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Abstract: The Cartagena Bay in Colombia has vital economic and environmental importance, playing
a fundamental role in both the port and tourism sectors. Unfortunately, the water quality of the bay
is undergoing a deterioration process due to the significant influx of sediment from the artificial
channel known as Canal del Dique. Although field campaigns are carried out semiannually with
12 monitoring stations to evaluate these impacts, understanding the spatial dynamics of suspended
solids in the bay remains a challenge. This article presents a spatial analysis of water turbidity in
the Cartagena Bay during the years 2018 to 2022, using Sentinel-2 images. To achieve this objective,
an empirical algorithm was developed through the Monte Carlo simulation. The validation of the
algorithm demonstrated an R-squared value of 0.83, with an RMSE of 2.72 and a MAPE of 24.93%.
The results showed the seasonal variability, with higher turbidity levels during the rainy season,
reaching up to 35 FNU, and lower turbidities during the dry season, dropping to 1 FNU. Furthermore,
these findings indicated that the southern area of the bay presents the most significant turbidity
variations. This research enhances our understanding of the bay’s turbidity dynamics and suggests
an additional tool for its monitoring.

Keywords: algorithm; turbidity; sentinel; Monte Carlo simulation

1. Introduction

Cartagena Bay is one of the most important estuaries in the north of Colombia. It
holds a port complex with a high portion of Colombia’s port traffic. Seaport activities
represented 25% of the total cargo mobilized in the country in 2022, and Cartagena’s
port is the largest in the Caribbean region [1], becoming one essential port area in the
Colombian Caribbean. Cartagena is a coastal city in the Colombian Caribbean with a
population of around 1 million people; tourism is one of its main economic activities and
what it is known for [2]. Cartagena Bay plays a crucial role in the tourism industry, as it
is part of all the infrastructure associated with the city’s tourism development, including
beaches, docks, islands, and cruise ships [2]. On the other hand, Cartagena Bay has a
distinctive environmental value due to the convergence of several ecosystems, such as
mangroves, estuaries, deltas, coastal lagoons, beaches, coral reefs, areas of soft seabed on
the continental shelf, and seagrass meadows. These ecosystems collectively represent an
important biological value, characterized by the richness and diversity of flora and fauna,
making them especially sensitive elements [3].
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The Cartagena Bay exchanges water with the Caribbean Sea through two straits: the
Bocagrande and the Bocachica. It receives fluvial water from the Canal del Dique (113 km),
an artificial bifurcation of the Magdalena River (1528 km) that discharges approximately
1.7 Mt of sediments annually into Cartagena Bay (INVEMAR et al., 2020). Sediment in-
flux results in a “river plume”, which varies in direction and extension, ruling sediment
dynamics within the Bay. Sediment transport studies in Cartagena Bay show that, dur-
ing the months of greatest rainfall (September–October–November) of the rainy season
(April–December), sediment discharge from the Canal del Dique into Cartagena Bay reaches
its peak, and the plume covers nearly the entire Cartagena Bay area [4–7]. The bay surface
turbidity variability ranges from 1.5 to 30 NTU for all seasons of the year, and the canal’s
turbidity levels within the bay range from 80 to 450 NTU, with an average of 211 NTU [4].
The inflow from the Canal del Dique and atmospheric wind patterns are the primary
mechanisms responsible for the bay’s hydrodynamics and, consequently, for shaping the
turbid plume patterns within the bay [5,7,8].

Given its critical ecological and economic importance and the challenges posed by
pollution, Cartagena Bay has been classified as one of the areas of the highest monitoring
interest in the country, reflecting the need for ongoing efforts to preserve and protect its
valuable ecosystems and biodiversity [9]. Consequently, the Bay of Cartagena is included
in the waterbodies monitored semiannually by INVEMAR as part of REDCAM (Water
Quality Monitoring Information System), which is an interinstitutional program related
to marine and coastal pollution and serves as a valuable tool for the management and
decision-making of the Environment Institution. This program includes the monitoring of
12 stations where in situ measurements of temperature, salinity, dissolved oxygen, and pH
are carried out, using portable equipment. However, there is still a significant gap in the
understanding of the turbidity spatial–temporal patterns within the Bay. A comprehensive
understanding of the Canal del Dique plume and turbidity dynamics would help not only
in measuring environmental impacts on the aquatic biota but also in the operation of ports
and shipping activities.

