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Abstract: Landslides represent a significant natural hazard with wide-reaching impacts. Addressing
the challenge of accurately detecting and monitoring landslides, this research introduces a novel
approach that combines feature tracking with histogram analysis for efficient outlier removal. Distinct
from existing methods, our approach leverages advanced histogram techniques to significantly
enhance the accuracy of landslide detection, setting a new standard in the field. Furthermore, when
tested on three different data sets, this method demonstrated a notable reduction in outliers by
approximately 15 to 25 percent of all displacement vectors, exemplifying its effectiveness. Key to our
methodology is a refined feature tracking process utilizing terrestrial laser scanners, renowned for
their precision and detail in capturing surface information. This enhanced feature tracking method
allows for more accurate and reliable landslide monitoring, representing a significant advancement
in geospatial analysis techniques.

Keywords: point cloud; feature extraction; hillshade image; deformation analysis; laser scanning

1. Introduction

Landslides are among the most destructive geo-disasters, causing substantial property
damage and safety problems worldwide. Defined as the gravitational movement of mass
down a slope [1], they can result from various events such as severe precipitation, earth-
quakes, volcanic activity, and human activities. These natural phenomena pose significant
risks to infrastructure, including roads and buildings, and to human life. According to the
World Health Organization, landslides affected an estimated 4.8 million people and caused
more than 18,000 deaths between 1998 and 2017 [2].

Understanding and predicting landslides is pivotal for scientific inquiry. Researchers
focus on studying their causes, mechanisms, and potential impacts to develop effective
landslide prediction and early warning systems (LEWS) [3–7]. These systems are crucial
for landslide management and risk mitigation. As we progress towards more technolog-
ically advanced methods of monitoring, high spatial resolution techniques have gained
prominence. The following sections will delve into the significance and applications of
these methods in contemporary landslide research.

One of the common approaches for landslide prediction and early warning is using
numerical modeling and simulations, which allow for predicting the behavior of the
landslide under different scenarios. This method is widely used to evaluate slopes’ stability
and identify the critical factors that control landslide behavior [8–11].

Different types of landslide displacement exist, and the Alpine countries were some of
the early locations where classification systems for landslides were developed. Baltzer [12]
in Switzerland was among the first to distinguish between the three basic motions: fall,
slide, and flow. This distinction is still used today, with the addition of toppling and
spreading. The terminology of geotechnical materials is most useful as it closely relates to
the mechanical behavior of the landslide [13].
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The magnitude of landslides can range from a few millimeters to several meters,
making their detection and monitoring a challenging task. However, with the advent
of high spatial resolution monitoring techniques, the accuracy of landslide detection has
significantly improved. This is particularly important for early warning and risk assessment.
High spatial resolution monitoring provides more accurate and precise information about
the location and extent of landslides. This can improve the understanding of their behavior
and help identify areas at risk of future landslides for developing effective management
and mitigation strategies. This includes creating hazard maps, evacuation plans, and
risk assessments.

There are several workflows for monitoring landslides [14–16]. One of them, which
was developed for Terrestrial Laser Scanners (TLS) point cloud processing for detecting
displacement by using vector field, provides high spatial resolution for monitoring land-
slides [16]. Considering the mentioned method, TLS and 3D vector fields have been used
in this research to identify landslides. Compared to other pointwise and point-cloud-based
methods, the advantages of using this method have been investigated in [17].

In this study, some of the shortcomings of this method are discussed, and the following
goals are pursued:

• Reducing the errors caused by the matching process, especially in the border sections
of the point cloud, by histogram analysis;

• Maintaining proper distribution of vectors throughout the study areas;
• Using various data to check the performance of the presented method more precisely.

These data sets are different in size, type of deformation, density of point clouds, and
direction of displacement;

• Evaluation of the accuracy of the presented method using the available data.

This research paper is organized into seven sections. After the introduction, this
research paper is organized into six sections. After the introduction, Section 2 provides a
literature review of different methods for measuring landslides. Section 3 describes the
data sets and methods used in this research. The research results are presented in Section 4
and discussed in Section 5. Section 6 summarizes the main conclusions.

