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Abstract: Hyperspectral imaging is an emerging non-invasive technology with potential for early
nutrient stress detection in plants prior to visible symptoms. This study evaluated hyperspectral
imaging for early identification of nitrogen, phosphorus, and potassium (NPK) deficiencies across
three greenhouse-grown industrial hemp plant cultivars (Cannabis sativa L.). Visible and near-infrared
spectral data (380–1022 nm) were acquired from hemp samples subjected to controlled NPK stresses
at multiple developmental timepoints using a benchtop hyperspectral camera. Robust principal
component analysis was developed for effective screening of spectral outliers. Partial least squares
discriminant analysis (PLS-DA) and support vector machines (SVM) were developed and optimized
to classify nutrient deficiencies using key wavelengths selected by variable importance in projection
(VIP) and interval partial least squares (iPLS). The 16-wavelength iPLS-C-SVM model achieved the
highest precision of 0.75 to 1 on the test dataset. Key wavelengths for effective nutrient deficiency
detection spanned the visible range, underscoring the hyperspectral imaging sensitivity to early
changes in leaf pigment levels prior to any visible symptom development. The emergence of wave-
lengths related to chlorophyll, carotenoid, and anthocyanin absorption as optimal for classification,
highlights the technology’s capacity to detect subtle impending biochemical perturbations linked to
emerging deficiencies. Identifying stress at this pre-visual stage could provide hemp producers with
timely corrective action to mitigate losses in crop quality and yields.

Keywords: chemometrics; hyperspectral imaging; industrial hemp; nutrient deficiencies; pre-visual
detection; variable selection

1. Introduction

Recently, hemp (scientifically termed Cannabis sativa L.) has been attracting substantial
worldwide interest, with a particular focus on the United States. It is interesting to see the
transformation of hemp from its historical roots to a modern agricultural powerhouse, given
its diverse uses across industries [1]. In addition to its use in fiber and paper production,
hemp is an environmentally-sustainable and profitable crop that aligns well with eco-
friendly farming practices [2]. The resurgence of industrial hemp has created an urgent
need for extensive research on production management, particularly on clarifying the
complex fertility requirements of cultivars bred specifically for phytochemical production.
Ideal hemp fertilization depends on many factors—the specific variant grown (whether for
seeds, fiber or cannabidiol (CBD)), soil characteristics, prevailing weather conditions, and
achieving the right balance of essential macro- and micronutrients [3]. Determining the
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optimal nutrient management strategy for hemp remains a challenging task for farmers.
When levels of key elements like nitrogen, phosphorus, and potassium drop, it can really
devastate yields and profits, making them constantly vulnerable. Research suggests the
customizing of fertilizer regimens tailored to expected harvests, based on proven techniques
dialed in for other major crops. The soil conditions and microclimate of each operation as
well as other factors must be considered when optimizing a specific hemp operation [4].

Deficiencies could also leave the plants more exposed when new pathogens emerge,
potentially catalyzing disastrous impacts. Identifying the mechanisms inducing these
effects early and deploying strategic protections may help mitigate the carnage [5]. Meticu-
lously monitoring plant health is also critical, especially in less than stellar environments,
to enable proper maturation. Therefore, really comprehensive crop surveillance remains
vital, facilitating accurate preemptive yield loss forecasts and proactive preparedness plan-
ning [6]. Furthermore, among the many complex facets of precision agriculture that need
advanced methods, one really stands out—developing new plant varieties and picking
the best ones for specific conditions. Therefore, there is a pressing need for fast, precise,
non-invasive phenotyping techniques to effectively evaluate plant stress levels and enhance
breeding programs [7].

In recent years, there has been growing interest in using state-of-the-art imaging
technologies to measure how abiotic stress impacts plants. Adopting non-destructive
imaging allows continuous measurements over time, enabling ongoing monitoring of
crop resilience under stress [8]. An exciting new technology called hyperspectral sensing
has recently gained popularity, offering a way to holistically assess plant physiology
by seamlessly combining spatial and spectral information. It represents one of several
cutting-edge techniques that have the potential to revolutionize our understanding of plant
reactions and adaptation to environmental stressors [6]. The unique spectral signatures
of leaves and canopies can potentially be tapped as insightful markers of shifts in plant
health due to changing conditions. Each plant pixel holds a wealth of intricate details on its
chemical composition and status, allowing a comprehensive appraisal of its health. Both
mature and young leaves show the effects of nutrient deficiencies, ultimately restricting
growth. These shortfalls initially become visible under light as pigment changes, with
leaf yellowing producing higher reflectance in the green–red wavelengths [9]. Studies
demonstrate that necrotic areas linked to deficiencies exhibit increased reflectance in the
near-infrared (NIR) and shortwave infrared (SWIR) regions, whereas areas with non-
necrotic nutrient deficiencies often show decreased reflectance in those spectral regions.
Therefore, hyperspectral imaging is emerging as a promising non-invasive tool for assessing
crop nutrition and tracking stress changes over time [10].

Daily tracking of fluctuations in plant physiology is key to grasping subtle hourly shifts
and impacts. Weksler et al. [11] developed a mobile hyperspectral camera to continuously
capture a large amount of greenhouse measurements throughout the day. By syncing the
spectral data with sensors in real-time, they gained insight into the dynamic interplay
between spectral signatures and pepper plant responses to potassium. Specific spectral
bands were significantly correlated with momentary water loss rates. This shows the power
of hyperspectral imaging to monitor plant behavior in real-time. In a groundbreaking
study, Siedliska et al. [12] built models to track phosphorus levels during different growth
phases of various crops fertilized in different ways. Leveraging hyperspectral imaging and
machine learning, they successfully sorted plants into four categories based on phosphorus
fertilization levels. Their discoveries unveiled the capacity of combining hyperspectral
imaging and machine learning for precise quantification of phosphorus at an early stage
in the growth cycle. Moreover, a substantial enhancement in classification accuracy was
observed as plants progressed through successive growth stages. This really spotlights the
power of the fusion of imaging and machine learning to grasp phosphorus dynamics in
crops and manage them effectively. In another study, Osco et al. [13] used hyperspectral
analysis on Valencia orange leaves, developing machine learning algorithms to quantify
macro- and micronutrients like nitrogen, phosphorus, potassium, magnesium, sulfur,
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copper, iron, manganese, and zinc. Random forest models showed the highest accuracy
and predictive ability compared to other models. The Relief-F algorithm was key in
identifying the most important wavelengths for nutrient prediction. The impressive results
in estimating key nutrients highlighted the effectiveness and robustness of their approach
for assessing nutrients in Valencia orange leaves.