Medium-resolution remote sensing sensors, such as SEAWIFS, MODIS, and VIRRS,
have been used to understand and monitor water biogeochemical parameters world-
wide [10–20]. However, due to the significant spatial variability, mainly in coastal waters,
higher spatial resolution remote sensing sensors such as the Landsat Family, i.e., Thematic
Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+), and particularly the Oper-
ational Land Image (OLI) temporal series have been recently used to track water quality
changes [21–26]. Since 2015, multispectral instruments (MSIs) on board the Sentinel-2
satellites have significantly improved spatial and temporal capabilities to study the be-
havior of biogeochemical parameters in several bays, including San Francisco Bay [27],
Kastela Bay [28], the Bengal Bay [29], and Zhanjiang Bay [30]. The high spatial resolution
of Sentinel-2 data makes them a valuable complement to traditional sampling strategies.

For the analysis of suspended solids or turbidity through satellite images, several
empirical algorithms have been developed which contemplate the reflectance of a band or
several bands measured by remote sensors on board satellites [31–33]. Some global semi-
analytical algorithms have also been developed [34–36]. The semi-analytical algorithm
developed by Nechad et al. [35] is a generic one-band algorithm designed for coastal waters
with turbidity between 0 and 100 FNU, which was calibrated and validated for MERIS. The
Dogliotti et al. [36] algorithm proposes a semi-analytical model that uses the reflectance of
the near-infrared band (859 nm) to estimate turbidity in waters dominated by sediments
with moderate-to-high turbidity, and the 645 nm band is used for waters with medium-to-
low turbidity. This multisensor algorithm was developed for coastal and estuarine waters
with turbidity levels ranging from 1 to 1000 FNU.

This work aims to understand turbidity patterns in Cartagena Bay through the use of
remote sensing imagery. The research includes radiometric measurements, representing
a pioneering effort in the Colombian Caribbean. In addition to developing a local, well-
parameterized empirical algorithm to retrieve turbidity based on in situ measurements, the
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study also focuses on applying MSI-Sentinel-2 images to understand the seasonal patterns
in Cartagena Bay.

2. Materials and Methods
2.1. Study Area

Cartagena Bay is located in the northwest of South America, in the Colombian
Caribbean (10◦16′–10◦26′N–75◦36′–75◦30′W) (Figure 1). It is separated from the Caribbean
Sea by Tierrabomba Island and has a surface area of 82 km2 approximately, with average
and maximum depths of 16 and 26 m, respectively [37].
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Figure 1. Cartagena Bay.

Cartagena bay has two straits: Bocagrande and Bocachica. The entrance to Bocagrande
is partially obstructed by a submerged dike (Escollera), resulting in a depth between 0.6 m
and 2.1 m. The Bocachica entrance comprises three narrow channels, with the deepest one,
utilized as a navigation channel, measuring 100 m in width and 15 m in depth. The other
two channels are shallower, with depths ranging from 0.5 m to 2 m and a width of 600 m
each [38].

The main parameters that influence the hydrodynamics of the bay are the wind regime
and the flow of the Canal del Dique. The multi-annual (2002–2022) average flow of Canal
del Dique measured in Santa Helena II Station (Figure 1) is shown in Figure 2. Although
this station is not located at the mouth of the canal, it provides valuable insights into the
temporal fluctuations in the Canal del Dique’s flows.

The climatological seasons in the Cartagena Bay area include a dry season from
December to March and a rainy season from April to November, with the highest rainfall
occurring from September to November [39] and the weakest winds with speeds below
2 m/s, while also seeing high flows from the Canal del Dique. During the dry season,
characterized by prevailing NE trade winds, wind speeds peak at over 10 m/s, while low
canal flows dominate. The months of March–April–May and June–July–August exhibit
significant wind variability, with a notable intensification in July [3,5,40]. Cartagena’s tide
is classified as microtidal, mixed, and primarily diurnal [41].



