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Abstract: In September 2011, Zhuonai Lake (ZL) in the northeast of Hoh Xil (HX) on the Qinghai–
Tibet Plateau (QTP) broke out. The outburst event seriously changed the environmental hydraulics
in this region. Due to the insufficient temporal resolution of observations, it is challenging to assess
the impact of this event on short-period variations of water volumes in three lakes downstream of
ZL. Combining multisource remote sensing data, we constructed long and high-temporal-resolution
time series for the lake level, area, and lake water storage (LWS) of Kusai Lake (KL) to characterize
the variabilities before and after the outburst. The water level, area, and LWS time series contain
1051 samples from 1990 to 2022, with uncertainties of 0.16 m, 2.5 km2, and 0.016 km3, respectively. The
accuracies verified using the Database for Hydrological Time Series of Inland Waters (DAHITI) are
0.26 m, 2.64 km2, and 0.08 km3 for water level, area, and LWS, respectively. We characterized the LWS
variations during the past 30 years based on the high temporal resolution LWS time series. Before the
outburst, the 1-year and 3.5-year variations dominated the LWS time series, and there was no obvious
semi-annual signal. After the outburst, the 3.5-year variation disappeared, and a strong semi-annual
oscillation was observed. From 2012 to 2015, the periodic LWS variations in KL were disturbed by the
ZL outburst and the subsequent outflow of KL led by the outburst. Regular cyclic signals have been
restored since 2016, with an amplified annual fluctuation. By analysis, precipitation, evaporation,
and glacier area change are excluded as driving factors of the pattern change in LWS variations of
KL. It can be concluded that the altered recharge pattern of KL triggered by the outburst directly
resulted in the observed changes in TWS behavior. For the first time, we identified the periodic
patterns of LWS variations of KL during the past 30 years and revealed that the ZL outburst event
significantly influenced these patterns. This finding contributes to the comprehensive understanding
of the effects of the ZL outburst on downstream lake dynamics. Furthermore, the presented procedure
for constructing long and high-resolution time series of LWS allows for monitoring and characterizing
the short-period variabilities of Tibetan lakes that lack hydrological data.

Keywords: Kusai Lake; outburst; satellite altimetry; Landsat images; lake water storage

1. Introduction

In the context of warming and increasing humidity in the Qinghai–Tibetan Plateau
(QTP), several notable changes have been observed, including heightened precipitation,
reduced evaporation, and intensified glacier melting [1–3]. Over the past three decades,
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lakes on the QTP have generally experienced a significant expansion [4,5]. In particular,
numerous lakes in the northern region of the plateau have witnessed substantial increases in
water level, resulting in a high potential risk of geological hazards [6]. In September 2011, a
rare lake outburst occurred over Zhuonai Lake (ZL) in the northeastern Hoh Xil (HX) basin.
This event significantly altered the hydrological conditions and the ecological environment
of the Zhuonai Lake–Salt Lake (ZL–SL) basin, consisting of ZL, Kusai Lake (KL), Haiding
Nor (HN), and SL. Overflow floods threaten downstream national infrastructure, such as
railroads, highways, and optical cables [7–9]. It is also the first large-scale lake outburst
phenomenon observed in the QTP by satellite technology and a typical case of natural
disaster triggered by climate change on the QTP. Therefore, the impact of the outburst has
received widespread attention from both the public and the scientific community [10–12].

Studies concerning the ZL outburst event primarily relied on remote sensing technolo-
gies, such as satellite imagery and satellite altimetry. The former can be used to extract
changes in the lake area, while the latter can monitor changes in lake level. Based on
satellite images, a sudden decrease in the area of ZL and a subsequent rapid increase in
that of KL were observed due to the outburst in September 2011 [13,14]. Correspondingly,
a remarkable rise in the water level in KL was also detected using satellite altimetry [15,16].
By integrating the two techniques, lake volume changes in the ZL–SL basin were esti-
mated. For example, Hwang et al. assessed lake volume changes in ZL, KL, and SL using
two Landsat-7 images in order to validate results from altimetry data [17]. Aided by the
densified water level series, Li et al. computed lake storage changes in the three lakes,
demonstrating the possibility for lake overflow flood monitoring [18].

At present, the main challenge in monitoring lake changes on the QTP is the insufficient
resolution of satellite observations. Satellite altimetry can provide a minimum revisit period
of about 10 days, but the large cross-track distance results in sparse coverage. For lakes on
the QTP, even if a satellite track passes through, the rugged terrain around lakes may pre-
vent altimeters from locking echoes and obtaining effective observations [19,20]. In order to
retrieve more accurate altimetry data over nearshore and inland waters, numerous efforts
have been made, such as data editing [21], optimizing geophysical corrections [22,23], wave-
form modification, and retracking [24–26]. While these efforts can enhance the quantity
and quality of data to some extent, it remains challenging to fully address the limitations of
satellite mission configuration. The shortage of remote sensing imagery for extracting lake
areas on the QTP can be attributed to several factors. Remote sensing imagery is susceptible
to cloud cover. Although many methods have been developed to extract lake boundaries
from cloud-obscured images [27–29], the presence of high mountains and extensive cloud
cover in plateau regions hinder the acquisition of clear and uninterrupted imagery, causing
limited coverage and availability of suitable images for lake boundary extraction [30,31].
The temporal resolution of the remote sensing data may also pose a limitation. Regular and
frequent satellite acquisitions are necessary to monitor dynamic changes in lake boundaries.
However, the availability of consistent and continuous temporal sampling can be limited,
making it difficult to capture detailed features of lake area variations, such as seasonal and
annual fluctuations. Therefore, most current studies focus on detecting abrupt changes
corresponding to the outburst and long-term trends in the ZL–SL basin [32].

