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Abstract: This paper highlights the advantages of an affordable multi-wavelength ground-based
camera, called WaltRCam, for monitoring Aerosol Optical Depth (AOD) in a clear case over a
peri-urban area. To simulate the performance of this low-cost camera, for which data are not yet
available, we use data from an expensive hyperspectral camera (HSI) to mimic its characteristics. Our
methodology is based on the construction of look-up tables using the DART (Discrete Anisotropic
Radiative Transfer) 3D radiative transfer model. DART simulates the different spectra observed
by the WaltRCam camera, which then provides the AODs for all image pixels in near-real-time.
Moreover, DART is coupled to a 3D scale-model of the city of Toulouse (dating from 2014) to model
complex urban geometries and to associate specific optical properties to the various objects that make
up the environment. Moreover, we use a neural-network-based method to recognize the various
objects in the image in order to take into account only pixels common between the observations. In
this way, we take account of changes to the peri-urban area, such as vegetation growth, construction,
demolition of buildings, etc. The results of this study show that the WaltRCam camera, by capturing
eight wavelengths, can deliver convincing results compared with ground and satellite reference data,
with a correlation coefficient of 0.9 and an average RMSE of less than 0.02.

Keywords: aerosol optical depth (AOD); multi-wavelength ground-based camera; radiative transfer
model; DART; air quality; WaltRCam

1. Introduction

Air quality monitoring is usually carried out by in situ sensors, for which the perfor-
mance is very high but that cover a small surface area [1]. Moreover, air quality regulatory
monitoring relies on a small number of costly stations. Although numerical models can
partly compensate for these limitations, they are often insufficiently constrained by actual
observations, which can lead to inaccurate estimates [2–4]. The deployment of observation
stations on a large-scale is not economically viable. In a first approach, this paper focuses
on measuring the aerosol optical depth (AOD), which will allow the estimation of PM2.5
and PM10 (i.e., particles with a diameter smaller than 2.5 and 10 µm, respectively) in the
future. Aerosols are tiny organic or inorganic chemical particles. They are composed of
airborne liquid and solid particles with sizes ranging from a few nanometers to tens of
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micrometers, and they can originate from natural or anthropogenic sources [5]. Aerosols
scatter and absorb solar radiation and have a significant impact on climate change, air
pollution, visibility, and the ecological environment [6,7]. AOD provides a measure of
columnar aerosol loading and can be obtained from either ground or space remote-sensing
observations (e.g., [8]). Fine particles have a strong impact on human health, particularly
during pollution peaks, and they can cause cardiovascular and pulmonary diseases as well
as affect the central nervous system and cause cancer [9–12].

Spectral cameras are increasingly being used to monitor AODs and PMs. They are
widely used onboard sun-synchronous satellite platforms such as Terra with MODIS
(Moderate Resolution Imaging Spectroradiometer) [13] and PARASOL with POLDER
(POlarization and Directionality of the Earth’s Reflectance) [14] instruments and onboard
geostationary platforms such as MSG (Meteosat second generation) with SEVIRI (Spinning
Enhanced Visible and Infra-Red Imager) [15]. At the surface, Chi-Wen Chen et al. (2020) [16]
used hyperspectral imaging (HSI) to measure PM2.5 and PM10 concentrations. They
used the spectral intensity of solar radiation and applied Beer–Lambert’s law as well as
multivariate regression analysis to calculate these concentrations. Elcoroaristizabal et al.
(2021) [17] proposed a tool for quantifying atmospheric carbonaceous aerosols in near-
infrared using a camera with 288 wavelengths. However, most of these spectral cameras
are not affordable for the majority of cities for hourly air quality measurements.

The aim of our work is to investigate the possibility of increasing the number of
observations by using an affordable ground-based multi-wavelength camera placed at
a strategic location on high ground to enable real-time air quality observations over a
vast urban or peri-urban area. In this study, we focus on measuring the vertical aerosol
optical depth over such an area during a nearly aerosol-free case. This is a first step before
quantifying more-polluted events and evaluating particulate matter (PM2.5 and PM10) in a
future work.

To study this, we simulate, via hyperspectral images, the future low-cost multi-
wavelength camera designed by the WaltR company, called hereafter WaltRCam, to obtain
AOD information. We use a HySpex hyperspectral imager from Norsk Elektro Optikk [18]
composed of 160 wavelengths (expensive equipment unreasonable for cities to afford on a
large scale) to simulate the low-cost WaltRCam. We degraded the HySpex hyperspectral
image to obtain an image composed of eight spectral bands with added noise: similar to
the characteristics of the low-cost camera currently under development.

The goal with the simulated image is to measure the vertical AOD in near-real-time
in the atmosphere as captured by the camera. To do this, we use the DART (Discrete
Anisotropic Radiative Transfer) radiative transfer model, which is capable of taking into ac-
count the three-dimensional (3D) geometry of the urban area. Differently from SmartG [19]
and ARTDECO [20] radiative transfer models, which assume a flat land surface, DART
incorporates a 3D scale-model of the urban scene [21–23]. However, as peri-urban scenes
are constantly evolving (due to changes in vegetation and/or buildings), and because 3D
scale-models are costly to update, it is essential to remove any inconsistencies between the
real and simulated images. Inconsistent areas are removed using a spectral classification
method optimized for spatially coherent measurements using a neural network, which is
fast in terms of computation time. Moreover, we set up a look-up table (LUT) generated
with DART that associates each AOD value with the radiance measured at the camera. This
approach allows us to pre-calculate radiances as a function of various AOD levels, which
offers the advantage of generating near-real-time results. The AODs are then compared to
AERONET (AErosol RObotic NETwork) [24] and MODIS (Moderate-Resolution Imaging
Spectroradiometer) [13] observations to assess the quality and the added value of such
camera observations.