Remote Sens. 2024, 16, 179 4 of 18
Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 19 
 

 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

200

300

400

500

600

Fl
ow

 (m
3 /

s)

 
Figure 2. Multi-annual (2002–2022) average flow of Canal del Dique (Santa Helena II Station) [39]. 
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occurring from September to November [39] and the weakest winds with speeds below 2 
m/s, while also seeing high flows from the Canal del Dique. During the dry season, char-
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The discharge rate of the Canal del Dique throughout the year significantly impacts
the flux and reflux patterns of the current through the bay straits. During the season
of high flows of the Canal del Dique, a predominant outflow of water masses occurs
through Bocagrande, the shallow area of Bocachica, and the surface layer of the navigation
channel [38]. Surface currents move from the northeast to the west in the central and
northern bay, and frequent southwest winds sometimes generate intense south-to-north
currents capable of transporting sediments to the north of the bay [7].

As discharge from the Canal del Dique decreases during the dry season, there is a
change in exchange patterns. In Bocagrande, the weakening of the outward-directed flow
and the possibility of reflux, especially during the rising tide, characterize this period. At
the same time, in Bocachica, along the navigation channel, the currents directed toward the
bay weaken as the tide falls [38]. Currents during this dry season are primarily influenced
by the prevailing wind regime, with the tidal field contribution being insignificant due to
the microtidal regime [7].

2.2. Field Measurements

The datasets were collected during two field campaigns: the first campaign, on 26 and
28 January 2022; and the second, on 2 and 3 February 2022. Both campaigns were carried
out in the dry season due to favorable weather conditions and particularly low cloud cover.
The sampling stations were distributed throughout the entire bay area, focusing on mea-
surements within and outside the sediment plume. At all sampling stations, measurements
of turbidity, Secchi depth, and radiometric data were concurrently collected, ensuring that
these parameters were recorded simultaneously.

In the first campaign, data were taken from 13 stations, whereas, in the second cam-
paign, data were obtained from 17 stations (Figure 3). In the first campaign, station selection
was based on historical water quality data from the bay, ensuring coverage of the entire
bay area, including the sediment plume. In the second campaign, four additional stations
(ES1*, ES3*, ES4*, and ES5*) were strategically positioned within the sediment plume area
to collect more data from this specific zone of the bay. The selection of these four additional
stations was made in the field, taking into account the real-time location of the plume at
the time of monitoring.

2.2.1. Turbidity and Secchi Depth measurements

Turbidity was measured in situ with a Hanna multiparameter probe (https://www.
hannacolombia.com/productos/producto/hi-9829-medidor-multiparametro-impermeable-
para-ph-ise-ce-od-turbidez-con-opcion-de-gps/, accessed on 5 November 2023) within
the first 30 cm of the water column. Water transparency was measured using a Secchi disk

https://www.hannacolombia.com/productos/producto/hi-9829-medidor-multiparametro-impermeable-para-ph-ise-ce-od-turbidez-con-opcion-de-gps/
https://www.hannacolombia.com/productos/producto/hi-9829-medidor-multiparametro-impermeable-para-ph-ise-ce-od-turbidez-con-opcion-de-gps/
https://www.hannacolombia.com/productos/producto/hi-9829-medidor-multiparametro-impermeable-para-ph-ise-ce-od-turbidez-con-opcion-de-gps/
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(white disk of 30 cm diameter). To ensure precise measurements from the boat, stability
was a critical consideration when selecting the specific measurement station.
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2.2.2. Remote Sensing Reflectance

The above-surface method [42] was used for the estimation of remote sensing re-
flectance. This method establishes that the observation geometry must be at an azimuthal
angle of Φ = 135 and a zenithal angle of θ = 40◦ and avoid the shadowing effect.

Radiometric measurements were taken at each station, using an Ocean HDX—Ocean
Insight (https://www.oceaninsight.com/products/spectrometers/high-sensitivity/ocean-
hdx/, accessed on 5 November 2023) spectrometer with a spectral range covering the
spectrum from 400 nm to 1100 nm and according to Ocean Optics and Biogeochemistry
Protocols for the validation of NASA satellite ocean color sensors—in situ optical radiome-
try [43]. Wind speeds were measured with a Davis Vantage Pro2™ portable meteorologi-
cal station (https://www.estacionesdavis.es/davis-vantage-pro-2/10-davis-vantage-pro2
-inalambrica.html, accessed on 12 December 2023) during radiometric measurements.