While hyperspectral imaging has shown promise for physiology and stress assessment
in various crops, there has been limited but growing interest in using it for monitoring
industrial hemp. Several recent studies demonstrated the effectiveness of hyperspectral
imaging techniques in the near-infrared and shortwave infrared spectral regions for dif-
ferentiating hemp cultivars, growth stages, and plant components like stems, leaves, and
flowers [14–16]. Machine learning approaches attained high classification accuracies up
to 100% for factors like plant component and growth stage. Additionally, this technology
was combined with chemometrics for non-destructive measurement of key cannabinoids
in industrial hemp flowers and leaves [17]. However, no published studies have leveraged
spectral imaging specifically for early diagnosis of nutrient deficiencies in industrial hemp
prior to symptom manifestation.

In the cultivation of industrial hemp within greenhouse environments, the prompt
identification and resolution of deficiencies in crucial nutrients such as nitrogen, phos-
phorus, and potassium (NPK) hold paramount significance. Our research goal was to
find out if NPK deficiencies could be identified early, before symptoms arise. The aim
was to give growers tools to detect NPK issues way before visible signs show up, so that
they can take action to maintain adequate levels of these essential nutrients in greenhouse
hemp plants. Our initial emphasis involved the identification of optimal wavelengths for
precise detection of nitrogen, phosphorus, and potassium (NPK) deficiencies in plants.
Subsequently, a meticulous selection of the appropriate algorithm was made to identify
these deficiencies at an early stage in the growth cycle. The provision of such capabilities to
growers could significantly impact their productivity.

2. Materials and Methods
2.1. Experimental Greenhouse Setup and Hemp Cultivar Selection

This experiment was carried out in the controlled greenhouse space at the University
of Minnesota’s Plant Growth Facilities on the St. Paul campus. Three hemp cultivars and
breeding lines—Trilogene Alpha, Atlas Wilhelmina, and UMN 5-4—representing various
plant phenotypes were selected in this study. Trilogene Alpha and Atlas Wilhelmina are
specialized feminized auto-flowering types carefully bred for CBD production, while UMN
5-4 is a hardy breeding line from the feral hemp collections that the University of Minnesota
has nurtured along. In the first step, healthy seedlings were transplanted into 3-gallon
pots around 10 days after planting (DAP) with one plant per pot. The pots were loaded
with Promix BRK growing media with a modest dose of Osmocote Plus 15-9-12 fertilizer
(3–4 months) at 3 g per liter. The purpose of this low fertilizer rate was not to feed these
young plants completely—it was simply to maintain them until they reached maturity. It
was not our intention to produce hemp at a commercial level.

Around 50 DAP, two treatments were introduced to the experiment. The first group of
healthy plants received Jack’s 20-10-20 Peat-Lite nutrient at 150 ppm using a careful bottom-
water fertigation method. This continued throughout and served as our control group
(CK). The second group, labeled nutrient deficient (ND), did not receive any additional
nutrients beyond the initial Osmocote dose. The experiment consisted of pots, with each
pot containing one plant from each of the three hemp cultivars (Trilogene Alpha, Atlas
Wilhelmina, UMN 5-4). A total of 54 pots were included in the experiment (9 pots per
cultivar × 2 nutrient treatments × 3 cultivars). Six pots per cultivar/treatment group
were randomly chosen for detailed photography and analysis. The whole experimental
setup was replicated twice. Conducting the replication gave us robust data collection and
analysis.
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2.2. Hyperspectral Data Acquisition and Preprocessing

Spectral measurements at three critical time points in the study were obtained—T1
(55 DAP), T2 (60 DAP), and T3 (64 DAP) in a dark room (Figure 1b). The main goal was to
detect stress early, ideally before any visible symptoms appeared. The dark room conditions
reduced ambient light interference/variability to enable reliable early stress detection
through stabilized imaging [18]. All the selected samples underwent careful scanning
with a calibrated Pika L 2.4 (Resonon Inc., Bozeman, MT, USA) benchtop hyperspectral
imaging system. A 23 mm lens was mounted on the camera, providing a field of view of
15.3 degrees. The camera has a spectral resolution of 2.1 nm. The camera is a line-scan
camera, also called push-broom imager. The system is comprised of a linear stage assembly
propelled by a motor. Overhead, we carefully positioned halogen lighting to optimize the
lighting condition for the image collection. The system operated through Spectronon Pro
3.4.8 software (Resonon Inc., Bozeman, MT, USA), which was connected to the camera via
a USB cable. Before scanning any plants, a series of key calibration steps were conducted.
Dark correction was conducted by blocking the lens and capturing multiple dark frames.
Then camera calibration was conducted using both the dark image and an image captured
from the white Spectrolon reference panel.
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Noise Reduction 

For this research endeavor, we allocated 66% of the 324 samples (shown in Table 1) 
to the calibration set and 34% to the prediction set using the Kennard–Stone algorithm—
a method that provides coverage across sets for creating reliable models [20]. To further 
promote stability and dependability in our models, which can vary in this field, we con-
ducted 10-fold Venetian blind cross-validation. By creating 10 distinct splits with a blind 
thickness of one sample, overfitting was prevented [21]. We find this strengthens confi-
dence in model evaluations. Additionally, we omitted 10 wavelengths from both ends of 