The fusion of multisource data is an effective way to improve temporal resolution.
Li et al. constructed high temporal resolution water level and storage change data sets
for 52 large lakes on the Tibetan Plateau from 2000 to 2017 using multiple altimetric
missions and Landsat-derived lake shoreline positions [33]. By establishing the relationship
between water level and area, they generated a time series of lake water storage (LWS)
with temporal resolution ranging from one week to one month. Combined with Cryosat-2
data and Landsat images, Wang et al. determined the monthly time series of LWS from
2009 to 2016 for four lakes in the ZL–SL basin, revealing the impact of the outburst on the
hydrological system [34]. These studies showcase the potential for monitoring short-period
dynamic changes of lakes in the QTP.
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This study aims to explore the influence of the 2011 outburst event on the local
hydrological environment in the ZL–SL basin. A procedure for constructing a time series
of LWS is presented by combining satellite altimetry data, satellite images, and a digital
elevation model (DEM). We focused on KL, which has much better conditions than the
other three lakes in the ZL–SL basin, to investigate the LWS time series before and after
the outburst. Several altimetry missions, such as the Jason family, ERS (European Remote
Sensing Satellite) family, ICESat (Ice, Cloud, and land Elevation Satellite), and Cryosat-2,
have been tracked over KL, providing lake-level observations since the 1990s. Landsat
satellites have captured two scenes covering KL (Path 137/Row 035 and Path 138/Row
035). The abundance of satellite observations presents an opportunity to comprehensively
characterize the variations in KL’s water storage, thus enhancing our understanding of the
impact of the 2011 outburst event. The paper is structured as follows: Section 2 provides
an overview of the study area and the data sources. Section 3 explains the procedures and
methods used for data processing and the construction of high-resolution LWS time series.
In Section 4, the results are presented and validated. Section 5 discusses the characteristics
of LWS changes (∆LWS) in KL and examines the influence of the outburst event. Finally,
the conclusions are summarized in Section 6.

2. Materials
2.1. Study Area

KL (35.5◦N–35.8◦N, 92.5◦E–93.25◦E), located in the northeastern part of the Hoh Xil
National Nature Reserve in the central QTP, is a typical plateau closed lake predominantly
fed by precipitation and snowmelt, with evaporation serving as the primary mechanism for
water loss. It is the largest subbasin in the ZL–SL basin, with a catchment area of 4132 km2,
as depicted in Figure 1. Within the KL basin, an estimated area of 10–15 km2 is covered
by mountain glaciers. The region has a cold and arid climate, with an annual average
precipitation of 294.2 mm and an annual average temperature of −4.2 ◦C [35]. The water
level and area of KL obtained using satellite technology in 2000 were ~4477 m and ~260 km2,
respectively, which experience seasonal fluctuations due to the distinct wet and dry seasons.
The lake plays a critical role in maintaining the fragile ecosystem of the Reserve. The
outburst of ZL in 2011 has fundamentally altered the water balance of KL, causing it to
receive water from ZL and release excess water into downstream lakes [36]. Since 2012, the
lake has covered more than 320 km2. Given its remote location and ecological significance,
KL offers an intriguing research area to study the hydrological dynamics, water storage
variations, and the impact of climate changes on this pristine alpine lake ecosystem.
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2.2. Data
2.2.1. Satellite Altimeter Data

The altimeter data used in this study were obtained from the Jason family satellites
and ERS-2 (European Remote Sensing Satellite-2). Table 1 provides selected information
about these satellites. The Jason family satellites, including Jason-1, Jason-2, and Jason-
3, have been providing continuous observation with a repeat cycle of 9.91 days from
February 2002 to the present. The ERS-2 satellite was an altimetry mission launched
by the European Space Agency (ESA) in April 1995. ERS-2 operated on a 35-day orbit
cycle, enabling it to cover a wide range of global locations. It provided valuable data for
monitoring lake-level changes on the QTP. As illustrated in Figure 1, Jason-1/2/3 has one
track, and ERS-2 has two tracks flying over KL. This study utilizes Sensor Geophysical Data
Record (SGDR) products, which enable customized waveform retracking to retrieve more
accurate lake levels. Jason-1/2/3 data were downloaded from the French Space Agency
AVISO (ftp://ftp-access.aviso.altimetry.fr, accessed on 13 May 2022), and ERS-2 data were
downloaded from the ESA ftp site (ftp://ra-ftp-ds.eo.esa.int, accessed on 28 August 2016).