The estimation of remote sensing reflectance is calculated using Equation (1):

Rrs(λ) =
(Lwater − ρ∗Lsky)

(π∗L spectralon
σ

)
(1)

where Lwater = the radiance measured pointing at water; Lsky = the radiance measured
pointing to the sky; Lspectralon = the radiance measured pointing to the Spectralon; ρ = the
fraction of light reflected at the air–water interface with an angle of incidence of 40◦ and
depending on the wind speed and the zenith angle; and σ = the reflectance of a Lambertian
reflector calibrated and supplied by the manufacturer (99% for the Spectralon used).

2.3. Turbidity Algorithm

The radiometric and water quality data acquired in the two field campaigns were
merged into a single dataset. All the field data from the two campaigns were consolidated,
resulting in two distinct groups of data: one for calibration and the other for validation
purposes. Table 1 shows the stations used for calibration and validation of the algorithm.
The data from station E12 were excluded due to uncertain measurements caused by shallow
water depths.

https://www.oceaninsight.com/products/spectrometers/high-sensitivity/ocean-hdx/
https://www.oceaninsight.com/products/spectrometers/high-sensitivity/ocean-hdx/
https://www.estacionesdavis.es/davis-vantage-pro-2/10-davis-vantage-pro2-inalambrica.html
https://www.estacionesdavis.es/davis-vantage-pro-2/10-davis-vantage-pro2-inalambrica.html
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Table 1. Distribution of stations.

Campaign Calibration Stations Validation Stations
Inside the Plume Outside the Plume Inside the Plume Outside the Plume

January, 2022 E7, E10 E1, E2, E3, E6, E9, E14,
E24

E5 E11, E13, E24

February, 2022 E1S*, E3S*, E5S* E13S, E1S, E2S, E5S,
E3S, E9S, E10S, E11S,

E12S

E4S* E6S, E7S, E14S

Total Stations 5 16 2 6

Twenty-one in situ data pairs (turbidity and Rrs) were chosen for algorithm devel-
opment: sixteen from areas outside the sediment plume and five from within the plume.
Linear models based on Rrs 665 and 865 were evaluated. The calibration of the turbidity
empirical models was based on Monte Carlo (MC) simulations similar to the approach
adopted by Augusto-Silva et al. [44] and Maciel et al. [45]. For this study, of the 21 samples
designated for calibration, 10 were randomly selected and used for the calibration of the
algorithm, considering a linear relationship between remote sensing reflectance (Rrs) and
turbidity values (FNU). This process was repeated 300,000 times. The resulting values of
the slope, intercept, and coefficient of determination (R2) were recorded for each iteration.

For algorithm selection, the R histogram was utilized as a tool to identify equations,
with this parameter in its most frequent range. Within this R2 range, for each equation, the
slope and intercept were determined, and the mode and standard deviations of the mode
were calculated. Equations that had both the slope and intercept within a range based on
the mode (mode ± standard deviation) were selected. From this group, equations with the
best R2 were chosen. The methodology applied for the calibration and validation of the
empirical algorithm is shown in Figure 4.
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For validation, the remaining eight samples were used. Calculated values from the
selected models were compared with in situ values to assess the efficiency of the algorithms.
The equation with the lowest estimated error was selected as the best.

Additionally, models presented in the Table 2 were tested in this study for algorithm
intercomparison. The second column in Table 2 presents the algorithm formula and
coefficients from the literature.
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Table 2. Algorithms for intercomparison.