We have organized the paper as follows: Section 2 presents a description of the multi-
wavelength ground camera as well as the validation data. Section 3 presents the methods
to estimate the AOD from the different images, including the processing chain, the DART
radiative transfer model, and the LUT we used. Section 4 focuses on the presentation of our
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results. In particular, we highlight the AOD values we obtained and evaluate these results
by comparing AODs from the camera with observations from AERONET and MODIS.
Finally, conclusions are drawn and future work is considered.

2. Data
2.1. Camera Observation

To demonstrate that a multi-wavelength camera can monitor the AOD in near-real-
time over a wider surface area compared to current measurement sensors, we simulate
a dataset from the future WaltRCam using data from an HSI camera (HySpex). The high
quality of the HySpex data is degraded by selecting only a few wavelengths and by adding
random noise on the spectrum to match the characteristics of the WaltRCam. This much
cheaper camera is still under development and should be deployed in a few months over
the urban area of Toulouse in the south of France.

2.1.1. The HySpex Camera

The data we used are based on the hyperspectral acquisition system from the HySpex
VNIR 1600 camera [25] developed by Norsk Elektro Optikk [18]. This upmarket camera
was provided by the Office National d’Études et de Recherches Aérospatiales (ONERA)
in Toulouse. It offers extensive, high-resolution spectral coverage, encompassing both the
visible and short-wave infra-red (SWIR) spectra. This hyperspectral camera has a spectral
resolution of 3 to 4 nm with 160 spectral bands. It measures radiances, i.e., light intensity
per unit area in Wm−2sr−1nm−1, for all wavelengths. The main characteristics of the sensor
are summarized in Table 1.

Table 1. Specifications of the HySpex VNIR-1600 camera [25,26].

Imaging System/Camera VNIR-1600

Spectral range 416–992 nm
Spectral sampling interval 3.6 mm

Spectral bandwidth 3.5 mm
Radiometric error 1%

Pixel size (microscope lens) 24 µm
Field of view ∼ 17◦

Pixel/line (across track) 1600
Channels 160

This camera captures the scene line-by-line using a scanning method called push-
broom [27]. It scans the scene by collecting adjacent line slices to form a hyperspectral
image consisting of a stack of 160 monochromatic images captured at a specific wavelength.
The camera is positioned on a mechanical rotation bracket to capture a panoramic image
about 130 degrees wide. For our study, the camera was positioned on 30 June 2020 at a
strategic high point at the top of the Pech David belvedere in Toulouse in order to see a
wide part of the city center and its southwest and western suburbs. The coordinates of
the camera location are: latitude 43.5587; longitude 1.4465 at an altitude of 264 m. The
weather conditions at the time of this occurrence were favorable, with a cloud-free day and
a temperature between 18 and 25 °C. Wind strength fluctuated between 7 and 11 km·h−1.
Visibility during the day was fairly stable, varying between 20 and 25 km [28], offering
favorable conditions for clear-sky observations. The meteorological parameters presented
ideal conditions for a nearly aerosol-free case.

2.1.2. The WaltRCam

The WaltRCam camera was designed by the WaltR company [29] in Toulouse. The
camera is cheap, which makes it an ideal affordable tool for equipping large monitored
areas such as cities and thus increasing the accuracy of air quality measurements. The price
is approximately ten thousand euros, compared to several hundred thousand euros for a
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HySpex. This camera is designed to offer precise cost-effective measurement capabilities in
the UV–visible spectral range at 11 wavelengths (300, 310, 330, 392, 460, 560, 610, 671, 780,
870, and 940 nm). The spectral bands have been carefully selected for measuring gases such
as ozone and oxygen (300 to 392 and 940 nm, respectively) and aerosols (460 to 870 nm).

WaltRCam’s spectral acquisition system is based on filter wheel spectral scanning [30].
A motorized wheel made up of 11 interference filters is placed in front of the camera sensor.
Each filter lets through a portion of the light radiation at a given wavelength. The camera
builds a hyperspectral cube by acquiring monochromatic images. Each acquisition is an
image of the scene taken at a given wavelength, and the collection of all hyperspectral
image data corresponds to a complete revolution of the wheel. As this camera is still under
development, we have simulated WaltRCam images by capturing HySpex wavelengths as
close as possible to those of the WaltRCam: 414, 458, 560, 611, 672, 778, 870, and 938 nm.
A full WaltRCam image is a composition of 30 smaller images (2048 × 2048 pixels) with a
total definition of 61440 × 4096, which corresponds to a 220 degree panoramic view. The
field of view (FOV) is ∼ 9.5 degrees, and the pixel size is 6.6 µm (slightly finer compared
with the 24 µm for a HySpex camera). The spectral width is identical on both cameras.
Note that color images in the following article are obtained by using the 414, 560, and
672 nm wavelengths. Evaluation of the radiometric error of the WaltRCam has been carried
out, and the tests in the laboratory have shown a maximum error of 6%. In this study, we
use 10% in our simulation to avoid overestimating the results. Therefore, to mimic the
noise of the WaltRCam compared to the HySpex camera, we have perturbed the spectra
by adding 10% random noise. We have used the normal law centered around 0 with a
standard deviation of 0.1. In this study, we have simulated WaltRCam images from HySpex
images taken on 30 June 2020 at four different moments in the day (9:55, 11:02, 12:34, and
14:04 local time (LT), corresponding to UTC + 2).