2. Literature Review

This part of the research presents a comprehensive literature review of various methods
for measuring landslides, including the Global Navigation Satellite System (GNSS), image-
based monitoring, and TLS. Each method has its advantages and limitations, which will
be discussed in detail. This review will provide insights into the applicability, accuracy,
and reliability of these methods in landslide monitoring. In addition, this review will
highlight recent advancements and research on combining different techniques to enhance
the effectiveness of landslide monitoring.

2.1. Global Navigation Satellite System (GNSS)

GNSS sensors are one of the beneficial ways of monitoring landslides [18–22]. The
GNSS technology has proved to be one of the most flexible and practical tools for monitoring
purposes. These instruments enable precision at the centimeter level or even lower in static
mode and lengthy observation times [23]. GNSS can offer precise and accurate data
regarding the location and movement of landslides. By putting permanent GNSS receivers
at strategic points on a landslide or in an area prone to landslides, it is possible to measure
small-scale ground surface motions with high temporal resolution. GNSS may also be
used to measure the velocity and acceleration of a landslide, which can provide important
information about the landslide’s dynamics and possible risks and threats. The advances
in GNSS technology have created new low-cost sensors that can provide continuous
monitoring with medium to high precision, accuracy, and limited costs [23–25]. In this case,
the precision of measuring is enough, but using these sensors for measuring the landslide
provides low spatial resolution. Therefore, it is necessary to combine these sensors with
other area-based methods to increase spatial resolution. It is possible to obtain a more
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comprehensive picture of a landslide and its development over time by combining GNSS
data with the results of other remote sensing techniques, such as terrestrial laser scanning
(TLS) and satellite images.

GNSS offers high precision in monitoring landslides, providing valuable data on
location and movement. Its ability to measure velocities and accelerations is crucial for
understanding landslide dynamics. However, its low spatial resolution necessitates inte-
gration with other methods for a comprehensive analysis.

2.2. Image-Based Monitoring

In addition to the accuracy needed to assess, with a given probability, the magnitude
of the expected displacement and the number of other issues influence the choice of the best
monitoring system to use. For instance, the size of the area to be controlled, the frequency of
data gathering, the time it takes to provide the results, the stability of the reference system,
and the impact of atmospheric conditions on measurement accuracy or operation [26].

Emerging Unmanned Aerial Vehicles (UAVs) are used for many purposes, including
monitoring landslides. UAVs can provide high resolution compared to the first method.
Furthermore, gathering data with them would be easier for large areas and regions that
need to be monitored frequently during a short period. In most cases, UAVs use a camera
to capture the images and make a 3D model from the area in each epoch [27–31]. With
appropriate ground control, accuracies in the range of 3–10 cm in 3D can be expected,
making UAV photogrammetry extremely appealing for monitoring applications [26,32].
Although most image-based methods in this field use airborne photogrammetry, some
image-based research uses terrestrial systems [33–35]. Recent advancements in image-
based methods have seen the rise of UAV-based Geographic Object-Based Image Analysis
(GeoOBIA). This technique, utilizing high-resolution imagery from UAVs, allows for more
detailed and frequent landslide assessments. A notable study in this area is the GeoBIA-
based semi-automated landslide detection using UAV data [36], which demonstrates the
potential of UAVs in enhancing spatial resolution and detection capabilities.

Satellite images are also used for monitoring landslides. Detecting and monitoring
landslides can be accomplished in several different ways with the help of remote sensing
methods, particularly satellite images. These methods have the potential to offer informa-
tion regarding the location, extent, and movement of landslides, in addition to information
regarding the dynamics and causes of landslides [14,37–39]. For instance, multispectral
imagery, such as Landsat, can be applied to identify changes in vegetation cover and soil
moisture, which can indicate the presence of a landslide, and radar imagery, such as that
from the European Space Agency’s Sentinel-1 satellite, can be used to detect changes in the
elevation of the ground surface caused by a landslide. There are also some disadvantages
to this method when compared to point-based methods, and one of the primary concerns
is the accuracy of the image-based method for landslide detection. As reported in [40],
the accuracy ranged from 5 to 15 cm in several projects using different types of UAVs
and cameras. In cases where landslides occur at a rate of several millimeters per year, the
image-based method faces some serious challenges.

Image-based monitoring, bolstered by methods like UAV-based GeoOBIA, offers a
unique perspective in landslide analysis, especially in identifying surface changes. While
it faces challenges in accuracy, especially for slow-moving landslides, its integration with
other methods can significantly improve overall monitoring effectiveness.

