ROIs under supervised classification schemes provides a nuanced approach to
better interpret salt marsh changes; thus, the improvement of classification techniques is
still needed [47]. Here, we explored methods to identify and quantify how salt marshes are
changing along the southeastern coast of the US and how they can provide valuable data
for coastal natural resource management.

Field-based and remote sensing techniques are often used, but not always in uni-
son. The integration of both techniques allows for a better understanding of the changes
occurring in these ecosystems. In this study, we evaluated and applied a remote sensing-
based modeling approach in conjunction with field-based data to determine vegetative
cover changes in salt marshes located in the National Park Service (NPS) areas along the
US South Atlantic coastline. The vegetative cover changes detailed areas of salt marsh
increase and/or decrease between two specified time periods. In addition, we spatially
characterized the vegetative biomass by identifying the vegetation density and relative
growth. From this analysis, this study outlined the classification algorithms that are most
appropriate for mapping salt marshes. Thus, the purpose of this paper was to evaluate
the usefulness of the classification schemes, determine the best classification method, and
demonstrate classifications representative of the southeast US. This monitoring approach
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can be implemented to improve salt marsh management as well as inform natural resource
conservation management on how to better protect them.

2. Study Area

The NPS areas along the South Atlantic coastline included in this study were Fort
Pulaski National Monument (NM) in Savannah, GA; Cumberland Island National Seashore
(NS) in Camden County, GA; and Canaveral National Seashore (NS) in Titusville, FL
(Figure 1). Each of these sites was selected due to the high proportion of marsh land in
the area. Cumberland Island NS is representative of the largest and southernmost barrier
island along the South Atlantic, where the NPS estimates that there are 9341 acres (3780 ha)
of salt marsh [48]. At Fort Pulaski NM, the NPS estimates that approximately 90% of the
monument is classified as a wetland, including over 4800 acres (1942 ha) of salt marsh [49].
The NPS categorizes Canaveral National Seashore as a barrier island where the salt marshes
cover approximately 4400 acres (1781 ha) of the seashore [50].
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Figure 1. Cumberland Island National Seashore, Canaveral National Seashore, and Fort Pulaski
National Monument site locations.

Cumberland Island NS is approximately 36,423 acres (13,526 ha). Of this area, salt
marshes occupy approximately 9019 acres (3650 ha), and the dominant vegetative type
is Spartina alterniflora (smooth cordgrass) [48]. In the marsh areas, this region is mostly
comprised of poorly drained soils in tidal marshes and poorly drained soils in shallow
depressions [48]. Since Cumberland Island NS is near Fort Pulaski NM, the site’s climate
and average precipitation are considered the same [48,49,51].

Fort Pulaski NM is approximately 90% wetland, and the majority of the vegetation is
Spartina alterniflora (smooth cordgrass) [49]. This marsh land represents areas of marshy
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soil and a black to bluish-gray heavy silt, and it contains large amounts of shells and
decaying organic matter [49]. The climate at this site is hot to humid during the summer
(88.0–89.6 ◦F, 31–32 ◦C), with mild, brief cold periods (39.3–42.8 ◦F, 4–6 ◦C) during the
winter [49,51]. Storm fronts of precipitation events usually occur during the winter and
spring months, while tropical storms, hurricanes, and thunderstorms occur during the
fall and summer months [49,51]. This site receives approximately 1201–1400 mm/year
(47.3–55.1 inches/year) of rain [49,51].

Canaveral NS is approximately 58,807 acres (23,798 ha). The vegetative types present
in the salt marshes are Spartina (Juncus), mangroves, and saltwort (saltgrass), representing
approximately 13% of the area [50]. The climate in this area is semi-tropical to temperate;
the summer months are hot and humid (88.0–90.0 ◦F, 31–32.2 ◦C), and winter months range
in temperature from 30.0 to 70.0 ◦F (−1 to 21.1 ◦C) [50,51].