2.2. Validation Data

To evaluate the WaltRCam AOD obtained with our methodology, which we present
in the next section, we used the coincident AERONET ground-based and MODIS satellite
observations.

2.2.1. AERONET

The AERONET network is a worldwide network of photometers measuring the optical
and microphysical properties of aerosols from the ground: both on land and at sea [31].
The network is equipped exclusively with CIMEL sun photometers that measure incident
radiation at eight wavelengths: 340, 380, 440, 500, 672, 870, 1020, and 1640 nm. For each
wavelength, the AOD measured by the sun photometer has an accuracy between 0.01 and
0.02 [32], and the AOD at 550 nm is interpolated using the AODs at 440 and 672 nm to
specifically compare with the MODIS AOD product. Hundreds of AERONET stations
around the world produce continuous measurements (when weather and light conditions
are sufficient). We used version 3.0 level 2.0 AERONET data from the Toulouse_MF
station located at the Météo-France site in the suburbs of Toulouse. The data are available
from http://aeronet.gsfc.nasa.gov/ (accessed on 27 December 2023). This data source is
considered as the reference in terms of AOD validation [33,34].

2.2.2. MODIS

In our study, we use data acquired by the MODIS instrument, which was launched
by NASA in 1999 onboard the Terra platform. This satellite is in a sun-synchronous
orbit and is part of the Earth Observing System (EOS) program [35]. MODIS monitors
ambient aerosol loading and selected aerosol properties over snow, ice-free land, and ocean
surfaces. We use the AOD product at a wavelength of 550 nm obtained by the Dark Target
(DT) algorithm used for the retrieval of the AOD [36]. The products are supplied with a
horizontal (nadir) spatial resolution (pixel size) of 3 km × 3 km and a temporal resolution
of 1 or 2 days. The quality of the MODIS data we use follows the recommendations
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of the MODIS aerosol team for quantitative analyses (Levy et al., 2013) [37]. Data on
30 June 2020 at 12:45 LT are available as a file (M*D04_3K) and can be downloaded from
http://ladsweb.nascom.nasa.gov (accessed on 27 December 2023).

3. Methodology
3.1. Processing Chain

Figure 1 shows the different stages in the processing chain to obtain the AOD from
the camera positioned on the ground. First, the experimental data obtained by WaltRCam
are simulated using degraded HySpex data. Then, pixel classification is performed on this
simulation in order to identify the class of each pixel (building, vegetation, etc.). The result
is then compared to the image generated from a 3D scale-model for which each pixel class
is also known. Then, colocated pixels for which the classes are different in the two images
are removed using a similarity matrix. The DART radiative transfer model is configured
with a given set of atmospheric characteristics and optical surface properties within the
3D environment described in the scale-model (called hereafter the Toulouse scale-model).
DART allows us to build look-up tables (LUTs) based on different AOD values. The final
step is to select the LUT that best represents the WaltRCam image and enables us to deduce
the AOD. This section describes these steps in detail.

Figure 1. Schematic representation of the AOD calculation method. The WaltRCam image extracted
from an HSI is compared with the image obtained from the 3D scale-model. This comparison includes
a classification step in which pixels from non-identical classes are discarded. Radiative transfer is
used to generate LUTs according to an AOD factor. After selecting the LUT with the radiance closest
to that of WaltRCam, we estimate the AOD corresponding to the entire image.

3.2. The Toulouse 3D Scale-Model
3.2.1. Description

In this work, we use a Toulouse 3D scale-model, which was released in 2014 and that
incorporates the topographical features of the terrain covering an area of 110 km2. This
scale-model has an accurate representation of the terrain (1 m resolution) of the greater
Toulouse area. The camera was positioned in the model in the same location and at the
same height (264 m) as the HySpex camera (on top of Pech David hill) to offer an ideal view
of a vast peri-urban area. Note that the lowest point of the Toulouse 3D scale-model is at
the altitude of 150 m.

The scale-model is composed of 28 objects: each defined by specific attributes such
as form, size, location, and orientation in space (slate, slate-specific building, concrete,
bitumen, wood, wood-specific building, brick, capitol, stairs, facade, hydro, metal, wall,
marble, stone, stone-specific building, soil, soil-specific building, talus, terrace, roof, tile
roof, zinc roof, sidewalk, vegetation, glass, and glass capitol). Each object is also of a class
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that has specific optical properties: the classes used in this study are trunk, leaves, grass,
roof-tiles, building, and sky.

3.2.2. Camera Position Settings

The WaltRCam was positioned virtually in the Toulouse 3D scale-model in the same
position as the HySpex camera using Blender 3D visualization software [38]. The technical
characteristics of the camera, such as spatial and spectral resolution, sensitivity, FOV, focal
length, and precise orientation of the sensor on a 3D axis, were also defined. The camera
orientation is defined according to three axes—x (horizontal plane), y (rotation of the
image), and z (vertical plane)—allowing great flexibility for capturing images at different
angles and orientations. To obtain the position that best matches the scene captured by the
camera, we calculated the Pearson correlation coefficient between the WaltRCam image and
the image generated from the 3D scale-model, taking into account different configurations
for the axes of the camera orientation. We selected the orientation configuration with the
highest correlation coefficient, which indicates the best match between the scene observed
and the 3D model view. This approach enables the camera orientation to be fine-tuned
to maximize the similarities between the images. As a result, the 3D image of the field
of study obtained corresponds exactly to the image measured from the WaltRCam. Each
pixel in this image has a class that is provided by the 3D scale-model. Each object class is
then assigned a surface reflectance according to the predominant material of which it is
composed (see Section 3.4.1).