2.3. Terrestrial Laser Scanners

A fixed sensor known as a terrestrial laser scanner (TLS) automatically captures the
range and angles in equally spaced scanning steps [41]. They use the laser’s flight time to
compute distances to objects. Traditional measurement techniques do not have the advan-
tages of three-dimensional laser scanning technology. It has high measurement accuracy
and quick monitoring speed, can reflect the entire deformation trend of the landslide body,
and can quickly produce high-precision, high-density three-dimensional point cloud data.
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It also does not need to touch the landslide body [42]. Consequently, numerous studies
these days focus on using TLS for monitoring landslides [43–48]. However, this method
also has some disadvantages, including a high volume of generated point clouds, especially
for large areas, and the problem of accurately registering these point clouds. Based on this,
there is some research about the reliability and accuracy of using TLS for monitoring [49,50].
In recent years, TLS and UAV photogrammetry have been used together to cover the
disadvantages of using one of the methods alone [51–55].

The point clouds produced by laser scanners in two or more epochs are registered
using different algorithms, such as ICP (Iterative closest point) [56] and M3C2 (multiscale
model-to-model cloud comparison) [57], as well as their improved versions [58,59]. Feature
matching is another method for matching the point clouds obtained from different epochs.
This method is robust to noise in challenging conditions such as large-scale differences,
and it can be used to register point clouds with a high degree of accuracy. This information
can be used to monitor and evaluate the stability of places prone to landslides. Point
cloud processing can provide vital information regarding potential landslide hazards,
such as slope angles, surface roughness, and elevation changes, by examining the shape
and structure of the terrain. This data can be used to construct detailed 3D models of
the landscape and detect instability areas, which can aid in predicting and preventing
landslides. In addition, point cloud analysis can be used to monitor changes in the terrain
over time, which can aid in detecting early warning signals of landslides and tracking their
advancement once they have occurred.

In this research, the feature-matching method proposed in [17] is used for the defor-
mation analysis based on point clouds measured by terrestrial laser scanners. Additionally,
a new component has been added to this algorithm to improve the accuracy and reliability
of the results.

TLS stands out for its high accuracy and rapid data acquisition capabilities, producing
detailed 3D point clouds. While handling large data volumes and registration accuracy can
be challenging, the integration of TLS with UAV photogrammetry has been a significant
leap forward, addressing individual limitations and enhancing landslide monitoring.

3. Materials and Methods

This research utilized three data sets collected in two epochs, and landslides were
identified using the same method across all data sets. These data sets are different in several
cases, including the size, material, georeferencing process, and displacement direction.
Section 3.1 discusses the areas investigated in this study, while Section 3.2 outlines the
method used to identify landslides.

3.1. Study Areas
3.1.1. Simulated Laboratory Data Set

The first data set is a simulated laboratory data set. This data set was specifically
selected for initial testing due to its controlled environment, which is ideal for an accurate
assessment of the developed method. The purpose was to evaluate the precision of the
scanner in detecting minute changes and to understand its capability to measure manual
adjustments made on the surfaces. To generate this data set, we used a pack of soil to cover
three designated separate surfaces (left, middle, and right) with an area of approximately
1 m in length and 0.5 m in width.

Next, a P50 laser scanner was placed on a tripod to measure a target on a compound
slide at 5 m, with the goal of evaluating the scanner’s accuracy. The P50 was able to
detect changes of approximately 0.1 mm on the target. Subsequently, the same targets
were placed on the left and right surfaces, and the first epoch was captured using the
highest resolution (0.8 mm per 10 m). For the second epoch, the P50’s position remained
stable while movements were applied to the left and right surfaces, and the middle surface
remained stationary. Epoch changes were made in two different directions, as depicted in



Remote Sens. 2024, 16, 138 5 of 19

Figure 1. The scanner station was positioned 5 m away from the area, enabling the P50 to
produce dense and accurate point clouds.

It is essential to note that the changes in the data set were manually applied and
measured using the targets placed on both surfaces. The scanner’s position was unchanged
from the first epoch to the second, eliminating potential georeferencing errors that could
impact the final accuracy achieved by this data set.
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Figure 1. The laboratory data set (displacement applied in two different directions, which is shown
by purple arrows).