Table 1. Information on satellite altimeter data used in this study.

Satellite Altimeter Along-Track
Resolution (20 Hz) Repeat Cycle Time Span Available Cycles

ERS-2 RA-1 330 m 35 d
May

1995–February
2003

78

Jason-1 Poseidon-2 290 m 9.91 d February
2002–April 2011 100

Jason-2 Poseidon-3 290 m 9.91 d October 2008–May
2017 186

Jason-3 Poseidon-3B 290 m 9.91 d March 2016–April
2022 208

2.2.2. Remote Sensing Images

Remote sensing images with a spatial resolution of 30 m from Landsat-5/7/8 were
used to extract the lake area of KL. These images were obtained from the United States
Geological Survey (USGS) via https://earthexplorer.usgs.gov (accessed on 31 August
2022). Images with cloud cover exceeding 20% were excluded, and those with water body
boundaries that were difficult to interpret accurately were also removed. Ultimately, we
acquired 684 usable Landsat images from 1990 to 2022, as outlined in Table 2.

Table 2. Overview of Landsat family remote sensing images utilized in this paper.

Satellite Spatial Resolution Repeat Cycle Band Time Span No. of Images

Landsat-5 30 m 16 d Green\NIR(Band2\Band4) January 1990–October
2011 275

Landsat-7 30 m 16 d Green\NIR(Band2\Band4) September
1999–August 2021 275

Landsat-8 30 m 16 d Green\NIR(Band3\Band5) May 2013–November
2021 134

2.2.3. Topographic Data

Comprehensive topographic data are required to establish the lake level and area
relationship. We integrated surface topography and underwater topography to ensure
the relationship encompasses the entire KL basin. Surface topography data were derived
from the Shuttle Radar Topography Mission (SRTM) with a 1′′ resolution, sourced from
the United States Geological Survey (USGS) via https://earthexplorer.usgs.gov/ (accessed
on 31 August 2022). The accuracy of SRTM in the QTP is far better than the nominal

ftp://ftp-access.aviso.altimetry.fr
ftp://ra-ftp-ds.eo.esa.int
https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov/
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accuracy, up to 3.33 m in some flat regions [37]. KL had a lake level of 4475 m and an area of
259.48 km2 as determined by SRTM data, which were originally collected from 11 February
2000 to 22 February 2000 [38]. This result is highly consistent with the lake level and area
derived from satellite altimetry and remote sensing images during the same period [34].
It is indicated that the water level and area data obtained from SRTM are reliable [39].
The underwater topography is obtained by digitizing the bathymetric map with a contour
interval of 5 m, which is published in reference [40].

2.2.4. Ancillary Data

The precipitation and evaporation data from Wudaoliang (93.05◦E, 35.13◦N), the
nearest meteorological station available, were utilized to discuss the LWS variations. Daily
datasets covering the period from 1990 to 2017 were sourced from the China Meteorological
Data Sharing Network at http://data.cma.cn (accessed on 31 December 2020). Additionally,
glacier area data within the KL basin were obtained using the Normalized Difference Snow
Index (NDSI) applied to Landsat images.

3. Methods

The technical workflow of this study is illustrated in Figure 2. Firstly, we derived lake
areas and levels of KL from Landsat images and satellite altimeter data. A discrete lake
level-area (LA) curve was constructed based on topographic data and calibrated using
reliable satellite observations. Secondly, armed with the corrected LA curve, we conducted
mutual interpolation between satellite-derived lake levels and areas to densify each other.
Finally, a high temporal resolution LWS time series for KL was determined using densified
level and area datasets. Results were validated by crosschecking with independent water
level datasets published internationally.
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3.1. Monitoring Lake Changes Based on Satellite Technology
3.1.1. Estimation of Lake Areas from Landsat Images

In this study, the Normalized Difference Water Index (NDWI) was selected as the
method to extract the lake water boundaries from the Landsat images. The NDWI is
widely used to normalize specific bands of the Landsat images and is applied to distinguish

http://data.cma.cn
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between land and water bodies with appropriate thresholds [41]. The calculation formula
for NDWI is as follows:

NDWI = (NIR − G)/(NIR + G) (1)

where NIR represents the reflectance of the near-infrared band (band 4 for TM/ETM+, band
5 for OLI/TIRS), and G represents the reflectance of the green band (band 2 for TM/ETM+,
band 3 for OLI/TIRS).