3.3. WaltRCam Object Classification

Due to the constant evolution of urban scenes, i.e., construction or demolition of
buildings and changes to vegetation, and also due to the scarcity of Toulouse 3D scale-
model updates, it is crucial to discard pixels that have a different class between the scale-
model and the WaltRCam images. A pixel with a different class has different optical
properties, resulting in bias when applying radiative transfer. In order to reduce this bias
as much as possible, we removed pixels that do not correspond to the same class. To do
this, we performed a classification on the WaltRCam image. This classification aims to
assign a class to each pixel in the image, which is compared with the pixel class in the
scale-model image. We used a method based on neural networks for automatic detection of
the class of each pixel using a spectral and spatial pixel-by-pixel classification called S2OC
(Spatial and Spectral Optimized Classification; for more details, see [39]). Object detection
approaches such as convolutional neural networks are very effective at detecting one or
more objects [40] but cannot classify all the pixels in an image. The classification methods
usually used for this type of problem, such as support-vector machine (SVM) and random
forest, treat each pixel independently by analyzing only the spectral properties [41] but
without considering the correlations between spatially adjacent pixels. However, neglecting
the notion of neighborhoods (spatial dimensions) in classification can lead to situations for
which the classes obtained are not spatially coherent [42]. Morphological profiles [43] have
been used for this type of task, but they are very time-consuming [44], which is a major
drawback for applications requiring fast, near-real-time results on large datasets. S2OC
using a neural network was optimized for this type of problem and is as fast as possible in
terms of computation time. In the Toulouse 3D scale-model, an image is composed of six
different classes: trunk, leaves, grass, roof, building, and sky. Differently, in the WaltRCam
image, we have identified five classes: namely, vegetation (grouping together trunk, wood,
and leaf), roof, building, horizon (distant pixels that are more difficult to identify), and sky.
A subset of pixels was manually labeled (10,000 pixels) based on the classes identified for
training (80% of the labeled pixels) and testing (20%) machine learning algorithms. Similar
proportions of pixels for each class were labeled to limit possible errors or biases when
training the neural network. We found a classification accuracy of about 99%. Figure 2
presents the classification strategy.
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Figure 2. Diagram showing the spatial and spectral optimized classification (S2OC) strategy. Step
1 consists of applying a principal components analysis (PCA) on the original image to reduce its
dimensionality. Step 2 consists of selecting a 7 × 7 neighborhood matrix to include spatial features
and obtain the neighborhood vector. Step 3 is the application of the neural network using the vector
from Step 2. The neural network output values give the predicted classes.

3.4. The DART Model

The DART radiative transfer model has been being developed by CESBIO (Centre
d’Etudes Spatiales de la Biosphère) since 1992 [45]. It simulates the interaction of light
(electromagnetic radiation) with the atmosphere, clouds, aerosols, and land surfaces in three
dimensions over a spectral range of about 0.25 µm to 100 µm (UV, VIS, and TIR) [21–23].
DART simulates the propagation of light beams (photons). Here, we use its Monte Carlo
approach [46]. In addition to the 3D radiation budget, DART simulates spaceborne remote
sensing images in terms of spectral reflectance and brightness temperature at any altitude.
From the bottom of the atmosphere (BOA) to the top of atmosphere (TOA), it is possible
to sense the atmosphere in any direction. The images are simulated for any experimental
configuration (solar direction, state of the atmosphere, and optical and geometric properties
of the environment) and instrument characteristics (fine or broad spectral band, spatial
resolution, viewing direction, spectral sensitivity of the sensor, etc.). In DART, the gaseous
atmosphere is defined by its optical scattering thickness, by the Rayleigh phase function,
and by the vertical density and optical absorption thickness of the major gases (CO, CO2,
CH4, N2, O2, NO, and H2O). Aerosols are defined by an optical depth, a 1D density profile,
a single-scattering spectral albedo, and the combination of two Henyey–Greenstein phase
functions. All atmospheric characteristics are defined in Section 3.4. Unlike radiative
transfer models such as SmartG [19] or ARTDECO [20], which use scenes with surfaces
assumed to be flat, DART has the advantage of simulating three-dimensional scenes, which
takes into account the complex geometry of objects present in a city, such as natural elements
(trees, crops, rivers, etc.) and urban elements (houses, roads, etc.). Each element in the
scene is characterized by its geographical shape and is categorized according to different
classes, which enables a surface reflectance property to be attributed to each object present
in the scene.
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3.4.1. Scene Parameters

The Toulouse 3D scale-model represents the landscape used within DART to calculate
the radiative transfer in the simulation. As already described in Section 3.2, each object
class is then assigned a surface reflectance according to the predominant material of which
it is composed. DART offers a selection of around fifty surface reflectance spectra [47–50],
each corresponding to a different material. Note that the sky class is not considered an
object in the 3D scale-model and thus has no surface properties. The selections made for
our simulation is summarized in Table 2 considering the surface reflectances we used in
the DART model. The building class does not exist in the DART model; we assign a surface
reflectance of 40% to buildings, which is an average value of granite surface reflectance
in the wavelength range from 414 to 870 nm. The difficulty with finding the surface
reflectance of buildings composed of different elements (windows, concrete white or pink
wall, balconies, etc.) likely introduces some uncertainties in the surface reflectance of the
buildings and then in the calculation of the spectrum. All the other surface reflectances are
provided by the DART model.