Figure 1. (a) Industrial hemp plants in the greenhouse; (b) setup of spectral measurement equipment
for hemp plants using a hyperspectral camera and halogen lighting; (c) NDVI analysis to distinguish
hemp plants from the background; (d) average spectral signatures of control and nutrient-deficient
Atlas Wilhelmina hemp plants (sample size = 108), with shaded areas indicating standard deviation
(SD = 0.0125–0.226).
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To enable precise data extraction and analysis, we relied on the widely used normalized
difference vegetation index (NDVI) (Figure 1c). This helps distinguish the crop plants from
the background [19]. We then carefully picked three adjacent regions within each plant
that had similar spectral profiles. The selection process involved using Euclidean distance
measurements to pinpoint those zones of interest (ROIs). We aimed to have each ROI
cover around 2000 pixels, capturing representative leaf tissue—both symptomatic and
asymptomatic areas—to collect comprehensive data across the entire leaf. For each control
and nutrient-deficient group at different time points, we examined 6 plants total, choosing
3 distinct regions within each plant. This resulted in 18 samples collected from each
group. Table 1 shows the breakdown of the number of samples used for data processing
and analysis.

Table 1. Number of samples used for data processing and analysis.

Variety/Nutrient Deficiency Stage T1 T2 T3

Atlas Wilhelmina CK (18), ND (18) CK (18), ND (18) CK (18), ND (18)
Trilogene Alpha CK (18), ND (18) CK (18), ND (18) CK (18), ND (18)

UMN 5-4 CK (18), ND (18) CK (18), ND (18) CK (18), ND (18)

After each scanning session, we utilized the Spectronon Pro for pre-processing to
extract the spectral data from the leaf samples, hoping to gain some useful insights to
advance our research goals. Potential disruptions, including equipment noise, quirks in
experimental methods, environmental factors, and stray light, can impair data analysis
accuracy and lead to less reliable findings. Therefore, spectral data require careful pre-
processing prior before being analyzed. For this work, we thoroughly compared different
pre-processing techniques before selecting the Sklearn MinMaxScaler as our first step.
This method is particularly suitable for scaling the pixel values for each spectral band
to a consistent 0–1 range. Then we applied group scaling, relying on the notion that
the magnitude of a measurement reflects its importance, with relatively uniform noise
across variables. Group scaling means dividing the variables into evenly-sized blocks,
then scaling each block by the grand mean of their standard deviations. Within each
block, this approach calculates the deviations of the variables, then uses their averages
to standardize all the columns in that block. The process needs to be repeated for each
block of variables, assuming equal column numbers as a default. This ultimately yielded
harmonized, noise-reduced data ready for multivariate analysis [20].

2.3. Multivariate Analysis of Hyperspectral Data
2.3.1. Optimizing Spectral Analysis through Robust Outlier Detection and Noise Reduction

For this research endeavor, we allocated 66% of the 324 samples (shown in Table 1) to
the calibration set and 34% to the prediction set using the Kennard–Stone algorithm—a
method that provides coverage across sets for creating reliable models [20]. To further pro-
mote stability and dependability in our models, which can vary in this field, we conducted
10-fold Venetian blind cross-validation. By creating 10 distinct splits with a blind thickness
of one sample, overfitting was prevented [21]. We find this strengthens confidence in
model evaluations. Additionally, we omitted 10 wavelengths from both ends of the original
300 wavelength range. This left us with 280 wavelengths between 400.71 to 999.6 nm to
utilize for downstream analysis. From our empirical experiences, we discerned that noise
frequently manifests at the edges of the spectral range, potentially introducing distortion
into the analysis.

In analyzing our dataset of 324 samples, we leveraged robust principal component
analysis (RPCA) to excise potential outliers and boost the accuracy of subsequent data
analysis. RPCA has proven to be uniquely beneficial when handling noisy or irregular data
that may skew results if not addressed. As mentioned above, we removed 10 wavelengths at
both ends of the spectrum under examination to reduce the impact of noise. Through RPCA,
we could decompose the data into its low-rank skeleton capturing the intrinsic structure
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and a sparse component isolating deviant outliers and noise [22]. This decomposition
enabled pinpointing and discarding of aberrant values that diverged markedly from the
norm and would have detrimentally skewed the analysis. While dimension reduction
techniques always risk discarding meaningful signals, our judicious component selection
minimized this likelihood. Further simulation studies and real-world trials are needed to
fully probe the impacts of RPCA-based preprocessing on downstream statistical testing.

2.3.2. Wavelength Selection

Hyperspectral data, characterized by their multidimensional nature and inherent
redundancies, have the propensity to impede modeling performances. Therefore, applying
variable selection algorithms is key to pinpointing the optimal wavelengths and boost
model performance. The right algorithm can simplify things by cutting redundant data
and axing irrelevant variables. For this work, we evaluated two algorithms—variable
importance in projection (VIP) and interval partial least squares (iPLS)—to identify the
most useful wavelengths. VIP scores estimate the importance of each variable in the PLS
projection. Variables with VIP scores near or above one are considered influential, while
variables with scores significantly below one are less important and may be excluded.
This method provided an initial filtering to isolate the spectral regions with the strongest
signal [23]. iPLS selects a subset of variables that provides superior prediction compared to
using all variables. It does an exhaustive search for the optimal variable or combination.
iPLS can operate in “forward” mode, with intervals successively included, or “reverse”
mode with intervals successively removed. In this study, we used iPLS in forward mode
starting with individual PLS models for each defined variable interval [24]. Cross-validation
was performed on each model and the interval giving the lowest root mean square error of
cross-validation (RMSECV) was selected first. RMSECV refers to the standard deviation
of the differences between predicted values and actually observed values in a CV setting.
This continued until the specified number of intervals was reached or RMSECV plateaued.
The interval size used in this study was one variable. We compared the performance of VIP
and iPLS in selecting the key wavelengths carrying information on early nutrient stress
indicators. This enabled the assessment of which approach was optimal for reducing data
volume while retaining predictive power—crucial for developing an accurate and rapid
detection system.