For the estimation of the lake area, we used the ArcGIS10.8 software to process the
Landsat images. Firstly, images with cloud coverage exceeding 20% were filtered out.
Secondly, NDWIs were calculated based on the reflectance values of the green and near-
infrared bands using the “Raster Calculator” tool in ArcGIS. Thirdly, the threshold method
extracted the water body and its boundary [42]. Pixels with NDWI greater than 0 were
marked as water bodies, and pixels with NDWI less than 0 were marked as land. To
minimize possible misclassification errors, the extracted lake boundary was manually
edited by visual comparison with the original image. Finally, based on the delineated
lake boundary, the lake area was obtained using the “Calculate Geometry” tool in the
ArcGIS software.

The uncertainty of the estimated lake area can be evaluated using a buffer method
with a buffer size of half a pixel [43]. That is, the accuracy of the lake area was obtained by
multiplying the total number of margin pixels by half of the pixel area.

3.1.2. Extraction of Lake Levels from Altimeter Data

Considering the variation of lake extent, we extracted altimeter data over the lake
for each cycle using the lake boundary derived from the Landsat images closest to the
observation time of altimetry. A 20% threshold retracker was applied to waveforms.
This retracking method is suitable for retrieving more accurate altimeter measurements
over seasonally ice-covered lakes [20,44]. Various geophysical corrections are required to
derive water level, including atmospheric path delay, solid earth tide, and geoidal gradient
correction [22]. To keep tropospheric delay corrections consistent across satellite missions,
these corrections should be recalculated using the same climate model [20,45]. This study
recalculated the dry and wet troposphere corrections using the most recent climate dataset,
ECMWF (European Centre for Medium-Range Weather Forecasts) Reanalysis v5 (ERA5).
ERA5 is the fifth generation ECMWF atmospheric reanalysis, produced by the Copernicus
Climate Change Service (C3S) at ECMWF [46]. Geoidal gradient corrections were computed
using the EGM2008 model. The geoid heights range from −43.98 to −43.42 m. Hence,
the effect of the geoidal gradient can reach several decimeters. Other corrections were
obtained from SGDR. After correcting for geophysical effects, a robust two-step procedure
is employed to estimate the mean lake levels for each cycle. In the first step, the moving
Median Absolute Deviation (MAD) filtering is applied to all observations for all cycles,
which can effectively remove large outliers in terms of long-time trend change. In the
second step, a two-sigma (standard deviation) criterion is recurrently performed to delete
outliers cycle by cycle. For detailed information about the two-step procedure, please refer
to the publication cited as [20]. The difference between reference ellipsoids of the Jason
family and ERS-2 is considered. Deviations between satellite missions also need to be
corrected. These deviations were determined using observations in the overlapping period
between each two consecutive satellite missions [20].

3.2. Construction of Lake Water Level-Area (LA) Curve

The LA curve is important to bridge lake levels by altimetry and areas by satellite
imagery. We used SRTM data to extract contour lines within the lake basin, with a contour
interval of 1 m and elevations higher than the lake surface. The area values corresponding
to these contours were computed to create data pairs, representing the relationship between
area and lake level. That is the LA curve above the lake surface derived from SRTM.
In order to eliminate the inconsistency of the elevation datum and possible systematic
deviation between SRTM and satellite altimetry observations, the SRTM-derived LA curve
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should be calibrated using concurrent observations from altimetry and Landsat imagery.
The altimeter-derived level and Landsat-derived area observed in a day were paired for
the calibration. After calibration, the LA curve for the whole lake basin was obtained by
supplementing the bathymetric data.

The LA curve for KL is shown in Figure 3. The black line in Figure 3a represents the
SRTM-derived LA curve. The red points represent 51 data pairs obtained from the Jason-2
satellite and Landsat imagery. The bias in elevation is 0.707 m, which can be attributed to
the difference between the ellipsoids used for SRTM and Jason satellites, respectively [47].
The blue line in Figure 3a illustrates the calibrated LA curve. The green line in Figure 3b is
the complete LA curve of KL obtained by combining the SRTM and bathymetric data.
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3.3. Interpolation between Lake Level and Area

Since the operating times of altimetry satellites and Landsat satellites may not align
perfectly, we conducted mutual interpolation of water level and area using the LA curve.
This interpolation helped compensate for data gaps arising from the different operational
periods of these satellite technologies. The calculation formula is as follows: A∗ = Ai−1 + (Ai − Ai−1)

HS−Hi−1
Hi−Hi−1

H∗ = Hi−1 + (Hi − Hi−1)
AS−Ai−1
Ai−Ai−1

(2)

In Equation (2), HS and AS are the lake water level and area obtained from satellite
technology, while Ai and Hi represent the LA curve’s water level and area values. The
subscript i is the number of the first value larger than HS or AS. A* and H* denote the
interpolated area and water level values corresponding to HS and AS obtained by linear
interpolation through the LA curve.

3.4. Computation of Lake Water Storage (LWS)

The relative LWS is calculated using the following formula [48].

∆LWS =
1
3
(H1 − H0)×

(
A1 + A0 +

√
A1 A0

)
(3)

where H0 and H1 are the water levels at epochs t0 and t1, A0 and A1 are the corresponding
areas, and ∆LWS is the LWS change between the two epochs.
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The uncertainty of the estimated ∆LWS can be assessed using the law of error propa-
gation as follows [49].