Table 2. Surface reflectance (in %) of the object’s class in DART for the different wavelengths (in nm).

Wavelengths Trunk Leaves Grass Roof (Tiles) Building

414 10.43 4.25 3.91 6.81 40.00
458 11.29 4.52 4.16 0.46 40.00
560 12.66 15.38 10.98 10.92 40.00
611 13.13 8.68 7.12 21.18 40.00
672 13.47 4.65 4.57 25.39 40.00
778 13.92 63.34 47.61 33.86 40.00
870 14.06 62.87 49.97 31.02 40.00
938 14.16 62.22 50.74 35.55 40.00

DART calculates solar angles based on the date recorded in the Gregorian calendar; it
takes into account the year, month, day, hour, minute, and second as well as the model’s
geographical position, including latitude, longitude, and altitude. These calculations
are carried out using equations and models established by the National Oceanic and
Atmospheric Administration (NOAA) [51]. The surface temperatures were recorded on the
day of the experiment by the Météo France in situ ground station located close to the study
site. Table 3 shows the DART input parameters.

Table 3. Solar angles (in degrees) and surface temperatures (K) for the 4 different LTs on 30 June 2020.

LT Azimuth Angle Zenith Angle Temperature (K)

9:55 118 32 293
11:02 146 23 294
12:34 202 21 296
14:04 299 33 298

3.4.2. Atmosphere Characteristics

For the chemical composition of the atmosphere, we use the USSTD76 (U.S. Standard
Atmosphere Model, see [52]) gas profiles from the MODTRAN radiative transfer model.
The DART gas profiles are defined by their optical scattering thickness, by the Rayleigh
phase function, and by the vertical density and optical absorption thickness of the major
gases. In the spectral range considered in this study (400–900 nm), gas absorption (even
H2O) plays a minor role in the absorption of radiation. We can only note there is a small
contribution from the ozone (O3) absorption band between 550 and 650 nm.

In addition, we selected RURALV23 from the DART database for the aerosol character-
istics derived from the MODTRAN model [53]. In this database, the aerosols are defined by
a 1D density profile, an aerosol optical depth, a simple-scattering spectral albedo, and the
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combination of two Henyey–Greenstein phase functions [53]. This database corresponds as
best as possible to the characteristics of the peri-urban conditions of the experiment period
with a visibility of 23 km, which is comparable to that of our study day.

3.5. AOD Retrieval

The AOD in the DART model can be modified either by importing a vertical profile
of an aerosol extinction coefficient or by scaling the spectral AOD by a multiplicative
factor (called hereafter the AOD factor). Here, we adopted the convenient latter approach.
For example, an AOD factor k = 1 corresponds to the default spectral AOD value of the
atmosphere selected in DART, i.e., RURALV23. The AOD values for this atmosphere are
0.42, 0.38, 0.31, 0.28, 0.25, 0.20, 0.17, and 0.15 for wavelengths 414, 458, 560, 611, 672, 778,
870, and 938 nm, respectively. The scaled AOD is calculated as follows:

AOD(λ, k) = k × AOD(λ)RURALV23 (1)

where AOD(λ)RURALV23 is the initial AOD value of the RURALV23 atmosphere for the
wavelength λ, and k is the AOD factor. Figure 3 shows the radiance look-up tables as a
function of wavelength for two AOD factors (0 and 0.5) and the WaltRCam’s corresponding
radiance averaged for the entire image. The LUT clearly shows similar behavior and
delineates the range of the WaltRCam values (represented in blue).

Figure 3. Example of average spectra obtained from the LUT and WaltRCam for the entire image. A
factor k = 1 corresponds to the default AOD of the atmosphere selected in DART, i.e., RURALV23
(green curve). A factor k = 0.5 indicates a 50% reduction in the default optical depth spectrum (orange
curve). The red curve corresponds to an AOD factor = 0. The WaltRCam spectrum (blue curve) repre-
sents the average radiance and its associated standard deviation (blue vertical lines). The optimum
multiplicative AOD factor leads to the closest spectrum compared to the WaltRCam spectrum.



Remote Sens. 2024, 16, 140 10 of 19

For each pixel, we obtain the corresponding spectrum by changing the AOD factor
from 0 to 2.5 with a step of 0.1, which leads to AOD values from 0 to 1, respectively. This
provides the correspondence between the vertical AOD over the scene covered by DART
and the radiance measured at the WaltRCam. This look-up table takes into account all the
3D parameters such as the different angles (angle of incidence on each 3D object) as well as
the surface reflectance of the classes in the image.