Model Algorithm

Dogliotti et al. [36]
T =

Aλ
T ρw(λ)(

1− ρw (λ)

Cλ

) [FNU]

λ = 645 nm / 865 nm, ρw : πRrs

Nechad et al. [35]
T =

Aλ
T ρw(λ)(

1− ρw (λ)

Cλ

) + BT [FNU]

λ = 665 nm Aλ
T = 282.95, Cλ = 0.1728 , BT = 0.23

Kapalanga et al. [31] T = 15.31856 − 956.806(ρw490)− 747.376 (ρw560)
+1742.455 (ρw665) + 165.173(ρw865)

Wang et al. [32] T = 8194.1 ∗ x − 38.717
x = (ρw492 + ρw865) ∗ ρw865

Cox et al. [33] T = 0.567 ∗ x0.216

x = ρw665/ρw490

The results were compared with the in situ values to estimate the efficiency. To
evaluate the performance of the algorithms, the root mean square error (RMSE) and the
mean absolute percentage error (MAPE) were estimated with the following equations:

RMSE =

√
1
n∑n

i=1(Tmi − Tcali)
2 (2)

MAPE =
1
n∑n

i=1
|Tmi − Tcali|

Tmi
(3)

where Tcal and Tm are the calculated and measured turbidity values for each sample i.

2.4. Cartagena Bay Turbidity Spatial Analysis

A spatial turbidity analysis was performed using 43 Sentinel-2A and -2B images fil-
tered by cloudiness (one by month) and the turbidity algorithm selected. Images from
October and November were excluded from the analysis due to their limited availabil-
ity, making them less suitable for assessing turbidity during those months. The spatial
variability of water turbidity was analyzed via the determination of the coefficient of varia-
tion. All the downloaded images were at level 1 format, and atmospheric correction (AC)
was applied using Acolite software [46], which has been widely used for AC in turbid
inorganic-rich environments [45,47,48].

The coefficient of variation quantifies the standard deviation as a percentage of the
arithmetic mean (Equation (4)). To determine the coefficient of variation, a water mask
of the bay was generated to calculate turbidity for each pixel in every image employed,
using the developed algorithm. Subsequently, a grid of 500 m × 500 m was generated,
totaling 332 points. Exclusions were made for grid points located over cloudy areas or in
the shadow of clouds on the water’s surface. Once the turbidity values were obtained for
each point, organized by coordinates for each image utilized, the coefficient of variation
was then computed.

Cv =
σ

x
(4)

where Cv= coefficient of variation, σ = Standard deviation, and x = mean.

3. Results

Throughout the two field campaigns, north and northeast winds were predominant.
The flow rates and wind speeds are presented in Table 3, reflecting typical conditions of the
dry season.
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Table 3. Canal del Dique flow rates and wind speeds during fieldwork.

Date Flow Measured at Santa
Helena Station (m3/s)

Wind Speed Range
(9 a.m.–12:30 p.m.), Rafael

Nuñez Station (m/s)

Wind Speed Range
(9 a.m.–12:30 p.m.) Measured

during Fieldwork (m/s)

26 January 2022 537.06 NA 1.8–5.0

28 January 2022 511.82 NA 0.5–4.0

2 February 2022 459.30 NA 1.3–5.0

3 February 2022 457.75 1.5-3.9 0.4–5.0

NA: not available.

3.1. In Situ Turbidity and Secchi Depth

The water turbidity ranged from 1.2 FNU to 31.3 FNU, while the Secchi depth var-
ied between 0.2 m and 2.8 m. Most of the stations located inside the plume (Table 2)
showed high turbidity levels (>12.1 FNU) and low Secchi depth values (<0.5 m), while
most of the stations located outside the plume (Table 2) showed low turbidity values
(<12.1 FNU) and Secchi depth values greater than 0.5 m, indicating a power-law rela-
tionship (y = 4.3184 ∗ −X−0.791), with R2 = 0.6735), which can be observed when these
variables are plotted and the strength and direction of the association (rs = −0.828) between
turbidity and Secchi depth are measured (Figure 5). Similar results of this power-law
relationship were observed in rivers, lakes, and reservoirs [49–51], whose behavior is very
similar to that of the area influenced by the Canal del Dique. The relationship derived from
the analysis of Secchi depth and turbidity aligns with the established scientific understand-
ing, as the Secchi depth typically exhibits an inverse correlation with the concentration of
total suspended solids (TSS) in aquatic systems [52].
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3.2. In Situ Remote Sensing Reflectance

Two main groups of spectra associated with two areas of the bay could be observed
from remote sensing reflectance calculated by in situ radiometric measurements, as illus-
trated in Figure 6. A zone of low-to-moderate turbidity was located in the stations outside
the sediment plume, characterized by spectra with maximum remote sensing reflectance
values between 550 nm and 600 nm (green) of the electromagnetic spectrum and with
a second smaller peak in the range between 650 nm and 700 nm (red). This spectrum
indicates the presence of estuarine waters with low or medium levels of chlorophyll and
low total suspended solids [53–55].
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Figure 6. Remote sensing reflectance spectra (A) outside the sediment plume and (B) inside the
sediment plume.