σ∆LWS =
1
6

√
σ2

H0

(
∂∆LWS

∂H0

)2
+ σ2

H1

(
∂∆LWS

∂H1

)2
+ σ2

A0

(
∂∆LWS

∂A0

)2
+ σ2

A1

(
∂∆LWS

∂A1

)2
(4)

where σHi is the uncertainty of altimetric water level, which can be evaluated using the
standard deviation of altimeter data in each cycle and σAi is the uncertainty of the Landsat-
derived area.

4. Results and Validations

Using the procedure and methods described in Section 3, we built a dataset containing
the lake area, water level, and LWS of KL spanning 32 years, based on altimeter data
(Jason-1/2/3 and ERS-2), Landsat-5/7/8 images, and topographic data. The results are
presented and validated in this section. As no available in situ measurements exist, three
previously published datasets are selected as independent validation data. The first dataset,
derived from Liao et al., comprises lake levels obtained using multi-altimeter data from
2002 to 2016 [50]. The second is the water level time series retrieved from the Database for
Hydrological Time Series of Inland Water (DAHITI), developed by the Deutsches Geodätis-
ches Forschungsinstitut der Technischen Universität München (DGFI-TUM). The water
level time series in DAHITI was also derived from multi-mission satellite altimetry [51].
Lastly, Li et al. [33] developed the third dataset, which provides densified water levels and
LWS by combining altimetry and optical remote sensing imagery. Table 3 gives a summary
of these datasets. Water levels from these datasets were converted into area values using
Equation (2) based on the LA curve to validate the lake area. LWS can be calculated directly
from water levels using Equations (2) and (3). The specific details are described as follows.

Table 3. Datasets used for the validation of results in this study.

Literature Dataset Data Source Time Range Density of Data

This study Level/Area/LWS ERS-2, Jason-1/2/3,
Landsat-5/7/8 January 1990–December 2021 35.7/y

Liao et al. (2018) [50] Level/-/- Envisat, Jason-2, Cryosat-2 August 2002–January 2017 10.6/y

DAHITI [51] Level/-/- Jason-2/3, Saral,
Sentinel-3A October 2008–August 2022 27.6/y

Li et al. (2019) [33] Level/-/LWS Envisat, Jason-1/2/3,
ICESat, Cryosat-2 February 2000–June 2018 38.8/y

4.1. Lake Area

A total of 668 images from 1990 to 2021 from Landsat-5/7/8 were interpreted using
the NDWI to derive the lake area of KL. Out of these, 16 images were excluded due to
striping errors and cloud cover that prevented the extraction of complete lake boundaries.
As a result, we obtained 652 valid area values, as depicted in Figure 4a. To evaluate the
accuracy of our results, three methods were employed.

Firstly, buffer analysis with half a pixel buffer size was conducted to estimate the
uncertainty [43]. The uncertainties of the lake areas were about 1.7 km2 for Landsat-5,
1.9 km2 for Landsat-7, and 2.5 km2 for Landsat-8, respectively. It indicates that the relative
errors of the lake areas derived from Landsat images are all less than 0.8%.

Secondly, we compared the lake areas interpreted from images during the overlapping
periods of two adjacent satellites, as shown in Figure 4b,c. The correlation between lake
areas interpreted from Landsat-5 and Landsat-7 was 0.99, with a standard deviation (STD)
of 1.17 km2. Similarly, for Landsat-7 and Landsat-8, the correlation was 0.88, with a
corresponding STD of 1.11 km2. These findings affirm the relative stability and high
consistency of results obtained from Landsat missions.
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Thirdly, we compared our results with independent validation datasets given in
Table 3. The comparison is demonstrated in Figure 5. It can be seen that our results agree
best with those from DAHITI, with an STD of 2.64 km2. Compared with Li et al. [33] and
Liao et al. [50], the STDs were 4.64 km2 and 4.98 km2, respectively. The relative errors
between these datasets were less than 1.4%, and the correlations were close to 1.
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(b) DAHITI [51], and (c) Li et al. [33].

The above evaluation results imply that this study’s lake area time series is reliable. The
STDs obtained from the third method are slightly larger than the first two. This discrepancy
can be attributed to errors in the validation datasets used and potential conversion errors
resulting from the LA curve.



Remote Sens. 2024, 16, 128 10 of 20

4.2. Lake Level

Lake levels of KL, retrieved from satellite data, are presented in Figure 6. Using
multi-altimeter data, a total of 476 lake levels were obtained from May 1995 to April 2022.
Figure 6a shows that the altimeter-derived lake level time series is highly correlated with
the Landsat-derived lake area time series. The uncertainties of lake levels are 35 cm for
ERS-2 and 14 cm, 13 cm, and 7 cm for Jason-1/2/3, respectively, in terms of the root mean
square error (RMSE) [52]. Adjustments were made to the biases of ERS-2, Jason-1, and
Jason-3, using Jason-2 data as the reference, resulting in biases of 2.60 m, 0.05 m, and
0.55 m, respectively.
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Figure 6. Comparison of the lake level time series of KL. (a) Altimeter-derived levels and Landsat-
derived areas, (b) fused lake level time series from this study (green line) and three datasets (colored
dots) for validation, and (c–e) comparison with Liao et al. [50], DAHITI [51] and Li et al. [33], respectively.