3.1.2. Hochvogel Data Set

The second data set is about the Hochvogel, a 2592-m-high mountain in the Allgäu
Alps. The Hochvogel site was chosen because of its unique geological phenomena, offering
a real-world setting for landslide monitoring. The data set from this area was particularly
useful for studying the deterioration process and for testing the implementation of an early
warning system, blending different measurement techniques. The mountain’s fame is based
on a phenomenon observed on the Hochvogel for many decades. Part of the summit slowly
breaks off at the top of the mountain on the German-Austrian border. It is the highest
summit of the surrounding mountains and is therefore exposed to strong erosion [24]. This
break-off is now visible at the summit in the form of a chasm about 30 m long and 3–5 m
wide. The left part of the chasm consists of the breaking away rock. The crack between the
two parts is much more resounding than visible from the outside because loose rocks fill
the gap that narrows downwards (Figure 2). Upon closer examination, it becomes evident
that the rock possesses a porous nature. Numerous small stones are not securely connected
to the surrounding rock. However, several distinct rocks stand out, maintaining their
shape despite weather conditions. These rocks are particularly interesting because their
external structure remains consistent over extended periods, making certain surface parts
recognizable in cross-epoch measurements. To better understand the ongoing deterioration
process and implement an early warning system, several measurement systems were set
up on the mountain, including a geodetic monitoring network [60]. This network combines
tacheometric measurements with GNSS baseline observations, allowing for precise 3D
vector determination in a deformation analysis based on a congruence model. The RTC360
laser scanner was used to collect this data set.

For the georeferencing process, a sufficient number of stable points were utilized to
georeferenced data from different epochs. These points were visible in both epochs and
were chosen on the stable part of this summit. The georeferencing accuracy was evaluated
through a geodetic deformation analysis, revealing an approximate accuracy of around
2 mm [25]. This data set has already been used for point-wise rigorous deformation analysis.
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Therefore, one of the benefits of this data set is the ability to compare the results of the
mentioned method with point-wise results.
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Figure 2. (a) Summit of the Hochvogel, far view, and (b) different point’s positions at this summit [25].

3.1.3. Hohe Tauern Data Set

The third data set, located in the central Hohe Tauern range of the Austrian Alps,
approximately 5 km south of the Großglockner (3798-m NHN, height above sea level), the
highest peak in the Eastern Alps, has a distinct characteristic of deformation in different
directions. Between 1985 and 2008, surface velocities were measured continuously using
repeated GNSS surveys of more than 100 surface markers. The findings reveal significant
variations in average velocities, ranging from 2 to 20 cm per year due to alpine solifluction.
Additionally, peak velocities for individual markers reached up to 100 cm per year [16]. The
study area, depicted in Figure 3, measures approximately 100 m on the x-axis and 100 m on
the y-axis, with the deformation type being soil slope. The data sets were captured in 2014
and 2016, and to realize the local coordinate system, we permanently mounted nine points.
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Figure 3. (a) Location and orientation of study area (Hohe Tauern) and (b) arrangement of points and
stations on the local coordinate system [17].

For georeferencing the point clouds, 9 fixed points were permanently marked with
nails in the hard rock. Those fixed points were coordinated using relative GNSS-baseline
measurements and total station measurements, all combined in a 3D geodetic network
adjustment. The laser scans were transformed into this geodetic datum by centering
scanner targets on those fixed points afterward. For potential transformation into an
absolute coordinate system, we also occupied an official reference point of the Austrian
geodetic reference frame. The position of each fixed point was chosen considering a
homogeneous distribution over the complete study site and also good mutual visibility
(total station and laser scanning) and sky visibility (GNSS). Incorporating these points into
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the network adjustment enhances the geometry and boosts the quality of the foundational
geodetic network. However, the long-term stability of these points may be uncertain. They
facilitate a more precise estimation of the relative positions of other stable points within
each epoch [17].

This data set was also collected by the P50 laser scanner. The unique deformation
patterns of this area make it an ideal location for studying slope movements and further
analyses. Considering this area monitored by using a high spatial resolution method in
2021 [17], there are still some outliers present, which makes this data set interesting for
this research.