3. Methodology

The approach developed involved the classification of salt marsh presence with a
data processing procedure, the calculation of vegetation biomass, and the determination
of changes occurring within each site. Sentinel-2 data (2016–2020) were acquired from the
United States Geological Survey (USGS) Earth Explorer (Figure 2). Two Sentinel-2 images
were acquired for each site: Cumberland Island NS (6 September 2019 and 19 March 2020),
Fort Pulaski NM (30 December 2016 and 21 October 2018), and Canaveral NS (20 November
2016 and 31 October 2017). The selected images were selected at different tidal stages. Fort
Pulaski NM and Cumberland Island NS were in the tidal stage of 1.8–2.7 m (m), while the
Canaveral NS tidal stage was 0.3–0.6 m. To identify the salt marshes present, unsupervised
and supervised classification schemes were used to determine each class (Figure 3). The
classes were then validated using manual pixel selection and field-based training data
collection. To calculate the vegetation biomass, the Normalized Difference Vegetation Index
(NDVI) was applied at each site. These results yielded a change analysis identifying the
areas of salt marsh increase (%) and decrease (%).
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Figure 2. Sentinel-2-derived site locations: Cumberland Island NS (A,A1.), Fort Pulaski NM (B,B1.),
and Canaveral NS (C,C1.). Top panel (A–C) represents the initial Sentinel-2 image collected to
compare with the bottom panel (A1.,B1. and C1.) of the changes that occurred in a different year.
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Figure 3. Processing procedure representing data acquisition, data processing, and final output. Each
processing method was used to characterize salt marshes spatially and temporally.

3.1. Data Acquisition

Sentinel-2 data (10 m resolution) were collected from 2016 to 2020 at each NPS site.
The Sentinel-2 data product was distributed as a Level-1C top-of-atmosphere (TOA) re-
flectance orthorectification to generate highly accurate geolocated products from the USGS
Earth Explorer and the European Space Agency (ESA) [52]. Each Level-1C product is a
100 km × 100 km tile with a UTM/WGS84 (Universal Transverse Mercator/World Geode-
tic System 1984) projection and datum. The Level-1C product is the result of applying a
Digital Elevation Model (DEM) to project the image in cartographic geometry [53]. Radio-
metric measurements are taken from each pixel and projected in TOA reflectance along
with the parameters to transform them into radiances (the formula is below) [53]. Level-1C
processing applies radiometric and geometric corrections (including orthorectification and
spatial registration). The Level-1C dataset was processed from its true color image. Each
data file can be accessed here: https://sentinels.copernicus.eu (accessed on 21 July 2023).

The formula conversion for reflectance to radiance is as follows:

radiance = reflectance ∗ cos (radians (SunZenithAngle)) ∗ solar Irradiance ∗ U (thermal transmittance)/pi

3.2. Data Processing

To perform this analysis, a classification workflow was created in ENVI 5.3-NV5
Geospatial to categorize the pixels in an image into different classes using supervised and
unsupervised classification schemes. The unsupervised classification schemes (K-means
and IsoData) were performed using no training data, while the supervised classification
schemes (maximum likelihood, minimum distance, Mahalanobis distance, and spectral an-
gle mapper) trained the algorithm using manual data input from existing region-of-interest
(ROI) and field-based data. These classification schemes have been used in coastal vegeta-
tive environments to better predict and understand the changes that are occurring [54–56].
Additionally, the NDVI was used to quantify the vegetation biomass by measuring the
difference between near-infrared and red light. This index identifies vegetation reflection

https://sentinels.copernicus.eu
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and absorption for assessing vegetation density. These procedures resulted in a change
analysis to identify and quantify how the salt marsh changed between two time periods.
The results were then validated to confirm reliable outputs.

3.3. Unsupervised Classification

The unsupervised classification schemes used were K-means and IsoData. These
schemes served as a pre-processing procedure to identify the effectiveness of using an
unsupervised classification based solely on statistics. Each of these schemes focused on
calculating statistics for each class. The IsoData unsupervised classification calculated class
means that were distributed evenly throughout the image, while the remaining unselected
pixels were grouped by their minimum value [57]. Through this repeated analysis, the
means were recalutated, and the pixels were reclassified with respect to the new iteration
of means [57]. This process continued until the number of pixels in each class changed by
less than the selected pixel probability change threshold (0.8000) or the maximum number
of iterations was reached (Figure 4).
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K-Means unsupervised classification calculated the original class means evenly throughout
the image and then grouped the pixels to the nearest class using its minimum value
calculated [57]. All pixels were classified to the nearest class using a probability threshold
of 0.8000 (Figure 4). This process continued until the maximum number of classes was
reached or the number of pixels in each class changed by less than the established threshold.