2.3.3. Development of Classification Models

The spectral data, originally stored as .xls files, were imported into MATLAB R2021b
(MathWorks, Natick, MA, USA) for analysis. We then used the PLS_Toolbox version 8.9.1
(Eigenvector Research Inc., Manson, WA, USA) to train classification models with robust
features. We employed partial least squares-discriminant analysis (PLS-DA) to classify the
nutrient deficiency stages. PLS-DA is a supervised technique, so it requires labeled data to
establish connections between spectral features and predefined classes, such as the nutrient
deficiencies here [25,26]. The goal was to build a solid supervised model to discriminate the
samples across three varieties regarding control (CK) and different deficiency stages (T1, T2,
T3). Specifically, PLS-DA finds latent variables, also called PLS components, that maximize
the relationship between the predictor variables (spectra) and the response (deficiency
stage). These components project the data into a lower dimensional space while preserving
key discriminatory information, enabling effective classification. The model learns to
differentiate the stages based on this condensed spectral representation, allowing accurate
categorization into the specified classes. This approach empowers effective discrimination
of nutrient stress even with the complexity of hyperspectral data.

In addition to PLS-DA, we also explored support vector machines (SVMs) for devel-
oping classification models. SVMs are nonlinear machine learning models well-suited
for classification tasks. The key idea behind SVMs is to project the data into a higher
dimensional space using kernel functions and construct an optimal separating hyperplane
between classes in that space [20,27]. The kernels effectively transform the data to make it
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more linearly separable. The hyperplane is positioned to maximize the margin between
classes, which improves generalization performance. Specifically, the SVM model consists
of a subset of training samples known as support vectors, as well as nonlinear kernel
coefficients that together define the transformation and hyperplane [28]. The model enables
prediction of the class membership for new samples based on their mapped positions rela-
tive to the hyperplane. We utilized the svm function in MATLAB which implements SVMs
using the LIBSVM package. LIBSVM provides two commonly used SVM formulations—C-
SVM and nu-SVM. C-SVM uses a regularization parameter C to control the penalty applied
to misclassified training samples. Nu-SVM uses a ‘nu’ parameter to specify the maximum
fraction of allowed training errors and support vectors. Both solve the same optimization
problem. A key advantage of the SVM function is that it automatically tunes the C, nu,
and kernel gamma parameters using cross-validated grid search. This avoids the need for
manual parameter tuning. However, single values can be specified if desired [29]. Once
optimized, the SVM model discriminates between classes using the nonlinear spectral
project. We applied SVM using the key wavelengths selected by VIP and iPLS as predictors.
The nonlinear SVM models provided an alternative approach to PLS-DA for classification of
nutrient deficiency stages across varieties and time points. We compared the performance
of optimized SVM and PLS-DA models to determine the optimal technique.

The performance of the developed PLS-DA and SVM classification models was thor-
oughly evaluated using several key metrics:

• Precision—The proportion of correctly classified positive samples out of all positive
classifications. Higher values indicate greater effectiveness.

• Sensitivity—Measures the model’s ability to correctly identify positive cases. A sensi-
tivity of 1 means all positive cases are detected.

• Specificity—Evaluates how well the model identifies negative cases. A specificity of
1 means no false positives occur.

• F1 Score—The harmonic mean of precision and sensitivity. Provides overall measure
of model accuracy accounting for both false positives and false negatives.

• Class Error—The proportion of misclassified samples out of all samples. Lower values
are better.

These metrics were calculated using a confusion matrix, which summarizes the pre-
dictions of the model. The confusion matrix is an N-by-N table contrasting the true and
predicted classes. The diagonal cells show correct classifications (true positives/negatives)
while the off-diagonal cells show errors (false positives/negatives). From the confusion ma-
trix, the sensitivity, specificity, and class error are calculated using the counts of true/false
positives and negatives. Overall precision is simply the sum of correct positive predictions
divided by total positive predictions. In addition to these quantitative metrics, we gener-
ated classification images visually depicting the distribution of correctly and incorrectly
classified samples. An effective model will demonstrate high accuracy, sensitivity, and
specificity along with low class error. By analyzing the multiple metrics, we evaluated the
ability of PLS-DA and SVM models to identify nutrient stress in hemp plants.

3. Results and Discussion
3.1. Spectral Response of Hemp Samples under Nutritional Stress

The reflectance and absorption of light are strongly influenced by the physiological
and chemical characteristics of plants, which can change under stress and impact the
reflectance spectrum. The near-infrared and visible ranges are crucial for plant growth
measurements. Using these wavelengths enables hyperspectral imaging to detect changes
in leaf pigment (400–700 nm) and cellular composition (700–1300 nm) [30].

Since chlorophyll aids photosynthesis and absorbs light, fluctuations in chlorophyll
due to stress can alter light interactions. Stressed plants may show depleted chlorophyll
detected as low 530–630 nm reflectance and increased 700 nm reflectance. Beyond chloro-
phyll, pigments like carotenes and xanthophylls also contribute to light reflection [31].
Carotenoids and anthocyanins also help defend against environmental factors [6,32]. In
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addition, physical leaf traits like tissue morphology, cell walls, and thickness may change
under stress, influencing spectral properties. Stomata can also adversely impact moisture,
gas exchange, and temperature, affecting infrared reflectance. Altered cell components,
proteins and carbohydrates under stress significantly impact reflectance as well [33,34].