3.2. Methodology

This section provides a rough overview of the sequence of actions in the algorithm,
and the associated process chain is visualized in Figure 4. In general, the method is mainly
automated regarding the processing of the point clouds, as it is necessary for an early
warning system.
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Figure 4. A rough overview of the algorithm. It included 4 main sections: Pre-processing, Producing
hillshade, Reveal displacements by feature tracking, and Histogram analyses.

After measuring point clouds in two epochs, the pre-processing part starts. After
georeferencing two point clouds, the first step involves reducing them to the expected
area and removing extra parts. This is necessary to fragment the point clouds into smaller
patches, which are then individually converted into digital elevation models (DEMs). The
main reason for this is to prevent overlap during the production of a DEM. Considering
that a specific projection direction is required to produce a digital elevation model, ap-
plying a single direction to the entire point cloud could result in overlap in certain parts.
Consequently, some information may be lost due to this overlap (Figure 5).
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To achieve this, the point clouds must be transformed such that the z-axis of the
new coordinate system aligns with the direction from the laser scanner to the center of
gravity of the individual patch for each epoch. If any other projection directions are
considered, as shown in Figure 5 (top), there is a potential for overlap during the hillshade
production process.

In the second section, hillshades are then produced for each of the two epochs DTMs.
Point clouds are a valuable tool in producing high-resolution hillshades, providing an
extremely detailed representation of the terrain surface. The process of creating hillshades
from point clouds involves projecting the point cloud data into a two-dimensional plane
and calculating the shading based on topographic features and the location of the sun. Hill-
shades provide a visual representation of the terrain that is much easier to understand than
raw point cloud data, and the ability to adjust the direction and intensity of the simulated
sunlight provides a powerful tool for visualizing and analyzing terrain features [61].

In the next section, features are extracted from the hillshades using the SIFT [62]
and KAZE [63] feature extraction algorithms. Both algorithms are suitable for extracting
features from the data, but KAZE generates more features compared to SIFT, so in this
research, KAZE was utilized. Unlike earlier algorithms, KAZE uses non-linear scale spaces
due to its use of non-linear diffusion filtering, which allows it to be more robust in terms
of handling image noise and detecting features across various scales. It is important to
note that having more features does not necessarily equate to higher quality. Extracting
too many features could lead to high correlation among them and affect computational
efficiency. The choice of a suitable feature extraction algorithm depends on several factors,
including the size and texture of the study area. Notably, the texture of the area plays a
significant role in the distribution and accuracy of the results.

Feature matching is then performed using SIFT to match the extracted features from the
previous section. SIFT involves comparing the feature descriptors extracted from different
images to find matches. These descriptors provide a unique fingerprint for different parts
of an image, allowing the algorithm to identify the same features even when the viewpoint,
scale, or lighting conditions change. Suitable height values are then extracted from the
digital terrain models for the matched features in the first and second epochs, bringing the
2D features back into 3D space. This stage allows for determining the displacement values
of characteristic object points.

It is important to note that a certain percentage of the matches are incorrect, meaning
that a false match connects two features that do not represent the same point on the object’s
surface. These incorrect matches can interfere with the qualitative and quantitative analysis
of the results. Therefore, another section is required to complete the algorithm.
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The last stage in this research involves the application of a histogram-oriented method
for outlier removal after feature matching. This strategy proves vital in reducing the im-
pact of unusual displacement vectors that could potentially distort data interpretation. A
histogram is generated for each displacement vector and its neighboring vectors. This
procedure is predicated on the hypothesis that displacement vectors within a confined
area should not display substantial fluctuations in their magnitudes and directions. Subse-
quently, the absolute magnitude of each deformation vector is calculated, and a threshold
is defined to separate significant outliers. Vectors with lengths less than or equal to this
specific threshold value are included. The threshold is chosen based on any existing knowl-
edge of the expected movement rates of the object under investigation. In the absence
of such information, a higher threshold value is advocated to ensure the preservation of
accurate matchings. For the Hochvogel, for example, it is known that between 2018 and
2021, the crumbling side of the summit is moving southwards at more than 2 cm per year.
So, for three years, 6 to 8 cm can be expected. However, it can be more significant than what
we expect. For the experiments within the framework of this work, the threshold value is
generously set to 20 cm. This value was selected based on the expected movement rates of
the monitored object. Considering the typical rate of displacement in landslide-prone areas,
this threshold effectively separates significant movements from noise, ensuring accurate
detection while minimizing false positives. For making this process automatic, it is possible
to use the median of the displacement vectors as a trustable source because the number of
significant outliers is not comparable with the total number of vectors.