In addition, to improve the accuracy, we added 10 more spectra between each two
calculated spectra by performing a linear interpolation on both the calculated spectra
and the corresponding AOD factor (e.g., [54]). Each pixel in the image therefore has
200 spectra that differ by their AOD multiplicative factor. Each pixel in the simulated image
corresponds exactly to the pixels observed using the inconsistency image (Section 3.3).
Each pixel of the WaltRCam image is associated with the value of the AOD factor that
corresponds to the calculated radiance spectrum closest to the WaltRCam radiance spectrum
and then to the DART vertical AOD. This correspondence is done when the normalized
root-mean-square error (nRMSE) between the WaltRCam spectrum and the LUT spectrum
for the different wavelengths is lowest and there is maximum correlation. The RMSE,
nRMSE, and correlation are defined as:

RMSExy(k) =

√
1
n

n

∑
i=1

(yi − xi,k)2 (2)

where yi is the radiance of the WaltRCam and xi,k is the DART radiance for wavelength i
and for AOD factor k. The nRMSE corresponds to the RMSE normalized by the difference
between the minimum and maximum of the RMSE. This allows us to obtain a value
between 0 and 1.

nRMSE(k) =
RMSE(k)

max(RMSE(k)) − min(RMSE(k))
(3)

The Pearson correlation coefficient is the ratio between the covariances of two variables
(WaltRCam spectrum and the LUT spectrum) and the product of their standard deviations
and is defined as:

Rxy(k) =
∑n

i=1(xi,k − x̄k)(yi,k − ȳk)√
∑n

i=1(xi,k − x̄k)2
√

∑n
i=1(yi,k − ȳk)2

(4)

where the overbar corresponds to the temporal mean of each parameter. For each pixel, we
select the AOD factor k corresponding to the nRMSE minimum. If this value is below the
10% threshold and has a correlation Rxy greater than 0.95, the k-value is retained; otherwise,
the pixel is considered missing data. This is a compromise between the quality of the
calculated results and the number of pixels to ensure good representativeness. After this
step, each pixel is associated with an AOD factor. The spectral value of the AOD is then
obtained by multiplying this factor by the spectral values of the AOD of the atmosphere
selected when configuring DART (here, RURALV23). The viewing direction is accounted
for in the DART radiative transfer model and does not induce any systematic variation
in the AOD values. However, the classes that relate the object to the surface reflectance
do not have the necessary detail in the 3D scale-model and induce some small systematic
variations in the AOD values. Therefore, the AOD value of the image is obtained by
averaging the values of all the pixels contained in the image. The results are presented in
the next section.

4. Results
4.1. Simulation Presentation

The images captured on 30 June 2020 at 9:55, 11:02, 12:34, and 14:04 LT are presented
in Figure 4. These images highlight the main advantage of a 3D approach by showing the
impact of light variation over the course of the day, including the presence of shadows.
Calculating radiative transfer in a peri-urban scene means that the geometric complexity of
such an environment can be taken into account to make simulation results more realistic.



Remote Sens. 2024, 16, 140 11 of 19

The distance between the location of the camera and the background of the image is limited
to 12 kilometers in the Toulouse 3D scale-model. Hills, forests, and a few buildings in
the background of the image are not described in the simulated DART image. Areas of
differences between the observed image and the simulated image are removed by correcting
the simulated scene using S2OC pixel classification (see Section 3.3).

Figure 4. (Left) Images observed by the WaltRCam camera. (Right) Images simulated by the DART
model for 9:55, 11:02, 12:34, and 14:04 LT (from top to bottom). Note that the absence of details in the
background shows the limits of the 3D scale-model, which is limited in the horizontal direction to a
few km with respect to the location of the camera. This simulation corresponds to the RURALV23
atmosphere with an AOD factor of 0 to clearly distinguish the objects in the image.
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4.2. Similarity Matrix

Figure 5 shows the same-class pixels between the scene as seen by the WaltRCam
and by DART and its associated 3D scale-model. By examining the two results, the
similarity image allows us to clearly visualize the regions where the two classes are similar,
i.e., where the pixel belongs to the same class, and the areas where the pixels are different,
i.e., where the pixel does not belong to the same class. This correction ensures that the
DART simulation reflects the actual observed data as closely as possible. This allows us to
refine the simulation results and obtain more accurate representations of the environment
under study.

Figure 5. Image of pixel class similarity. The white areas (deleted pixels) represent the pixels with a
different class between the calculated classes and the WaltRCam classes (about 30% of the pixels in
the image). Vegetation, roof, buildings, horizon, and sky are colored in black, red, grey, dark blue,
and light blue, respectively.

Discarded pixels comprise about 30% of the pixels in the image. Among these pixels,
63% are within the vegetation class, while the building class accounts for 20% of these
deletions, and around 17% are attributable to the roof class. Note that different class pixels
concerning buildings and roofs are mostly visible in the background. This distribution
of deleted pixels is significantly influenced by the time at which the image was captured,
which took place at the beginning of the summer period. At this time of year, the vegetation
is particularly dense, which explains the high percentage of discarded pixels associated
with this class. It should also be noted that the scale-model used contains certain inaccura-
cies, particularly with regard to warehouses in the background, which justifies the high
percentage of deletions for the building class.

4.3. WaltRCam and DART Spectra Correspondence

Table 4 summarizes the statistics used to assess the correspondence between the
average of the selected spectra and the corresponding WaltRCam spectra. The nRMSE is
about 3% for the four different local times. All day long, correlations between WaltRCam
and DART spectra systematically show values of around 0.98. In terms of RMSE, the time
9:55 LT has the highest value, with 8.0 Wm−2sr−1nm−1, while at 12:34 LT, there is the lowest
RMSE of 6.1 Wm−2sr−1nm−1. With the 10% nRMSE threshold and correlation greater than
0.95, a large number of pixels are conserved, with a minimum of 53% at 12:34 LT and a
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maximum of 58% of pixels at 11:02 LT. This corresponds to at least 61,000 pixels for 9:55
and least 67,000 pixels for 11:02. This amount of pixels allows us to obtain reliable results
after averaging. Moreover, as a reminder, 30% of the pixels have already been discarded
by the similarity matrix (Section 4.2), to which we have to add the pixels discarded by
the threshold.