Based on the LA curve, the Landsat-derived areas and the altimeter-derived levels
were fused to construct an extended and densified lake level time series with 1051 samples
from January 1990 to April 2022. The fused lake level time series is illustrated as the green
line in Figure 6b, accompanied by three validation datasets in Table 3. Figure 6c–e shows
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the comparison between our result and the validation datasets. Similar to the area, our
result is the most consistent with DAHITI (red dots), with an STD of 26 cm. The STDs with
respect to Liao et al. [50] and Li et al. [33] are much larger. As shown in Figure 6b, the lake
levels from Liao et al. (orange dots) and Li et al. (blue dots) are apparently noisy compared
to DAHITI. However, the correlation coefficients between our result and the three datasets
are all 0.99.

The integration of altimetry data and imagery data efficiently improved the temporal
resolution of observations by making up for data gaps that might exist when using a single
technique alone. The improvement of temporal resolution, which will be further discussed
in the next section, provided a more accurate and comprehensive understanding of the
short-term phenomenon and abrupt changes. A good example is the determination of
the date of the ZL outburst. In September 2011, the satellite altimetry observed three
consecutive water levels over KL: 4480.86 m on 1 September, 4481.01 m on 11 September,
and 4488.1 m on 21 September. It indicates that the water lake of KL did not show significant
changes before 11 September, whilst there was a rapid and dramatic increase in water level
between 11 and 12 September. This rapid and dramatic rise during this specific time period
suggests a significant event or factor influencing the water level of KL during that time.
Satellite imagery revealed that the area of KL was 286.64 km2 on 5 August, 294.94 km2

on 14 September, and 344.12 km2 on 31 October, respectively, which implies an abnormal
expansion in the area occurred before 14 September. Combining results from both satellite
observations, it can be inferred that KL received overflow water from ZL between 11 and
14 September 2011. This conclusion drastically narrows down the estimated time range for
the outburst of ZL [6,7].

Furthermore, it is worth noting that there was a lack of remote sensing data over Lake
KL for 153 days from 26 May to 26 October 2012. During this period, multiple altimetry
satellites filled the data gap of satellite imagery with nine observations and effectively
detected a bump in water level.

4.3. The LWS Time Series of the KL

Combining the mutual interpolations of altimeter-derived water levels and Landsat-
derived lake areas, the ∆LWS were computed using Equation (3). The LWS time series of
KL was constructed by cumulating ∆LWS, which contained 1051 samples from 22 January
1990 to 3 April 2022. Hence, the LWS is relative to the 22 January 1990 LWS. The average
uncertainty of these LWS values is 0.016 km3, estimated by Equation (4).

To evaluate the improvement in resolution after the fusion of two types of satellite
observations, we counted the number and interval of samples for each time series from
24 July 1995 to 3 November 2021, when both satellite altimetry and satellite imagery had
data coverage. The results are presented in Table 4. Although there was still a 65-day data
gap in the LWS time series after the fusion, the average interval had decreased to about
9 days from 16.49 days for the Landsat-derived area time series and 20.47 days for the
altimeter-derived level time series. During this period, the data density of the LWS time
series is 40/y, which is higher than those of previously published datasets in Table 3.

Table 4. Sampling Intervals of the Landsat-Derived Area, Altimeter-Derived Level, and LWS Time
Series of KL during 24 July 1995–3 November 2021.

No. of Samples Average Interval Min Interval Max Interval

Landsat-derived area 582 16.49 d 1 d 153 d (26 May 2012–26 October 2012)
Altimeter-derived level 469 20.47 d 2.38 d 175 d (8 January 2001–2 July 2001)

LWS 1051 9.13 d 1 d 65 d (11 August 2008–15 October 2008)

Figure 7a gives several time series of the LWS of KL from different sources. The
LWS time series constructed in this study (hereafter referred to as LWS1) is represented
as the black line with blue dots, spanning from 1990 to 2022. The green dots denote the
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LWS calculated using water levels from DAHITI, and the purple dots represent the LWS
obtained by Li et al. [33]. The comparisons between them are illustrated in Figure 7b,c.
The correlation is 0.99 in both cases, indicating good consistency between these results.
However, it is evident that the LWS obtained in this study and from DAHITI show a closer
agreement compared to the LWS provided by Li et al., which exhibits larger oscillations.
The STD between LWS1 and DAHITI is 0.08 km3, and 0.26 km3 between LWS1 and Li et al.
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LWS1 reveals three distinctive stages in water volume change for KL. Before 2000, the
lake water volume remained relatively stable LWS. A pronounced increase was observed
after 2001 until the outburst occurred in ZL in September 2011. Then, the LWS started to
decrease in November 2011. It can be found that the LWS rapidly increased by 2.76 km3

in September 2011 and decreased by 0.53 km3 in October 2011. In a normal year, the
average variation in September and October was about 0.01 km3 and 0.02 km3, respectively,
estimated from 1990 to 2010. These two abnormal water volume changes corresponded to
the outburst of ZL and the overflow of KL, respectively [7,9]. To facilitate further analysis,
we developed a new LWS time series by removing the abrupt rise due to the outburst in
September 2011, which is denoted as LWS2, and demonstrated using the line with red dots
in Figure 7a.