3.4. Supervised Classification

The supervised classification schemes clustered select pixels in the dataset on the
basis of manual ROIs and field-based training data (Figure 5). The ROIs and training data
were used to select each pixel that was representative of the determined features (water
and marsh). The field-based training data incorporated 133 GPS points to identify salt
marsh areas. These GPS points were added and matched to the pixel-based ROIs selected.
Pixel-based ROIs were selected one at a time (1 × 1), or up to an area of 5 × 5 pixels on the
raster layer was selected. Each selection or grouping of pixels was selected repeatedly to
determine each class. The classification schemes used were maximum likelihood, minimum
distance, Mahalanobis distance, and spectral angle mapper. The maximum likelihood



Remote Sens. 2024, 16, 2 7 of 19

classification assumes that the statistical values for each class in each specified band are
distributed evenly and calculates the probability that a given pixel belongs to the specified
pre-determined class [57]. The probability threshold was a single value at 0.8000 for all
classes. The data scale factor (default 255.00) was used as a division factor to convert integer
scaled reflectance and radiance data into floating-point values. The no output rule image
was applied.
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3.5. Normalized Difference Vegetation Index (NDVI)

The NDVI was used to quantify the vegetation biomass to understand the vegetation
density in the select sites. The NDVI is a ratio calculated between red light (RED) and
near-infrared (NIR) values (formula below). The NDVI range is −1 <= X <= 1 (Figure 6).
Negative values represent water, values close to zero (−0.1 < X < 0.1) represent bare
soil/unconsolidated material, less positive values (0.1 < X < 0.4) represent sparse to inter-
mediate vegetation, and values approaching 1 (X <= 1) are categorized as dense vegeta-
tion [58–61].

NDVI Formula: NDVI = (NIR − RED)/(NIR + RED)
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3.6. Change Detection Analysis

The resulting change detection maps from the maximum likelihood classification
scheme were used to identify increases/decreases in salt marsh area temporally. Band 3
(the green band) was selected to identify these changes by calculating the difference between
the initial image and the final image during the specified period. Images were geometrically
aligned with the same viewing geometry and coordinate system. To identify the increases
and decreases in salt marsh area, the Otsu thresholding method was applied. This algorithm
assumes that the image contains two classes of pixels and then calculates the optimum
threshold separating the two classes [57]. The optimal threshold (or set of thresholds) is
selected automatically; it is not based on differentiation but on the integration of the zeroth-
to first-order cumulative moments of the gray-level histogram [62]. The Otsu thresholding
algorithm is a nonparametric approach for automatic threshold identification and has been
widely used in coastal wetland analysis [63–66].

3.7. Validation

The validation process was an evaluation of the processed data to confirm that the
technique produced reliable outputs characterizing the spatial and temporal analysis of
salt marshes. This approach incorporates validating a single classification (maximum
likelihood) using the change detection analysis. The methods used to validate the results
were (1) threshold output, (2) selection of ROIs, (3) identification of known open water
sources, and (4) extraction of values to points. Each of the validation processes was
operated through this classification to characterize the areas of under- and over-predictions
for each site. These methods incorporated the manual ROIs, field-based training data, and
probability threshold values to identify accuracy. The field-based training data consisted of
133 GPS points locating salt marsh areas. These points were used to validate that the areas
classified as salt marsh were accurate.