Table 4. Statistics used to assess the correspondence between the average of the selected spec-
tra and the corresponding WaltRCam spectrum: nRMSE (in %), Pearson correlation, RMSE in
Wm−2sr−1nm−1, pixels conserved in %, and relative bias (excluding 938 nm) in %. The statistics are
calculated for the experiment on 30 June 2020 for 4 different local times.

9:55 11:02 12:34 14:04

nRMSE 3.8 3.5 2.9 2.8
Correlation 0.98 0.99 0.98 0.98
RMSE 8.0 7.1 6.1 7.2
Pixels conserved 1 56 58 53 56
Relative bias (excluding 938 nm) 4 4 2 −1

1 Pixels removed by the nRMSE threshold and the similarity matrix.

Note that the relative biases calculated for the first seven bands (excluding 938 nm)
are 4%, 4%, 2%, and −1% for 9:55, 11:02, 12:34, and 14:04 LT, respectively. We have
excluded the radiance values for the 938 nm band because they are very low (less than
5 Wm−2sr−1nm−1), and a small deviation significantly increases the relative bias. Figure 6
shows the average radiances calculated by DART for the entire image with the pixels
selected according to our methodology.

Figure 6. Averaged WaltRCam spectrum for the entire image (blue curve); averaged calculated DART
spectrum (green curve) for the entire image. The red curve represents the spectral AOD values
calculated for each wavelength.
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The figure also shows the average radiance measured by WaltRCam. A perfect sim-
ulation would be characterized by perfect superposition of these two curves. This figure
clearly shows good correspondence between the two averaged spectra that can likely in-
duce an estimation of AOD for each wavelength. The red curve represents the AOD values
calculated in accordance with the method. As expected, for such a scene, AODs measured
at smaller wavelengths are higher than AODs at greater wavelengths. The values obtained
are compared with AERONET and MODIS satellite data in the following section.

4.4. Evaluation of AOD
4.4.1. AERONET

We evaluate the results by comparing the WaltRCam AOD with measurements taken
by the closest AERONET station (see Section 2.2.1). Note that the AERONET measurements
were taken with a small time difference from the WaltRCam data: 9:52, 10:59, 12:29, and
13:59 LT for AERONET and 9:55, 11:02, 12:34, and 14:04 LT for WaltRCam. We assume
that this slight time difference does not affect the results. The evaluation is based on the
common AERONET wavelengths: 440, 500, 672, and 870 nm. To do this, we perform
logarithmic interpolation between the two nearest adjacent WaltRCam wavelengths, as
recommended by authors from various publications (i.e., [55,56]). Figure 7 illustrates the
comparison between WaltRCam and AERONET AOD for these different wavelengths as
well as for the different hours in the day.

Figure 7. AERONET AOD (orange stars) and WaltRCam AOD and its associated standard deviation
(blue dots and vertical lines) at 440, 500, 675, and 870 nm as for 9:55, 11:02, 12:34, and 14:04 LT.

AOD values are fairly low and constant over the 4 h of measurement on 30 June 2020.
The lowest wavelengths show the highest AOD values. In the environment of our experi-
ment, we assume the aerosols are homogenous in terms of size and type. Therefore, light
scattering by aerosols is likely more efficient at shorter wavelengths, meaning that aerosols
tend to scatter more blue light (shorter wavelengths) than red light (longer wavelengths).
Moreover, one can note that AERONET measurements are included within the variability
of the WaltRCam measurements defined by the standard deviation calculated on all pixels
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of the image. Maximum AOD values are reached at 9:55 LT for all wavelengths: reaching
0.12, 0.11, 0.7, and 0.05 for the 440, 500, 675, and 870 nm wavelengths, respectively. In
the same way, for these wavelengths, minimum AOD values are observed at 14:04 LT,
and the measurements are 0.10, 0.09, 0.06, and 0.04, respectively. Measured AOD variabil-
ity varies by around 0.07, 0.06, 0.04, and 0.03 depending on the wavelength considered.
This variability could be reduced with the use of a more accurate 3D scale-model and
an increase in the number of objects and classes to allow more accurate assignment of
surface optical properties. Each urban element is indeed made up of objects with different
surface reflectances. For example, a building may be covered by different materials, such
as concrete, brick, plaster, etc., and may be painted different colors, each with its own
surface reflectance. But we use a 3D scale-model that does not have this level of detail;
instead, it groups all objects of the same class under the same surface reflectance. A more
sophisticated scale-model could better represent the surface reflectance variability in a real
urban environment, thereby increasing the accuracy of the results. Table 5 presents the
statistics used to evaluate and compare the two AODs.

Table 5. Bias, relative bias in %, and RMSE between the WaltRCam and AERONET AOD data. The
statistics are calculated for the experiment on 30 June 2020 for 4 different times.

9:55 11:02 12:34 14:04

Bias 0.007 −0.002 0.014 −0.015
Relative bias 7 −3 20 −17

RMSE 0.01 0.00 0.02 0.02

The errors obtained are reasonable compared to AERONET, with the highest bias
being 0.014 at 12:34 and lowest bias being −0.015 at 14:04 LT. Note that biases are positive
for 9:55 and 12:34 LT, indicating slight overestimation, while the bias is negative for 11:02
and 14:04 LT, suggesting slight underestimation. The relative bias is minimum at 11:02 LT
at −3% and maximum at 12:34 LT at 20%. The RMSE is 0 for 11:02 LT and 0.02 for 12:34 LT
and 14:04 LT. Figure 8 presents the comparison between WaltRCam and AERONET AODs.
As already said, the WaltRCam results remain fairly close to the AERONET data, with a
correlation coefficient of 0.9 and weak variability around the 1:1 line. The RMSE is 0.012,
which is relatively low.