The second zone located within the sediment plume, characterized by moderate-to-
high turbidity, shows a wider maximum extending from about 560 to 670 nm, with a
steep slope of the spectrum between the blue and green wavelengths. This spectrum is
characteristic of waters where the suspended particulate matter is dominated mainly by
the mineral fraction and the organic fraction of non-living particles [53,55–57].

3.3. Turbidity Algorithm
3.3.1. Calibration and Validation

The R2 histograms from Monte Carlo simulation are shown in Figure 7. The most
frequent R2 range was between 0.65 and 0.7 for both of the models developed, with Rrs 665
and Rrs 865.
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Figure 7. R2 histograms from Monte Carlo simulation: (A) Rrs665 and (B) Rrs865.

The coefficients derived from Monte Carlo analysis of samples selected for calibration
are shown in Table 4. Both models have a determination coefficient of R2 = 0.7. Nevertheless,
the model based on Rrs 665 was chosen due to its higher frequency of models in the range
of 0.65–0.7 (>60,000) compared to Rrs 865 models (<60,000). Additionally, the model based
on Rrs 665 presented lower values for both the RMSE and MAPE, reinforcing its superior
performance. The selected algorithm is presented in Equation (5).

T = 707.98 ∗ Rrs (665) + 0.03 (5)

where T is turbidity (FNU), and Rrs (665) is the remote sensing reflectance at a wavelength
of 665 nm. For validation, the calculated and the measured turbidity values were compared,
obtaining an R2 = 0.834, RMSE = 2.72, and a MAPE = 24.8 (Figure 8). It can also be observed
that most of the data are within the confidence interval, indicating that the developed
algorithm estimates turbidity values with a reliability close to 95%, which suggests that the
selected algorithm works for Cartagena Bay.

Table 4. Coefficients derived from model calibrations.

Wavelength (nm) Intercept Slope R2 RMSE MAPE

665 0.03 707.98 0.7 3.1 25.9

865 0.77 2341.96 0.7 4.6 34.7
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3.3.2. Comparison with other Algorithms

The performances of the algorithms were evaluated by applying them to in situ
datasets, using their original algorithm coefficients. Statistical metrics are tabulated in
Table 5. The evaluation of the proposed algorithms shows that the Cartagena Bay Algorithm
has the best performance, with the highest R2 (0.83) and the smallest RMSE (2.72 FNU) and
MAPE (24.8%). The estimated turbidity from other algorithms from the literature shows
higher uncertainties.

3.4. Turbidity Spatial Patterns

The average turbidity distribution, calculated for each month, from a series of five
years, i.e., between 2018 and 2022, is shown in Figure 9. Regarding the spatial distribution
in the bay of the turbid plume of the Canal del Dique, it is observed that the months of
January and February show a homogeneous distribution of turbidity throughout the bay,
with values below 5 FNU and with a reduced sediment plume with values of 18 FNU.

Table 5. Statistical analysis of turbidity values derived from the algorithms, using the datasets in
this study.

Algorithm R2 RMSE MAPE

This study: Cartagena Bay 0.83 2.72 24.8

Dogliotti et al. [36] 0.75 31.4 107.9

Nechad et al. [35] 0.77 10.6 45.1

Kapalanga et al. [31] 0.72 15.6 188.3

Wang et al. [32] 0.80 43.2 565.2

Cox et al. [33] 0.79 83.3 93
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In March, as the winds weaken, the onset of the rainy season becomes evident in
the Canal del Dique basin. This transition is marked by a series of precipitation events,
resulting in a notable increase in turbidity within the bay. Turbidity values during this
period range between 3 FNU and 20 FNU. The southern area of the bay is predominantly
affected by this increase in turbidity, characterized by the presence of filaments of turbid
water near Manzanillo Island.