The impact of the outburst on the trend of the LWS time series of KL is obvious. Before
the outburst, the LWS change trend was observed to be 0.038 km3/y, consistent with the
trends observed in other lakes in the HX region [53]. However, after the outburst, the trend
shifted to −0.04 km3/y, which is notably different from the surrounding lakes [6].

5. Discussion
5.1. Periodic Variations of the LWS of KL before and after the Outburst

As mentioned previously, the outburst event in ZL significantly impacted the trend
of KL’s LWS. To analyze the potential changes in periodic LWS variations caused by the
outburst, wavelet and Fourier analyses were conducted on the LWS2 dataset, in which
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the abrupt signal was eliminated. These analytical techniques allow for the identification
and characterization of periodic variations in time series [19,20,54]. The results of these
analyses can provide insights into any changes or disruptions in the periodic patterns of
LWS variations following the outburst event.

The wavelet analysis was performed using the wavelet toolbox provided in MATLAB
software (Version R2017a). The continuous wavelet transform ‘CWT’ was applied to the
LWS time series. In this study, we chose the Morlet as the analytic wavelet, widely used in
geophysical data analysis [19]. The CWT coefficients and wavelet spectra are presented in
Figures 8 and 9 for the LWS time series before and after the outburst, respectively. Before
the outburst, there were three obvious periodic signals in the LWS time series. Among these
signals, the dominant one was the annual signal, followed by an approximately 3.5-year
signal. The amplitude of the six-year period signal was the weakest. The amplitude of
the 3.5-year cycle signal increased continuously from 1990 to 2011. However, the situation
changed dramatically after the outburst, as shown in Figure 9. The 3.5-year signal became
too weak to detect, and the annual signal was very vague from 2012 to 2015, which can
be attributed to the outflow of KL. It was not until 2016 that the annual signal gradually
recovered and reached its strongest in 2019. Notably, a strong semi-annual variation
appeared in the LWS after 2012. The comparison between Figures 8 and 9 suggests that the
outburst of ZL significantly impacted the periodic variation of KL’s water volume. It can
be explained by the change in KL’s recharge mode. Originally, KL was a typical closed and
frozen lake on the QTP. Previous studies have shown that the closed and frozen lakes on the
QTP have a weak semi-annual variation [19,20]. However, the outburst connected KL with
ZL upstream and HN downstream. The input from ZL and the outflow into HN regulated
the water volume in KL after the outburst, which strengthened the semi-annual variation.
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The key advantage of wavelet analysis is that it can simultaneously be localized in
the time and frequency domain. However, it cannot accurately determine the frequency
of periodic components in a signal. In order to analyze the periodicity of the LWS time
series further, we employed Fourier spectrum analysis. The power spectral density (PSD)
estimated by Fourier analysis can be used to identify the accurate frequency of periodic
variations in a time series [55,56]. Figure 10 shows the PSD of the LWS time series of KL,
which is estimated using the MATLAB function ‘periodogram’. The primary frequency of
the LWS time series before the outburst (red line) is one cycle per year, while the highest
peak appears at the frequency of two cycles per year in the spectral line after the outburst
(blue line); this indicates that the outburst of ZL enhanced the seasonal variation of the
LWS of KL. This finding is in accord with the results of wavelet analysis.
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5.2. Annual LWS Variations before and after the Outburst

Figure 11 shows the months in which the maximum and minimum LWS of KL occurred
from 1990 to 2021 and plots the maximum, minimum, and amplitude (the difference
between the maximum and the minimum) of the LWS for each year. Figure 11a shows that
the minimum LWS generally occurred in May or June before 2011, and the maximum LWS
was observed between September and November. The abnormal occurrence of maximum
in January 1994 and February 2004 can be attributed to the estimation error of LWS. It can be
seen from Figure 7a that the annual variation of LWS before 2005 was small. Some months
had very close LWS values, so their difference might be less than the estimation error. For
instance, in 2004, the maximum LWS was 0.124 km3 in February, followed by 0.119 km3 in
November. The difference is only 0.005 km3, which is smaller than the uncertainty of LWS.
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In the years (2012–2015) following the outburst, annual LWS variations became disor-
dered. It can be explained by the alteration of the recharge and discharge pattern of KL.
After the outburst, the input water from ZL’s upstream and outflow to HN’s downstream
significantly affected KL’s water budget. It disrupted the original law of LWS variation of
KL when it was a closed lake. Until 2016, the occurrence of minimum LWS reverted to May.
However, the occurrence of maximum LWS shifted forward to August.