Spectral data reveal the absorption of key chemical groups like C-H, N-H, and O-H,
containing composition and structure information. Nutrient-deficient samples showed
similar overall spectral trends to controls but different reflectance magnitudes (Figure 1d). A
550 nm peak was seen, as hemp mostly absorbs blue-violet and red light for photosynthesis
but reflects green light, giving the leaves their color. Some weak 900–1000 nm peaks were
observed, attributed to -CH3 groups [35]. The peaks relate to internal leaf components.
Therefore, the spectral response enables qualitative and quantitative analysis. The 555 nm
peak relates mainly to chlorophyll content. The 800–1200 nm region corresponds to leaf
structure, water content, and chemical components. Importantly, the spectral pattern of
nutrient-deficient and control hemp leaves was similar across the wavelengths. No clear
characteristic peaks related to the stress were observed. Therefore, to determine nutrient
stress, multivariate data analysis is needed, working off the subtle spectral differences
between samples.

3.2. Outlier Detection Using RPCA

When developing calibration models from spectroscopy data, it is common to find
some data points that diverge from the main trends. Excluding these non-fitting outliers
can improve the model’s reliability [36,37]. We used two key statistics—Q-residuals and
Hotelling’s T2—to detect outliers among 324 samples, each with 280 wavelengths. Q-
residuals measure the variation unexplained by the model, calculated from the error matrix.
Samples with large Q-residuals versus others demonstrate poor model fit. Hotelling’s T2

indicates the variation within the model, based on the score values. Lower scores reflect
better fit. Therefore, Hotelling’s T2 represents the distance from an ideal perfect fit [38].
We first computed the Q-residuals and Hotelling’s T2 using a PCA model’s scores and
loadings, and then identified points outside the 95% confidence range for both metrics,
flagging 44 outliers. In general, samples with big Q-residuals are poorly modeled, whereas
samples with high Hotelling’s T2 values greatly vary within the model. After removing
these 44 outliers, there were 280 samples remaining for further analysis. Using Q-residuals
and Hotelling’s T2 combined allowed for the successful screening of anomalous points and
the improvement of the calibration data. Figure 2 shows the Hotelling T2, PC1, and PC2
values versus the Q residuals obtained for the RPCA model.

3.3. Temporal Classification of Nutrient Deficient Stress in Hemp Plants Using PLS-DA

Prior to investigating classification under stress conditions, a preliminary analysis was
conducted to assess the efficacy of our methodology in discerning variations in the visible
and near-infrared spectra among diverse hemp cultivars. Accordingly, a PLS-DA model
was constructed, wherein each cultivar class could be distinctively segregated based solely
on the control group data. The model had three regression vectors (and predicted Y values),
one for each of the three cultivar classes—Atlas Wilhelmina-CK, Trilogene Alpha-CK, and
UMN 5-4-CK. As seen in Figure 3a, the predicted Y values for the control samples nicely
classified the three cultivars. Based on Bayes’ theorem, a threshold (represented by the
red line) was determined to minimize errors. Figure 3b shows VIP scores indicating each
wavelength’s importance for PLS projection. Variables with VIP near or above one are
influential, while those far below one are less useful and could be excluded. We found
wavelengths around 700 nm were best for distinguishing the hemp cultivars.
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Figure 2. RPCA model analysis for outlier detection. (a) Hotelling T2, (b) principal component 1 
(PC1) and (c) principal component 2 (PC2) scores versus Q residual scatter plot. Samples categorized 
as outliers (exceeding 95% confidence level, blue dashed line) are indicated in red, while retained 
samples are colored gray. 

Figure 2. RPCA model analysis for outlier detection. (a) Hotelling T2, (b) principal component 1 (PC1)
and (c) principal component 2 (PC2) scores versus Q residual scatter plot. Samples categorized as
outliers (exceeding 95% confidence level, blue dashed line) are indicated in red, while retained samples
are colored gray.
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Figure 3. (a) Predicted Y values from the PLS-DA model to distinguish between the three hemp 
cultivars. (b) VIP scores indicating the importance of wavelengths for cultivar discrimination. 
Figure 3. (a) Predicted Y values from the PLS-DA model to distinguish between the three hemp
cultivars. (b) VIP scores indicating the importance of wavelengths for cultivar discrimination.

After first building the PLS-DA model on the control groups, we proceeded and
applied it to detect early nutritional stress. The model included classes for both the control
(CK) and nutrient-deficient groups at three different time points (T1-ND, T2-ND, T3-ND)
across the three hemp varieties. As shown in Figure 4a, the model performed well in
classifying the various nutrient-deficient groups of plants, even with multiple cultivars
included. In other words, this implies its potential for generalizable stress detection beyond
individual cultivars.
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Comparing the VIP scores in Figures 3b and 4b, we noticed the most useful wave-
lengths for distinguishing between control samples shifted over to the green–red region of
the visible spectrum when it came to distinguishing the nutrient deficiency groups. This is
consistent with previous findings that nutritional deficiencies often affect the visible range
the most due to pigmentation changes and result in higher reflectance in the green–red
region at wavelengths close to 540 nm and 650 nm [6,9]. Figure 4b highlights the importance
of the green and red parts of the spectrum for detecting nutritional deficiencies in hemp,
similar to what has been observed in other plants. Table 2 presents the performance metrics
of the PLS-DA model for classifying nutrient deficiency at different time points (T1-ND,
T2-ND, T3-ND) compared to the control (CK) across the training, validation, and test data.
For the training set, the model achieved strong performance with sensitivity, specificity,
and precision all equal to 1.0. On the validation set, sensitivity ranged from 0.76 to 0.96,
specificity from 0.85 to 0.99, precision from 0.85 to 0.89, and F1 scores from 0.80 to 0.92,
indicating robust model performance on unseen data. Comparable results on the test set
confirm the model’s ability to detect reliably early nutrient stress. While T1 deficiencies
were most difficult to detect with 0.67 test sensitivity, T3 stress was perfectly classified with
1.0 test sensitivity. Overall, PLS-DA demonstrated reliable discrimination of nutritional
deficiencies in hemp using hyperspectral imaging. Further enhancement may focus on
improving sensitivity to subtle early T1 deficiencies.
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Table 2. Performance metrics for temporal classification of nutrient deficient stress in hemp plants
using the PLS-DA model.