To perform the threshold output validation technique, the established ROIs were
processed under different probability thresholds to assess the maximum likelihood clas-
sification accuracy. The probability threshold value was used to identify the accuracy of
the processed results under 0.80, 0.90, and 0.995. These threshold values were determined
to ensure that the pixel was actually representative of the feature class. A probability
threshold of 0.80 or better is stricter than a lower threshold value in allowing a pixel in a
class. Each year was processed under all thresholds to select the pixels assigned to the class
that had the highest probabilities according to the probability threshold set. If the highest
probability is smaller than the specified threshold, the pixel remains unclassified.

ROI selection is a validation process of selecting 30% and 70% of the recorded ROIs to
determine the difference in the output produced. The ROIs selected are random and do not
follow a particular pattern. Each ROI was selected in both water and marsh areas.

The open water source validation process involves identifying how accurately the
bodies of water are classified. This process is used to validate that all the areas mapped as
water are in fact designated water sources. The purpose of using water body detection is to
(1) identify how each classification scheme performed in identifying pixels of a different
feature class, (2) how the water body results differ from salt marsh detection, (3) how
the selection of water ROIs changes when they have neighboring salt marsh ROIs, and
(4) whether the classification scheme can identify the changes occurring with the water
bodies that ultimately impact the salt marshes.

The extraction of values to points was used to identify the accuracy of the classification
scheme on the training data and ROIs created to identify the marsh areas and water sources.
This process extracts the cell values of a raster on the basis of the set of point features and
then records the values in the attribute table of an output feature class. The input raster
is not resampled in the environment. Instead, the cell values are extracted from the input
raster in its original resolution and spatial reference by projecting the input locations to the
raster’s reference from the values extracted.
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4. Results

The results present the salt marsh change detection and NDVI outputs for the selected
NPS sites (Cumberland Island NS, Fort Pulaski NM, and Canaveral NS) from 2016 to
2020. Areas designated as salt marsh increases/decreases feature the salt marsh area
changes. They demonstrate how vulnerable salt marshes are along the southeastern US
and highlight the effectiveness of this remote sensing technique to enhance coastal natural
resource conservation.

4.1. Cumberland Island National Seashore

Cumberland Island NS was analyzed from 2019 to 2020, as this period exhibited no
cloud cover over this specified region (Figure 7). The marsh areas, tributaries, channels,
tidal inlets, and bodies of water were mapped effectively by the maximum likelihood
classification scheme to capture changes occurring at this site.
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The change detection analysis displayed shifts in tidal inlets and channels and along
the coastline. There was a decrease of 1.8% in salt marsh, with a large portion of this
decrease along channel inlets on the most westward areas of the site boundary (Figure 7).
Areas detected as increases in salt marsh were identified in the western, northern, and
southern regions of the site by 1.4% (Figure 7).

The NDVI results supported the maximum likelihood classification and change detec-
tion analysis. Increases and decreases in salt marsh were analogous in areas where water,
bare soil, and sparse–intermediate vegetation were present. The NDVI values in the 2019
image ranged from −0.52 to 0.83, and those in the 2020 image ranged from −0.48 to 0.78
(Figure 7). The vegetation index indicated bare soil/unconsolidated material around the
entire site boundary. In the tidal inlets and channels, the NDVI values categorized the
tidal inlets and channels as water and bare soil/unconsolidated material. Approaching the
eastern region of the site from the west, the vegetation index indicated a transition from
sparse–intermediate vegetation to dense vegetation. The areas categorized as marsh land
ranged from bare soil/unconsolidated material to sparse–intermediate vegetation, while
the most eastern region appeared to have small locations of dense vegetation.

4.2. Canaveral National Seashore

Canaveral NS was assessed from 2016 to 2017 through the maximum likelihood
classification scheme (Figure 8). Through this scheme, some marshes were able to be
identified; however, the water bodies were identified best. The black areas are areas
that were not identified by the classification process. The change detection process was
able to identify some of the classified salt marsh changes (Figure 9). Marsh areas in the
southernmost region of the site had the largest decreases, while areas of marsh increase
were represented in areas along the western and eastern boundaries of the site. The majority
of changes identified were in the channels and tidal inlets; however, notable increases were
present inland along the western site boundary.
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Figure 9. Canaveral National Seashore change detection analysis of marsh land from 2016 to 2017.