Figure 8. Comparison of the AOD values of WaltRCam and AERONET. The colors blue, red, yellow,
and green represent the different time measurements at 9:55, 11:02, 12:34, and 14:04 LT, respectively,
on 30 June 2020. The wavelengths correspond to the following signs: circle = 440, square = 500,
diamond = 550, star = 675, and plus sign = 870 nm.
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4.4.2. MODIS

Finally, we evaluate the WaltRCam AOD data with the Terra satellite MODIS instru-
ment data that was described in Section 2.2.2. MODIS mad a daily pass over the greater
Toulouse area at 12:45 LT on 30 June 2020, which is close to the time of a WaltRCam mea-
surement (12:34 LT). Figure 9 shows the AOD values measured at 550 nm over the greater
Toulouse area. Each MODIS pixel corresponds to an area of 9 km2 (3 km × 3 km), whereas
WaltRCam covers a smaller area corresponding to about a 3.3 km2 quadrilateral, as shown
in this figure. MODIS AOD measurements are available over a part of the study area and
give a similar result to the WaltRCam’s AOD for this specific zone. Note that MODIS pixels
are coarse because of the DT algorithm, which likely discards non-convergent pixels. The
AOD measured by MODIS in this area shows a value of 0.12 at 12:45 LT in a MODIS pixel
colocated with the WaltRCam’s field of view, which provides an AOD value of 0.09 at
12:34 LT, and for the AERONET data, the AOD is 0.08. It should be noted that the MODIS
instrument on the Terra satellite, as a sun-synchronous satellite, provides one AOD value
per day, while the WaltRam camera can potentially provide several AOD values per hour.
The observation frequency capability of the WaltRCam will allow measurement of diurnal
AOD variations.

Figure 9. (Left) MODIS AOD measurements for 550 nm at 12:45 LT (spatial resolution 3 km × 3 km).
(Right) WaltRCam AOD measurements for 550 nm and corresponding AERONET AOD values for
9:55, 11:02, 12:34, and 14:04 LT on 30 June 2020. The AERONET station is located at the Météo-France
site. The blue dot (CAM) is the location of the WaltRCam.

5. Conclusions

We show the advantages of an affordable ground-based multi-wavelength camera for
measuring the vertical AOD of a vast peri-urban area. This camera, called the WaltRCam,
can capture eight wavelengths (414, 458, 560, 611, 672, 778, 870, and 938 nm) and is currently
under development and should soon be exploitable in the Toulouse area. For this study, the
WaltRCam data were simulated using a HySpex hyperspectral camera. The urban scene
of Toulouse is represented in 3D using a scale-model dating from 2014. This scale-model
offers the possibility of reproducing complex urban configurations while assigning specific
optical properties to the various elements that make it up. We perform classification on
the WaltRCam image to distinguish the different objects and to ensure that the scale-model
image corresponds exactly with the observed image. The aim of this classification is to
assign a class (with the same optical properties) to each pixel in the WaltRCam image in
order to discard any pixels that differ from the image generated by the scale-model. To do
this, we use a learning method based on neural networks. In this way, we take into account
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changes in the peri-urban area, such as vegetation growth, construction, and demolition of
buildings, and detect limits in the scale-model image. Using this technique, around 30% of
the pixels are excluded from the observations: mainly because the vegetation is particularly
dense at the end of June, which is not represented in the 3D scale-model. Secondly, to
retrieve the AOD, we develop a methodology that relies on the construction of Look-Up
Tables (LUTs) based on the DART radiative transfer model. Each image taken by the
camera can deliver the vertical AOD representative of the 3D DART representation. These
look-up tables take into account surface reflectance (pixel class) and all incident angles in
the Toulouse 3D scale-model and simulate the spectra as observed by the WaltRCam. The
closest spectrum is then selected, and an AOD value is calculated for all pixels in near-real-
time. To demonstrate the usefulness of the technique, we use four images captured during
a nearly clear case on 30 June 2020. On average, we obtain a good match between the LUT
spectra and the WaltRCam spectra, with a correlation coefficient between 0.98 and 0.99
and an average RMSE of less than 8 Wm−2sr−1nm−1 regardless of the time of day, which
allows estimation of the AOD.

The AOD values are quite constant all day long, with AOD values between 0.08
and 0.10 for 550 nm. The results of this study show that the WaltRCam camera delivers
convincing results compared with the AERONET data, with a relative bias ranging from
−3% to 20% depending on the time, and with a correlation coefficient of 0.90 and an average
RMSE of less than 0.02. In addition, we show similar AOD values compared to MODIS,
but we provide a field of view almost twice as small (9 km2 compared to ∼ 3.3 km2). Using
the WaltRCam images, future works will be to obtain AOD measurements with higher
temporal resolution and with a time resolution of only a few tens of minutes. In addition to
the smaller field of view, this represents a considerable advantage over the daily resolution
currently obtained with MODIS satellite measurements. To follow up this study, we plan
to apply the method in different atmospheric conditions using the WaltRCam observations,
when available, and then extend our approach by deriving PM10, and PM2.5.
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