The spatial distribution for the month of April reveals significant inputs of turbid
waters, with a plume oriented toward the southeast side, featuring turbidity values exceed-
ing 25 FNU. Likewise, a bay highly disrupted by the influx of turbid waters is observed,
extending to the northern area, with values ranging from 2 FNU to 18 FNU. A change in
the turbid plume distribution pattern is observed in May, with maximum values (25 FNU)
associated with the mouth of the Canal del Dique, which is reduced in extent compared
to what was observed in April. In this month, a more stable gradient is evident, with a
filament extending to the southern area of Manzanillo Island, featuring turbidity values of
17 FNU.
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In June, the turbid plume of the Canal del Dique exhibits maximum values of
19 FNU, which are lower than those of the previous month, and the bay once again
displays a homogeneous distribution toward the north and southwest areas of the bay, with
turbidity values below 2 FNU. In July, a turbid plume similar to that of June is observed
but with turbidity values exceeding 20 FNU. A very distinctive distribution pattern is
observed in August, with two areas exhibiting maximum turbidity: one at the mouth of
the canal, with peaks of 35 FNU, and another one toward the area near Manzanillo Island,
with turbidity values ranging from 15 FNU to 18 FNU.

In September, the most significant disturbance of all the analyzed periods is observed,
with a bay dominated by turbid water between 15 FNU and 35 FNU and a turbid plume
concentrated on the eastern side and extending toward the northwestern side of the mouth.
This dynamic marks the beginning of the heaviest precipitation in the basin [58] and,
consequently, an increase in the flow, which intensifies in the months of October and
November. Unfortunately, due to overcast conditions, it was not possible to create turbidity
maps for these months. In December, the dry season begins, and, consequently, the plume
distribution pattern decreases (<15 FNU), with turbidity values less than 2 FNU dominating
the rest of the bay.

The seasonal variability of each year was analyzed according to the coefficients of
variation in turbidity (Figure 10). The results show that the southwest and northeast areas
are very dynamic, characterized by coefficients of variation ranging from 47% to 99%. On
the contrary, the sediment plume area, represented in green tones, is less dynamic, with
coefficients of variation between 25% and 40%.

The most significant variations were observed in 2018 and 2020, while the least vari-
ation occurred in 2022. This behavior in 2022 may have been influenced by the La Niña
phenomenon, leading to a more consistent inflow of water from the Canal del Dique
throughout the entire year [39]. During the dry season of 2022, a minimum flow in the
Canal del Dique measured in Santa Helena Station II was observed around 350 m³/s [39],
which exceeded the typical minimum flows in years under normal conditions, usually
lower than 200 m³/s. Over the entire period from 2018 to 2022, the variation ranged be-
tween 30% and 78%. In general terms, the turbidity of the water presents a high level of
variation, which indicates the dynamic and fluctuating character of the bay.
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4. Discussion
4.1. Turbid Algorithm

The algorithm developed for Cartagena Bay demonstrated the strongest performance
across the entire range of turbidities found in the bay (1–35 FNU). This result is expected, as
empirical algorithms are often designed according to site-specific characteristics, requiring
adjustment or adaptation of coefficients to achieve accuracy within a particular coastal
region [43,56,57,59]. This algorithm uses a linear model that relates turbidity to remote
sensing reflectance at a wavelength of 665. This approach is consistent with other research
showing a strong correlation between the turbidity and reflectance of the bands located in
the red area of the spectrum, particularly for turbidity values within the low-to-moderate
range [43,58,60–62]. The lower performance of the near-infrared band algorithm is likely
due to the low and moderate turbidity levels in the bay. This band is normally chosen
for turbid waters, offering a reliable reflectance signal, since the 665 band can present
saturation [60,63].