Class Sensitivity Specificity Class Error Precision F1

CK
Train 1.000 1.000 0.000 1.000 1.000

Validation 0.883 0.848 0.135 0.850 0.866
Test 0.787 0.841 0.185 0.828 0.807

T1-ND
Train 1.000 1.000 0.000 1.000 1.000

Validation 0.773 0.985 0.045 0.895 0.829
Test 0.667 0.932 0.113 0.667 0.667

T2-ND
Train 1.000 1.000 0.000 1.000 1.000

Validation 0.759 0.969 0.071 0.846 0.800
Test 0.684 0.924 0.113 0.619 0.650

T3-ND
Train 1.000 1.000 0.000 1.000 1.000

Validation 0.964 0.969 0.032 0.871 0.915
Test 1.000 0.990 0.008 0.958 0.979

Receiver operating characteristic (ROC) curves were used to visualize the specificity
and sensitivity trade-offs across different classification threshold settings for the PLS-DA
model predictions (Figure 5). Specificity and sensitivity refer to the percentages of correctly
classified negative and positive cases below and above a given threshold, respectively,
as illustrated in Figure 4a. The area under the ROC curve (AUC) effectively summarizes
model discrimination ability by integrating specificity and sensitivity across thresholds.
The AUC values exceeded 0.81 for all deficiency classes and control, signifying the PLS-DA
model performed successfully in temporally classifying nutrient stress in hemp using
hyperspectral imaging.
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3.4. Enhancing Classification Performance Using SVM Models Combined with
Wavelength Selection

Before creating the SVM models, we applied VIP and iPLS wavelength selection meth-
ods to extract the most significant wavelengths for improving and streamlining spectral
analysis [7,39]. The original data contained 280 wavelengths, with many redundant and
co-correlated variables. These irrelevant wavelengths not only negatively affect model
performance but also increase calculation time. Using appropriate variable selection to
identify key influential wavelengths, along with an advanced classifier, could benefit nu-
trient stress classification in hemp. iPLS gave the greatest dimensionality reduction, from
280 down to 16 wavelengths. The method works by constructing PLS models iteratively,
discarding wavelengths with the smallest regression coefficients each time to isolate useful
predictors [20]. VIP reduced the number of wavelengths down to 70 by ranking them
according to their significance to the PLS model projection.

With the optimal wavelengths identified, we evaluated different SVM configurations
to improve classification over PLS-DA. We developed and compared optimized C-SVM and
nu-SVM models using the radial basis kernel function (RBF) to handle nonlinear relation-
ships. Crucially, SVM requires optimizing the cost, nu, and kernel gamma parameters. We
used 10-fold cross-validation grid search on the training set to determine the values giving
minimal error. To build a robust model, SVM parameters were carefully tuned across a
wide range. The kernel gamma shapes the separating hyperplane and indicates the number
of variables. The cost balances errors and complexity. Nu sets bounds on support vectors
and training errors [40,41].

In Table 3, we show how optimized SVM models utilizing key wavelengths selected
by VIP and iPLS can distinguish nutrient deficiencies over time in hemp from healthy
controls. We tested the reduced wavelength subsets with C-SVM and nu-SVM architectures.
Across all nutrient stress classes, the 16-wavelength iPLS-C-SVM model achieved 0.75 to
1 precision on the test set, which outperformed the other architectures. The iPLS-C-SVM
also demonstrated notable sensitivity and specificity of over 0.79 for each class. These
results suggest that combining robust variable selection and SVM classification could
prove useful for early deficiency identification from complex spectral data. Moreover,
the SVM models exhibited superior performance compared to the 280-variable PLS-DA
model. Particularly, the utilization of the streamlined iPLS wavelength set in conjunction
with optimized C-SVM parameters yielded the most favorable outcomes. This approach
retained essential discriminatory information while substantially reducing the overall
size of the data. Figure 6 shows the optimal combination of SVM parameters yielding
the minimum misclassification error for the iPLS-C-SVM and iPLS-Nu-SVM models. For
these architectures, the lowest error occurred with cost = 100, gamma = 0.031623, and
nu = 0.11. Tuning these hyper-parameters is critical for proper SVM model configuration
and generalization for accurate classification of nutrient stress from the hyperspectral data.
This visualization reveals valuable perspective into how modifying model complexity
and margin thresholds can impact performance. Overall, the optimized settings produced
robust SVM models with strong discrimination ability for early deficiency detection in hemp
using a selective subset of predictive wavelengths. Table 4 demonstrates the confusion
matrix for the top-performing iPLS-C-SVM model on the test set. This matrix shows the
actual vs. predicted nutrient deficiency classes, and the diagonal cells show samples that
were correctly classified. Additionally, there are off-diagonal elements, which are errors.
For the control group, the model correctly classified 52 of 61 samples as CK, with five
misclassified as T1-ND and four as T2-ND. For T1-ND, 18 of 21 were correctly predicted,
with confusion mainly associated with the CK class. The T2-ND and T3-ND classes had
good performance, with 15/19 and 19/23 correct predictions respectively. There were
no samples left unassigned, and some difficulty distinguishing early T1 deficiencies from
healthy controls could be an area for improvement in the future. Overall, the model did
a good job discriminating, with low misclassifications. For the iPLS-C-SVM model, we
also present the predicted class probabilities for the different hemp cultivars across each of
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the four nutrient deficiency categories in Figure 7. This allows for a better visualization of
the cultivars according to their nutritional deficiencies. The ability to classify early-stage
nutrient deficiencies accurately makes this model ideal for plant health monitoring. In this
study, we defined the T1-ND class as samples imaged only 4 days after stress application.
The fact that the optimized iPLS-C-SVM model could correctly classify 18 out of 21 T1-
ND samples highlights the technique’s sensitivity to early changes. Being able to detect
deficiencies at such an early stage, before visible symptoms manifest, provides an invaluable
window for growers to proactively apply corrective treatments and prevent further damage.
It is likely that these early biochemical changes would have been missed if the plants had
only been assessed visually. However, hyperspectral imaging can detect these changes
through subtle pigment fluctuations. Overall, the capacity to classify stressed plants after
just four nutrient-deficient days underscores the vast potential of hyperspectral imaging to
shift practices from reactive to preventative assessment, intervention and management in
hemp and other high-value crops.