The direction (both vertical and horizontal) and magnitude of the deformation vectors
are investigated in relation to their neighboring vectors using three separate histograms. If
a vector’s direction deviates significantly from those of its neighboring vectors, that vector
is categorized as an outlier, justifying its removal. This strategy enhances the accuracy of
the results by reducing the adverse effects of outliers. The same procedure is followed
for the magnitudes of deformation vectors. As shown in Figure 6, the process involves
generating histograms for each displacement vector and comparing it with its neighboring
vectors. By doing so, any vector that deviates significantly from the overall pattern can be
identified as an outlier.

In the first histogram (Figure 6a), it is evident that most displacement vectors fall
within the range of 225◦ to 275◦ degrees. Therefore, if a particular vector’s direction is
around 100 degrees, it would be considered an outlier due to its significant deviation from
the prevailing trend. Similarly, in the second histogram (Figure 6b), most displacement
vectors have magnitudes ranging from 2 to 3 cm. Consequently, if a specific vector exhibits
a displacement magnitude of 6 cm, it would be identified as an outlier, once again, due to
its substantial deviation from the typical range of magnitudes observed.

By utilizing this histogram analysis approach for each vector, the proposed method
can effectively detect outliers in the displacement data, aiding in the refinement and im-
provement of the overall accuracy of the estimated displacement. While our methodology
is robust for various terrains, it may have limitations in extremely rugged or densely vege-
tated areas, where laser scanning data might be less accurate. Additionally, the accuracy
of our approach depends on the quality of the initial point cloud data. Any errors or
inconsistencies in these data can propagate through the analysis, affecting the reliability of
the results.
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4. Results

In this section, we evaluated the accuracy of each step and its role in the final accuracy.
Specifically, we examined producing hillshades and the matching processing and histogram
analyses. A key aspect of our approach was the removal of mismatches, which is a common
challenge in conventional monitoring methods. By incorporating histogram analyses, we
sought to filter out these inaccuracies, thereby providing more trustworthy and precise
results. The following results section demonstrates the efficacy of our method in achieving
this goal.

Through a series of meticulous evaluations, we illustrate how our approach effectively
minimizes errors and improves the overall accuracy of landslide monitoring. Each of these
steps plays a crucial role in the final accuracy of the results, and it is important to assess
their individual contributions. By understanding the accuracy of each step, we can identify
areas that need improvement and optimize the entire process for the best possible results.

4.1. Producing Hillshades by Using Point Clouds

As mentioned in the previous section, hillshades are produced by using point clouds
(Figure 7). The effect of hillshade resolution on the final accuracy was evaluated, and a
decrease in accuracy was observed when the hillshade resolution was changed from 3 mm
to 8 mm in the Hochvogel data set. This decrease is attributed to the loss of detail in the
resulting hillshades (Figure 8). By reducing the resolution of the hillshades, as shown in
Figure 9, we lose the detection and accurate location of many features. When the resolution
is halved, the number of features detected using the same algorithm experiences a 75%
reduction. This clearly illustrates the impact of hillshade resolution on spatial resolution.
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Results show a reduction in the spatial resolution for displacement vectors and an
increase in error when comparing the displacement of features and control points. As the
point cloud becomes denser, the hillshades can display more and accurate features, resulting
in improved accuracy in the final results. Therefore, it is crucial to ensure high-quality
and dense point clouds to generate high-resolution hillshades that accurately represent the
terrain features. In the Hochvogel data set, the point cloud from the second epoch is denser
compared to the first epoch. This is why the number of detected features is 20% higher in
this case.

4.2. Matching Process and Histogram Analyses

In this section, the matching algorithm was applied to the data sets. To begin, the
features of hillshades in two epochs were extracted using the KAZE feature detection
algorithm. Then, the matching between the features was performed using the SIFT algo-
rithm. The results of the matching process revealed several incorrect matches, which, if left
uncorrected, would negatively impact the accuracy of landslide detection and subsequent
steps such as prediction and early warning systems. To mitigate these errors, it is crucial to
implement a correction process to ensure the reliability of the results.