Figure 11b demonstrates that the minimum and maximum LWS have an increasing
trend from 1990 to 2021. The increasing trend reflects the correlation with climate change.
In the past 30 years, annual precipitation in the ZL–SL basin increased with a growth rate
of 2.29 mm/y [14]. Furthermore, it has been revealed that the total TWS in the basin was
consistently increasing [34]. However, the outburst of ZL triggered the overflow of KL,
reversing the increasing trend of TWS of KL, which resulted in a peak between 2009 and
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2012. It can also be observed that the annual amplitude varies over a steady period of
about 6 years. However, the mean magnitude of the annual amplitudes after the outburst
increased to 0.244 km3 from 0.168 km3 before the outburst. It implies that the hydraulic
connectivity among the lakes caused by the outburst significantly amplified the annual
fluctuation of the LWS in KL.

5.3. Possible Driving Factors of Pattern Change in the TWS Variation

Figure 12 provides a comprehensive depiction of evaporation (E), precipitation (P),
and the changes in glacier area (∆G) and LWS (∆LWS) in the KL basin from 1990 to 2017.
The left panel showcases the monthly time series for these variables while showing the
average monthly values before and after the outburst event. In terms of evaporation, it
exhibits variability throughout the year. The evaporation mainly ranges between 60 mm
and 180 mm, with higher values occurring during summer; this implies that evaporation
rates are generally higher during the warmer months, which is consistent with the increased
heat and solar radiation during this time. Precipitation is mainly concentrated from May to
September, accounting for more than 92% of annual rainfall. Overall, these observations
highlight the seasonal patterns and variations in rainfall and evaporation in the KL basin,
with a concentration of precipitation in the summer months and higher evaporation rates
during the warmer seasons.
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Figure 12. Monthly evapotranspiration (a,b), precipitation (c,d), change of glacier area (e,f), and LWS
variation (g,h) in the KL basin. The left panel is the time series from 1990 to 2017. The right panel is
the average monthly values before and after the outburst.

The glacier area within the basin, interpreted from remote sensing imagery, has a
recurring pattern of expansion from June to December each year, followed by a melting
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phase extending from January to June of the subsequent year. When considering the
average monthly values, Figure 12b,d,f reveal that there are no significant changes in
precipitation, evaporation, and glacier area before and after the outburst event.

However, Figure 12h demonstrates a remarkable difference in LWS. Based on the
average monthly ∆LWS, it can be observed that there was a gradual increase in the LWS
of KL from June to November before the outburst, followed by a gradual decrease from
December to May in the following year. However, after the outburst, there was a quite
different pattern in the LWS, with a rapid increase from May to August and a swift decline
from September to October. The LWS variation after the outburst has a noticeable seasonal
oscillation and a larger annual amplitude than before, corroborating the findings presented
in Figure 11.

Based on the above analysis, it can be concluded that evaporation, rainfall, and glacier
change are not the driving factors for the observed changes in TWS behavior after the
outburst. The alteration of the local hydrological conditions caused by the outburst event
may be the primary reason for these changes.

6. Conclusions

In this study, the water level time series was derived at KL using ERS-2 and Jason-
1/2/3 altimeter data from May 1995 to April 2022. The lake area time series was determined
by interpreting Landsat-5/7/8 images from January 1990 to November 2021. Combining
these two series yielded an unprecedented long and high temporal resolution LWS time
series based on the LA curve extracted from topographic data. The constructed LWS time
series contains 1051 samples spanning from 1990 to 2022, indicating a high data density of
35.7 samples per year. The level, area, and LWS time series were validated by comparing
three published datasets, demonstrating that this paper provides extended time series with
enhanced temporal resolution and comparable accuracy.

Based on the high-temporal LWS time series, we characterized the water volume
variations in KL before and after the ZL outburst in 2011 and highlighted the impact of the
outburst. The outburst caused the water volume of KL to rapidly increase by ~2.76 km3

in September 2011 and decrease by ~0.53 km3 in October and changed the increasing
trend of the lake level, which has been observed in many previous studies [15,34,57]. For
the first time, this study revealed a significant change in the periodic patterns of LWS
variations in KL. Prior to the outburst event, the dominant variations in the LWS time
series were observed at 1-year and 3.5-year intervals, while no noticeable semi-annual
signal was evident. However, after the outburst, the 3.5-year variation vanished, and a
strong semi-annual oscillation became apparent. From 2012 to 2015, the outburst in ZL
and the subsequent outflow from KL disrupted the periodic LWS variations in KL. Until
2016, regular cyclic signals have been restored with an amplified annual fluctuation. These
findings suggest that the outburst event significantly impacted the periodic patterns of
LWS variations in KL. It can be attributed to the alternation of hydrological conditions
surrounding KL resulting from the outburst.
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