Table 3. Results of SVM models for temporal classification of nutrient deficient stress in hemp plants
using optimal wavelengths.

Wavelength
Selection Method

Number of
Wavelengths

SVM
Type

SVM Optimal
Parameters Class Sensitivity Specificity Class Error Precision F1

VIP 70

C-SVM Cost = 100
Gamma = 0.00031623

CK 0.836 0.778 0.194 0.785 0.810

T1-ND 0.571 0.942 0.121 0.667 0.615

T2-ND 0.684 0.952 0.089 0.722 0.703

T3-ND 1.000 1.000 0.000 1.000 1.000

Nu-
SVM

Nu = 0.275
Gamma = 0.0001

CK 0.852 0.778 0.185 0.788 0.819

T1-ND 0.571 0.961 0.105 0.750 0.649

T2-ND 0.737 0.952 0.081 0.737 0.737

T3-ND 1.000 1.000 0.000 1.000 1.000

iPLS 16

C-SVM Cost = 100
Gamma = 0.031623

CK 0.852 0.841 0.153 0.839 0.846

T1-ND 0.857 0.951 0.065 0.783 0.818

T2-ND 0.789 0.952 0.073 0.750 0.769

T3-ND 0.826 1.000 0.032 1.000 0.905

Nu-
SVM

Nu = 0.11
Gamma = 0.031623

CK 0.820 0.841 0.169 0.833 0.826

T1-ND 0.857 0.942 0.073 0.750 0.800

T2-ND 0.789 0.943 0.081 0.714 0.750

T3-ND 0.826 1.000 0.032 1.000 0.905

Table 4. Confusion matrix for the iPLS-C-SVM model on the test set.

Actual Class

CK T1-ND T2-ND T3-ND

Predicted as

CK 52 3 4 3
T1-ND 5 18 0 0
T2-ND 4 0 15 1
T3-ND 0 0 0 19

Unassigned 0 0 0 0
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We used extreme gradient boosting discriminant analysis (XGBDA) to determine the
importance of each optimal wavelength for classification. XGBDA calculates variable im-
portance by summing the reduction in loss function (“gain”) at nodes where that variable
was used for splitting, across all models [42]. The variables are then ranked by cumula-
tive gain to identify the most influential wavelengths. Figure 8 revealed that the most
impactful wavelengths were within the visible range, specifically highlighting 568.02 nm
and 712.62 nm to be the most important wavelengths in this study. The visible range’s
primacy highlights its effectiveness in detecting biochemical changes linked to chlorophyll
and other pigments occurring due to emerging nutrient deficiencies. Chlorophyll, the
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primary pigment involved in photosynthesis, strongly absorbs blue and red visible light
while reflecting green wavelengths. Carotenoids and anthocyanins are secondary pigments
that also impact leaf color [6]. When plants experience nutritional stress, alterations in
pigment concentrations are typically among the earliest biochemical changes, preceding
declines in growth or visible symptom development [43]. For example, chlorosis caused
by nitrogen deficiency induces breakdown of chlorophyll molecules, allowing more green
light to reflect and causing leaves to appear more yellowed. Hyperspectral imaging in the
visible range can identify these subtle pigment fluctuations before they are clearly visible by
the naked eye [44]. The emergence of the visible range, particularly wavelengths related to
chlorophyll absorption and reflection, as most important for classification, underscores hy-
perspectral imaging’s sensitivity to early stress detection based on indications of impending
pigment and biochemical changes.
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This research explored the use of hyperspectral imaging for pre-visual diagnosis
of nutritional stress in Cannabis sativa (hemp) grown in a controlled greenhouse setting.
Initial findings demonstrated proof-of-concept feasibility; however, further validation is
required before recommending adoption for widespread agricultural applications. The
cultivation techniques utilized differ from common large-scale production methods in
two key aspects—restricted container sizes prevented full plant maturity realization and
controlled environmental conditions lacked real-world variability. As protected greenhouse
cultivation of hemp increases, these initial results may inform early diagnostic approaches
focused on nutrient deficiencies to support greenhouse growers. While hemp can thrive in
both greenhouse and field production, additional testing under diverse commercial growth
conditions will confirm whether the findings translate to field settings. Moreover, while a
calibrated imaging system was utilized under optimized lighting parameters, real-world
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data collection varies substantially in illumination intensity, temperature, humidity, and
more. To transition these preliminary positive outcomes into robust, broadly applicable
producer recommendations, expanded collaborative field trials across major cultivation
zones are planned. Through partnerships with leading hemp producers, key limitations
of the current proof-of-concept study can be addressed via commercial-scale, on-farm
field assessment. Future efforts will prioritize developing practical solutions that consider
the inevitable constraints of large-scale agricultural production. With further validation,
hyperspectral imaging has the potential to serve as a rapid, non-destructive tool for crop
status monitoring to support hemp producers.