In this step, outliers were removed from the matching pairs through an analysis of
their histograms. The results of the histogram analysis on the data set indicate that this
step is critical for achieving accurate monitoring. The deformation monitoring would
be improved by eliminating outliers, which represent the error in the matching process.
According to Table 1, it is clear that the number of outliers in comparison to the whole
displacement vectors is high, and it would definitely affect the final result if these vectors
were not removed. In Figure 10, the positions of these outliers are also shown.

Table 1. Number of total displacement arrows and percentage of outliers.

Data Set Displacement Vectors Outliers Percentage of Outliers

Laboratory 138 36 26.1%
Hochvogel 1068 169 15.8%

Hohe Tauern 1220 322 26.4%
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4.3. Accuracy Assessment

In order to assess the accuracy of the proposed method, the first data set generated in
a laboratory was utilized to measure soil displacement. The displacement was measured in
two distinct directions and then compared to the magnitude calculated using the proposed
method. For measuring the applied displacement, two targets, which were automatically
detected by the P50 laser scanner, were set on both sides of the data set (Figure 1). Dis-
placement was then applied to the surfaces where the targets were set. The coordinates of
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the targets were captured both before and after applying this displacement. The shift that
was applied to the data set is 17.1 mm to the right and a 13.9 mm shift to the left. Table 2
displays the various points that were detected and their corresponding movements, which
were calculated using the proposed method.

Table 2. Comparison of displacement in sample points and the area.

Point
Number

Detected
Displacement

(mm)
Direction

The Difference with the
Applied Displacement

(mm)

The Ratio of Error
to Magnitude

1 16.2 Right 0.9 5.2%
2 16.3 Right 0.8 4.6%
3 16.9 Right 1.1 6.4%
4 16.6 Right 0.5 2.9%
5 13.4 Left 0.6 4.3%
6 13.0 Left 1.0 7.1%
7 13.3 Left 0.6 4.3%

The results of this evaluation are presented in Table 2. It shows the detected displace-
ment for each point in the data set, along with the direction of the displacement. The
calculated displacements are then compared to the applied displacements. From the table,
it is evident that the proposed method shows differences between the detected and applied
displacements ranging from 0.5 mm to 1.1 mm.

Several analyses were performed on the Hochvogel data set. Firstly, the accuracy of
displacement arrows was compared with several points monitored by a total station. The
average displacement detected in this data set was 2.6 cm with a standard deviation of
3.5 mm. By comparing the achieved accuracy with the accuracy obtained using the point-
wise method in [24], it was found that the same level of accuracy was attained through
histogram analysis at a higher resolution, which was one of the goals of this research.

The accuracy of the third data set (Hohe Tauern) was evaluated by comparing the
displacement arrows extracted using the aforementioned method with those calculated
using a total station at several checkpoints. The results indicate that the estimated vectors
had a suitable level of accuracy (less than 10 mm). However, a large number of outliers
were detected, necessitating further analysis using histogram analysis to refine the results.

5. Discussion

Based on the results of all the data sets, it is evident that utilizing the feature-based
method for matching point clouds from different epochs enables the high spatial resolution
of specific areas, which is useful for monitoring landslides through the prediction and early
warning system. While it requires some necessary corrections, particularly in terms of
feature matching, utilizing histogram analyses removes outliers and mismatches, thereby
providing more trustworthy results, as shown in Figure 8. Additionally, this strategy helps
maintain a proper distribution of vectors throughout the study areas, which is critical
for effective monitoring and also leads to acceptable accuracy. To ensure the accuracy
and quality of the results, we applied this method to three distinct data sets that varied
in terms of land texture, area size, type of movement, and density of point clouds. The
achieved accuracy in our data set ranged between 1 and 10 mm, which was influenced
by the differences in the quality of the data sets. The laboratory data set resulted in the
most accurate measurements as there were no errors in georeferencing, and a high-density
point cloud was used due to the relatively small size of the data set. The accuracy of
data sets is directly dependent on the degree of displacement, point cloud density in both
epochs, the texture of the study area, type of movement, and the georeferencing process.
For example, reducing the point cloud density by thirty percent and employing KAZE
for feature extraction along with SIFT for feature matching resulted in a fifty percent
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decrease in the number of detected displacement vectors, underscoring the significance of
this parameter.