Based on the analysis of the algorithm performance and comparisons with others, it
was observed that the Wang algorithm demonstrated a good performance, with an R2 of
0.8. This performance could be attributed to the use of two different bands since algorithms
based on several bands perform better in waters with high variation in suspended solid
concentrations [32]. However, compared to the Cartagena Bay algorithm, it presents a
greater error in the results, which may be due to the moderate variability in the water



Remote Sens. 2024, 16, 179 15 of 18

turbidity and the optical constituents of the Bay of Cartagena. The Dogliotti algorithm
had a good performance for waters with ρw(645) < 0.05, that is, when the reflectance of the
red band is used for the model (low turbidity). For waters with ρw(645) > 0.07 (moderate-
to-high turbidity), where the algorithm proposes the use of the NIR band or a blending
scheme, the results were highly overestimated. The Nechad algorithm demonstrated a
superior performance (R2 = 0.77, RMSE = 10.6, and MAPE = 45.1) compared to the Dogliotti
algorithm. However, the empirical algorithm developed in this research showed less
uncertainty.

4.2. Turbidity Patterns

In general, the modeling with the algorithm reveals that the turbidity of the water
in Cartagena Bay varies with the season. In the rainy season (April to November), the
bay experiences higher turbidity levels, covering most of the bay area in September, with
maximum values reaching up to 35 FNU. These turbidity fluctuations are primarily driven
by the influx of sediment from the Canal del Dique. It is worth noting that these contribu-
tions peak during the rainy season, coinciding with the period when the Canal del Dique
records its maximum flows (500–600 m3/s during the rainy season), as measured at the
Santa Helena II station [39]. The period of greatest rainfall coincides with the presence of
weak winds and less intense currents in the region, making the entry of fresh water from
the Canal del Dique an influential factor in the hydrodynamics of the bay. This results in a
reduction in salinity and notable vertical density gradients, with flows from the mouth of
the Canal del Dique directed toward the Bocachica and Bocagrande areas [8,38].

During the dry season (December to March), turbidity values typically fall within
the range of 2 to 20 FNU, with higher values concentrated at the mouth of the Canal del
Dique. This behavior is consistent with the hydrodynamic conditions of the season. The
dry season coincides with increased wave activity, primarily driven by trade winds and
the presence of cold fronts. During this period, contributions from the Canal del Dique
decrease, and the vertical density gradient becomes less pronounced. These conditions
facilitate the entry of more transparent oceanic masses of water through the two bay straits,
aided by surface currents and tidal oscillations [7,8,38,58].

The results of this research support the conclusions of previous studies [4,5,7,64],
which have also established that the wind regime and the flow of the Canal del Dique are
the primary factors influencing seasonal variations in turbidity. As previously mentioned,
the region with the most stable turbidity levels over time is the central area (sediment
plume), where high turbidity levels persist consistently. In contrast, areas adjacent to the
entrances of the bay present greater variability due to the fluctuations in the Canal del
Dique inflow and the dynamics of water interchange through the straits [5,38].

5. Conclusions

This study demonstrates the efficacy of Sentinel-2 images for mapping and monitoring
turbidity in Cartagena Bay. By employing the Monte Carlo simulation method, an accu-
rate algorithm was established for estimating water turbidity, using field measurements.
Around 300,000 combinations of turbidity and reflectance data pairs were evaluated for the
bands studied (665 and 865), using linear regression models, which allowed us to obtain a
robust model for determining turbidity. The results indicate that the algorithm based on the
red band had a better performance for retrieving water turbidity, with a good validation
accuracy of R2 = 0.83.

The analysis of seasonal turbidity trends, carried out through Sentinel-2 images,
showed the influence of seasonality: the increase in turbidity during the rainy season at-
tributed to a greater discharge of sediments through the Canal del Dique. Additionally, the
southwest and northeast regions of the bay showed the greatest variations, with coefficient-
of-variation values ranging from 47% to 99%, while the sediment plume area showed the
smallest fluctuations, with coefficient-of-variation values which ranged between 25% and
40%. This pattern may occur because the plume zone consistently maintains the highest
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turbidity levels, while variability in other areas is predominantly influenced by the channel
inflow and bay hydrodynamics, which vary seasonally.

The developed algorithm will serve as a valuable tool for the continuous monitor-
ing of turbidity in Cartagena Bay and for the assessment of its water quality, including
during upcoming sediment control initiatives. This research demonstrates the promising
potential of using Sentinel-2 data to complement the understanding of turbidity dynamics
in Cartagena Bay, offering a robust tool for continuous monitoring and evaluation of its
water quality.
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