4. Conclusions

This study aimed to evaluate the potential of hyperspectral imaging for early, non-
invasive diagnosis of nutrient deficiencies in industrial hemp. Our results successfully
demonstrated proof-of-concept, classifying plants based on nitrogen, phosphorus, and
potassium status using spectral data alone. The iPLS-C-SVM approach offered significant
advantages; by using only key wavelengths, it reduced data volume and computational
needs. Thus, the initial objective of developing an effective spectroscopic technique for
pre-visual nutrient deficiency screening was attained through the chemometric methods
applied. Our central hypothesis that nutrient deficiencies alter leaf biochemistry prior to
visible symptoms—creating discernible spectral signatures in affected plants—was also
validated by the classification findings. Farmers could benefit greatly from the ability to
assess crop nutrition in real time. Instead of waiting until deficiencies visibly manifest, they
could identify issues early and implement corrective measures to maintain yield and quality.
Further field-scale testing is needed to translate these results into on-farm recommendations.
There are also opportunities to integrate aerial systems, advanced phenotyping techniques
like fluorescence, and more diverse datasets to increase robustness. In closing, this proof-
of-concept study shows promise for hyperspectral imaging to enable optimized nutrient
management in hemp cultivation. With additional validation and method development,
the approach could become part of responsible intensification strategies as the hemp
industry expands. Transitioning this academic research to user-friendly tools will require
collaboration between researchers, industry partners, and farmers. Overall, these findings
help us move closer to in-field monitoring tools to support evidence-based decisions around
supplementing nutrients for optimal hemp growth and production.

Author Contributions: Conceptualization, A.S. and C.Y.; methodology, A.S.; software, A.S.; valida-
tion, A.S. and C.Y.; formal analysis, A.S.; investigation, A.S. and C.Y.; resources, A.S., C.R.J. and C.Y.;
data curation, A.M.; writing—original draft preparation, A.S.; writing—review and editing, C.Y.;
visualization, A.S.; supervision, C.Y. and T.E.M.; project administration, C.Y.; funding acquisition,
Q.J.K., R.B. and T.J.V. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by Verilytix Inc. to the University of Minnesota with the funding
Number CON000000095565.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: Q.J.K., R.B. and T.J.V. were employed by the company Verilytix Inc. The
remaining authors declare no conflict of interest.

References
1. Wylie, S.E.; Ristvey, A.G.; Fiorellino, N.M. Fertility Management for Industrial Hemp Production: Current Knowledge and Future

Research Needs. GCB Bioenergy 2021, 13, 517–524. [CrossRef]
2. Adesina, I.; Bhowmik, A.; Sharma, H.; Shahbazi, A. A Review on the Current State of Knowledge of Growing Conditions,

Agronomic Soil Health Practices and Utilities of Hemp in the United States. Agriculture 2020, 10, 129. [CrossRef]
3. Aubin, M.; Seguin, P.; Vanasse, A.; Tremblay, G.F.; Mustafa, A.F.; Charron, J. Industrial Hemp Response to Nitrogen, Phosphorus,

and Potassium Fertilization. Crop Forage Turfgrass Manag. 2015, 1, 1–10. [CrossRef]

https://doi.org/10.1111/gcbb.12779
https://doi.org/10.3390/agriculture10040129
https://doi.org/10.2134/cftm2015.0159


Remote Sens. 2024, 16, 187 18 of 19

4. Cockson, P.; Landis, H.; Smith, T.; Hicks, K.; Whipker, B.E. Characterization of Nutrient Disorders of Cannabis sativa. Appl. Sci.
2019, 9, 4432. [CrossRef]

5. Payne, W.Z.; Kurouski, D. Raman-Based Diagnostics of Biotic and Abiotic Stresses in Plants. A Review. Front. Plant Sci. 2021, 11,
616672. [CrossRef] [PubMed]

6. Sanaeifar, A.; Yang, C.; de la Guardia, M.; Zhang, W.; Li, X.; He, Y. Proximal Hyperspectral Sensing of Abiotic Stresses in Plants.
Sci. Total Environ. 2023, 861, 160652. [CrossRef]

7. Sanaeifar, A.; Zhang, W.; Chen, H.; Zhang, D.; Li, X.; He, Y. Study on Effects of Airborne Pb Pollution on Quality Indicators
and Accumulation in Tea Plants Using Vis-NIR Spectroscopy Coupled with Radial Basis Function Neural Network. Ecotoxicol.
Environ. Saf. 2022, 229, 113056. [CrossRef]

8. Mohd Asaari, M.S.; Mishra, P.; Mertens, S.; Dhondt, S.; Inzé, D.; Wuyts, N.; Scheunders, P. Close-Range Hyperspectral Image
Analysis for the Early Detection of Stress Responses in Individual Plants in a High-Throughput Phenotyping Platform. ISPRS J.
Photogramm. Remote Sens. 2018, 138, 121–138. [CrossRef]

9. Li, D.; Li, C.; Yao, Y.; Li, M.; Liu, L. Modern Imaging Techniques in Plant Nutrition Analysis: A Review. Comput. Electron. Agric.
2020, 174, 105459. [CrossRef]

10. Lassalle, G. Monitoring Natural and Anthropogenic Plant Stressors by Hyperspectral Remote Sensing: Recommendations and
Guidelines Based on a Meta-Review. Sci. Total Environ. 2021, 788, 147758. [CrossRef]

11. Weksler, S.; Rozenstein, O.; Haish, N.; Moshelion, M.; Walach, R.; Ben-Dor, E. A Hyperspectral-Physiological Phenomics System:
Measuring Diurnal Transpiration Rates and Diurnal Reflectance. Remote Sens. 2020, 12, 1493. [CrossRef]
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