The NDVI results paired well with the change detection analysis (Figure 10). In this site,
the vegetation index values for the 2016 image were −0.55 to 0.78 and −0.64 to 0.82 for 2017.
The spectral signatures of the marshes along the eastern border of the site were considered to
be water, bare soil/unconsolidated material, and sparse to intermediate vegetation.
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Figure 10. NDVI salt marsh assessment of Canaveral National Seashore displaying differential
reflection of the vegetation density and relative growth using spectral reflectivity of solar radiation
from 2016 to 2017.
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4.3. Supervised Classification Accuracy

Supervised classification schemes, i.e., maximum likelihood, Mahalanobis distance,
spectral angle mapper, and minimum distance, were used to assess the productivity of
each method and its accuracy (Figure 11). The maximum likelihood produced the most
accurate result, with 90% of the marsh pixels and 99% of the water pixels mapped accurately
(Table 1).
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Table 1. Supervised classification scheme accuracy of all ROIs inputted at Cumberland Island
National Seashore.

Supervised Classification Scheme Accuracy %

Classifications Marsh Pixels (270) Marsh Accuracy % Water Pixels (207) Water Accuracy %

Maximum
Likelihood 243 90% 207 99%

Minimum
Distance 239 89% 197 95%

Spectral Angle
Mapper 234 87% 168 81%

Mahalanobis
Distance 62 23% 8 43%

4.4. Tidal Influence

Fort Pulaski NM highlights the importance of considering the tidal influence in diurnal
environments (Figure 12). On 30 December 2016 and 21 October 2018, the tidal influence
was 1.8–2.7 m. In conducting the supervised classification during this time, the results
displayed the impact of seasonality on this environment. Due to the tidal stage, the marshes
present were submerged, not removed.
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In this assessment, the change detection analysis was identifying areas where the
marsh was submerged due to the tidal influence. These marsh areas were submerged in
the tidal inlets and the southeast region of the site boundary. As these marsh environments
are representative of dynamic processes, validating the maximum likelihood accuracy is
a must (Table 2). The maximum likelihood classification validation results displayed the
accuracy of this approach.

Table 2. Validation accuracy assessment from the maximum likelihood classification scheme for
each site.

Validation Accuracy %

Features Input Points (ROIs) Conferred Points Accuracy %

Cumberland Island National Seashore
Salt Marsh 270 242 90%

Water 207 205 99%
Canaveral National Seashore

Salt Marsh 12 9 75%
Water 102 100 98%

Fort Pulaski National Monument
Salt Marsh 240 226 94%

Water 71 70 99%

5. Discussion

In the southeastern US, salt marshes represent some of the most vulnerable wetlands.
This research outlined the feasibility of using remote sensing-based classification methods
for assessing salt marsh changes. Variations of this technique are widely known and have
been applied to understand coastal vegetative changes; however, this methodology has
not been utilized in this region, nor has it been assessed [67–69]. Before the supervised
classification process was implemented, the unsupervised classification scheme was per-
formed. The unsupervised classification produced seven classes that were determined
from the statistical routine (i.e., clustering) on the basis of their shared spectral signatures.
This is an important step because the classification categorizes unknown similarities and
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differences in the data by grouping similar features. Although the identification of distinct
features was determined, the algorithm generated multiple classes that represented a single
feature (Figure 4). This is due to not having a training sample and/or an ROI to define
each feature class accurately. Using the results of the unsupervised classification improved
the supervised classification by selecting the necessary ROIs representative of the select
features by the spectral signatures clustered. To enhance this automation process, the
unsupervised classification can improve the number of classes determined, as too many
classes can saturate the classification results, yielding inaccurate assumptions of the area
analyzed. Improving the range of clustering from the spectral signatures of each pixel
will provide better interpretation when training data are limited. The unsupervised clas-
sification serves its purpose when no training data exist, but it has to be coupled with a
supervised classification scheme to ensure accurate results. According to these results,
spectral angle mapper, minimum distance, and Mahalanobis distance were each selected
to determine the best method from the supervised classification methods; however, the
maximum likelihood classification results showed the most promise in accurately assessing
marsh changes (Figure 11). Each NPS site was assessed through this scheme to determine
whether this classification would produce an accurate interpretation of the environment.
Each site was mapped appropriately through the manual input ROIs and field-based train-
ing data. The pixels selected captured similarly vegetated marsh areas in Canaveral NS
and Cumberland Island NS (Figures 7 and 8). The channels and tidal inlets, where most of
the changes occurred, also produced viable results. In selecting pixel-based ROIs, details
matter, and in order to provide the most accurate interpretation, each individual pixel
was selected randomly throughout the Sentinel-2 image. Pixels that neighbored another
class or bordered a new feature class were not selected to prevent the over-estimation of
another class feature. When all ROIs were combined, the maximum likelihood classification
yielded the highest accuracy percentage (Table 1). Table 1 displays the number of marsh
and water pixels that accurately represent these features. Subsequentially, the input of all
ROIs improved the performance of minimum distance and spectral angle mapper.