Notably, some thresholds in the histogram analysis method should be defined depend-
ing on the area. For instance, if there were a large number of the detected features in the
region, the number of neighbors that would be considered for each arrow could be higher
than in the situation where the detected features are less and have a more considerable
distance from each other. This threshold will affect the computation time and resources
required for this process. Conversely, when eliminating apparent outliers prior to conduct-
ing histogram analyses, it is essential to set thresholds for displacement vector magnitudes
based on the specific movements of the area under study. For instance, in an area with an
average displacement of 5 cm per year, thresholds should be set at least three to four times
greater than this average to prevent the inadvertent classification of genuine displacement
vectors as outliers.

As described in Section 4, we applied the proposed process to three different data
sets that varied significantly in terms of the time between epochs, distance, and scanning
quality. We did this to develop a general algorithm that can be used on various data sets
in the future for predicting the behavior of landslides. We also used a laboratory data
set to precisely monitor the accuracy of this method, which was successful. By using
this data set, we were able to measure the displacement that was applied to the data set
before using the method. Consequently, we regard it as an appropriate means to assess the
method’s accuracy.

It is crucial to consider that the accuracy of the georeferencing and matching process
can significantly impact the overall accuracy of the project. For example, In the second data
set, the inclusion of the georeferencing process impacted the final accuracy, introducing
errors approximately 2 mm in magnitude due to complexities encountered during this stage.
Moreover, the point cloud density produced by the laser scanner can influence the accuracy
and level of detail in the hillshade, which serves as the foundation for feature extraction
in this method. SIFT is specifically designed to match key points between images with
subpixel accuracy, and the pixel size directly depends on the point cloud density. Hence,
the point cloud density and the laser scanner’s accuracy are critical factors in achieving
reasonable final accuracy.

While the method has proven effective across three distinct data sets, it faces chal-
lenges in certain conditions and terrains. Dense vegetation, for instance, can impede the
identification of key surface points. Moreover, the method’s reliance on feature extraction
means that the proximity of the laser scanner to the targeted area significantly influences
the level of detail captured. Consequently, greater distances between the scanner and the
area pose additional challenges to the method’s effectiveness. The efficacy of this method
has been validated for data sets collected within a 300 m range; however, its applicability
to greater distances remains untested.

6. Conclusions and Outlook

In this research, we developed a method for monitoring landslides with high res-
olution and removing outliers, which has a significant impact on accuracy and future
improvements. By using this method, we were able to achieve trustworthy and accurate
results in monitoring landslides with terrestrial laser scanners. This accuracy could be
between 1 to several mm depending on the quality of the data set and conditions. The
findings of this study have the potential to greatly improve our understanding of landslides
and the methods used to monitor them. The results demonstrate the benefits of using high
spatial resolution techniques to monitor landslides. The georeferencing process, hillshade
creation, matching process, and histogram analyses conducted as part of the study provide
a comprehensive examination of the data sets used. The results of these analyses give a
clear picture of the behavior of the landslides and provide insights into the key factors
that contribute to their development and evolution. The information gathered from this
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study can be used to develop more effective landslide monitoring strategies and to better
understand the mechanisms driving landslide behavior.

One of the weaknesses of this method that could be improved in the future is its
complete reliance on feature extraction, which makes it difficult to extract features in areas
with smooth transitions. To overcome this limitation, larger areas could be utilized with the
aid of aerial and satellite images to extract additional features from larger areas by employ-
ing various image processing techniques, we can enhance the utility of UAV and satellite
imagery for large-scale movement detection. It is important to consider, however, that these
methods may not capture details as precisely as laser scanners. Moreover, this method is
a practical system for monitoring landslides that have already occurred. Implementing
real-time landslide prediction systems presents several key challenges. These include the
need for accurate and comprehensive data collection, the deployment and maintenance
of sensor networks in often rugged terrain, and the requirement for sophisticated data
processing capabilities. By utilizing the results of this method and incorporating additional
elements, such as real-time data collection and analysis, this system could be adapted for
predicting landslides in the future, which would be the ultimate goal. Predictive capabilities
would enable more effective planning and mitigation efforts and potentially save lives and
property. This research is part of a project aimed at monitoring landslides in an area near
the railway, known for its history of landslides. The goal of this project is to enhance an
early warning system that assists trains passing through this area by providing information
on whether the rail track is at risk of being blocked.
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