The NDVI provided a supportive source displaying the differential reflection of the
vegetation biomass presence. This assessment supported the maximum likelihood classifi-
cation and change detection analysis, displaying that the majority of the marsh areas in
these sites were from bare/soil unconsolidated material to sparse–intermediate vegetation
(Figures 7 and 10). In the areas where the results indicated salt marsh decreases, the NDVI
values were less than zero, displaying no vegetation. By utilizing this vegetative index, spa-
tial change relationships were captured, the distribution was quantified, and the accuracy
of mapping was classified.

To further our interpretation of the salt marsh changes occurring, a change detection
analysis was performed on each NPS site to determine the exact location of such changes.
The results indicated that salt marshes were largely decreasing during the study period;
however, there were areas of increase (Figures 7 and 9). Notably, the largest salt marsh
decrease occurred in or around the channels, coastline, and tidal inlets. Studies have shown
that the majority of the cases of diebacks, submergence, and/or removal have occurred
within these geomorphological features [69–73]. As a result, these processes alter channel-
ization, contributing to hydrologic and hydrogeological changes. In Fort Pulaski NM, we
highlighted the influence of high/low tide in these environments (Figures 12 and 13). As a
result of tidal influence, decreases in salt marshes are representative of salt marshes being
submerged, not removed [72,73]. Hurricanes are common in the coastal southeastern US,
causing rapid sea level rise and the submergence of salt marsh areas [74]. In understanding
how rapidly these coastal areas change, it is important to note that in collecting data in
these regions, the data must be tidally synced. In Figures 12 and 13, we demonstrate
how data can be misinterpreted due to the data not being under the same tidal influence.
Using this method to classify vegetative changes is efficient, but pre-data collection must be
suitable to provide viable results in identifying areas of concern and areas where changes
are occurring.
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This study provides a detailed methodology that focuses on the establishment of a
remote sensing-based procedure to classify salt marshes and detect changes in the marsh
extent; however, some limitations are apparent. First, data availability and field-based
data collection at each site would have increased the overall accuracy of the classification
scheme used at Cumberland Island NS and Canaveral NS, as field-based training data
were only applied to Fort Pulaski NM. Coupling field-based data to support this technique
would have resulted in more precise results from the manually selected ROIs. Second, in
completing this type of analysis, the spatial extent of the salt marshes must be considered. In
areas where the extent of salt marshes is prominent, the maximum likelihood classification
is efficient. Alternatively, if the areal extent of the salt marshes is relatively small, this
procedure is not as effective in salt marsh monitoring. Third, the period in which data are
collected must be considered. These datasets were collected because of their clarity due
to a lack of cloud cover and the areal cover over the sites; however, due to differences in
seasons, the amount of salt marsh present was impacted by diurnal variations. In the case
of salt marsh studies, the tidal influence must be considered to alleviate misinterpretation.
Fort Pulaski NM was not collected at approximately the same tidal level relative to a
particular datum; however, even with this limitation, this method still highlighted areas of
concern and showed how the salt marsh areas responded after being submerged. Lastly,
the number of ROIs used when classifying each image must be taken into consideration.
Overall, this classification scheme works best when there are more pixels selected in respect
to its pixel value to provide a better interpretation. The more statistics collected for each
band distributed spatially throughout the image, the higher probability that a given pixel
or set of pixels belongs to a specific class feature. However, due to the classification scheme
calculating each pixel, some results may yield an over- or underestimation of each feature
class. This occurred while processing Canaveral NS, and therefore, the method was adjusted
to capture an output that closely resembled the designated features. Fewer ROIs (12) were
used to produce a more accurate result. Because Canaveral NS had a small areal extent of
salt marsh presence, the maximum likelihood classification performed better with fewer
ROIs selected. At this particular site, a higher number of ROIs produced an overestimation
of salt marshes. Some of the pixels representative of salt marshes neighbored other features
not representative of salt marshes in close proximity that yielded false results. Overall,



Remote Sens. 2024, 16, 2 16 of 19

this classification scheme works best when there are more pixels selected in respect to its
pixel value to provide a better interpretation. Even after considering these limitations,
this multi-phased methodology was shown to be reliable in that it offers a high degree of
performance and accuracy.

Studies have demonstrated that this method produces an overall accuracy ranging
from 79% to over 88% [10,41,72,73]. In this study, we produced an overall accuracy ranging
from 75% to 99% (Table 2). At each of the sites, the water bodies were mapped with 99%
accuracy. In the marsh areas, the range was from 75% to 94% accuracy. The percentage of
errors was likely due to the salt marshes’ spatial extent, the inclusion of field-based data
collection, and the variability of satellite imagery noise due to differences in the stage of
tides. Due to the large spatial extent of the salt marshes at Fort Pulaski NM and Cumberland
Island NS, the conferred points of the selected input ROIs yielded >90% accuracy. The
maximum likelihood classification was able to better capture salt marsh features, as there
were more pixels of identifiable marsh locations. Additionally, Fort Pulaski NM produced
the most accurate results due to the combination of manual input ROIs and field-based
data collection to yield more precise results.

6. Conclusions

Coastal salt marsh ecosystems are continually threatened by climatic effects and
anthropogenic activity. As these ecosystems continue to experience these stressors and
changes, analyzing changes in these environments will inevitably become more difficult
due to their inaccessible locations and rapid transformation. The use of remote sensing-
based techniques with high spatial resolutions offers a valuable tool to provide proper
management and an understanding of these shifting ecosystems. Furthermore, coupling
remote sensing-based techniques with field-based data collection can provide more accurate
results in understanding the nature of the processes occurring in these environments.

In this study, we provided a detailed methodology that analyzed salt marshes in
Cumberland Island NS, Fort Pulaski NM, and Canaveral NS. Through this approach, salt
marshes were identified, changes in area were detected, and the NDVI was used to quantify
the vegetation biomass to understand vegetation density changes. This study did not
show a permanent loss, and changes in increases/decreases can be attributed to short-term
changes between two periods. According to these results, repeatable assessments are
warranted to identify long term trends. Through this process, we learned the critical state of
these marsh environments as well as the value of applying these techniques. This advanced
methodology has improved our understanding of the salt marsh changes occurring at these
NPS sites while highlighting the disadvantages that exist in some scenarios.

This multi-phased technique furthers our understanding of the fundamental practices
in analyzing coastal salt marshes through remote sensing-based approaches. As these
detection techniques focused on salt marshes in this study, this application has the ability
to be replicated under different environments and vegetation types. This developed frame-
work enhances the reliability of change detection image processing due to the validated
overall accuracy. As salt marshes continue to evolve, this approach offers the flexibility to
capture ongoing changes. In a future study, deep learning, artificial neural networks, and
support vector machine methods will have great potential for improving the classification
of salt marshes.

To further characterize how vegetation is impacted by the effects of climate change, this
study offers a monitoring tool that can be applied to improve coastal natural resource man-
agement. A field-based and remote sensing method is imperative in an uncertain climate
and ever-changing ecomorphodynamic system, and utilizing this approach will ensure that
salt marshes continue to serve as a pivotal resource in these aquatic environments.
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