
The CH4 emission estimates were first assigned to different land cover classes based on the 
proportional coverage given by the CLC data aggregated to 1° × 1° resolution and keeping the original 
resolution of CTE-CH4. When calculating the average CH4 emission of a land cover class, the CH4 

emissions ([g]) in a single grid cell were first multiplied by the fraction of the land cover class ([%]) in 
that grid cell, i.e. it was assumed that each land cover class had the same flux per area in a single grid 
cell and only the proportional fraction differed. These proportional emissions were then summed over 
the whole of Finland and the sum was divided by the total area of the land cover class ([m2]) which 
gave the average annual CH4 emissions per land cover class area ([g/m2]).

Confidence intervals for the average CH4 emissions per land cover class were defined as follows: 
the CH4 emissions and the land cover class area per pixel were paired and the pairs were sorted by the 
magnitude of the CH4 emissions from lowest to highest. The land cover class area was then calculated 
as a cumulative sum and normalised from zero to one. From the normalised cumulative sum, the 
values 0.25 and 0.75 were selected and the methane emissions associated with these values were taken 
as the 25% and 75% confidence intervals. This method selected confidence intervals with the same 
methane emissions for each land cover class, but weighted them by the area of the land cover class, 
giving more weight to methane emissions where the land cover class had a larger area.

The process was repeated separately for average annual natural, anthropogenic and total CH4 

emissions to evaluate whether different land cover classes stood out of the rest depending on the 
CH4 source as we would expect. From the analysis, we excluded land cover classes that cover less 
than 0.2% (755 km2) of the total area of Finland. These classes were ’Forest land, afforested peat’, 
’Transitional woodland, deforested’, ’Transitional woodland, peat, deforested’, and ’Wetlands, Marsh’. 
The exclusion was done to streamline the analysis since it was unexpected that the listed classes would 
have resulted in reliable results in the machine learning approach given the large difference between 
the resolution of the inversions and the land cover map.

     The range of estimated annual CH4 fluxes decomposed for selected land cover classes is shown
for natural emissions in Figure S5, anthropogenic emissions in Figure S6 and total emissions in Figure 
S7. The two inversions InvLPX and InvJSBACH agreed well with each other, although InvLPX showed 
lower natural and consequently lower total CH4 emissions. The results were similar to those 
obtained using XGBoost, but there were some notable differences. The main difference is that the magnitude
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 of emissions from different land cover classes was smaller, especially for anthropogenic and total 
emissions. This is expected as the resolution of 1° × 1° was coarse compared to the resolution and 
heterogeneity of Corine land cover classes. As can be seen from Figure S8, most land cover classes 
were correlated with other land cover classes, meaning that there was approximately the same 
amount of land cover classes in several grid cells. Thus, it was difficult to separate the different 
categories and the estimated emissions were similar across the land cover classes. However, as 
was the case with the XGBoost method, the classes "Wetlands, Open bog" and "Transitional 
woodland, peat" showed elevated CH4 emissions compared to the other categories.



Figure S1. Optimisation regions. The grey region was optimised at 1° latitude × 1° longitude resolution.
Circles show the locations of the in situ observation sites from which the concentration observations
were used in this study.

Figure S2. Daily averaged CH4 mole fraction observations [ppb] in Finnish measurement stations in
2013-2020. The duplicate sites mark the data set before and after the site was included in ICOS. In
Pallas, there were also taken flask samples which are shown with discontinuous colour lines.



(a) (b)

(c) (d)
Figure S3. Annual average from 2013–2020 of a) the redistributed CAMS-REG CH4 emissions, b)
the original CAMS-REG, c) the optimised anthropogenic CH4 emissions from InvJSBACH and d) the
optimised anthropogenic CH4 emissions from InvLPX.





Table S2. List of surface observation sites used in inversions. Observation Uncertainty (Obs. Unc.) is
used to define diagonal values in the observation covariance matrix. The data type is categorized into
two measurements (discrete (D) and continuous (C)).

Sitecode Site Name Country Contributor Longitude Latitude Height∗ Obs. Unc. Data type Date min.∗∗ Date max.
[°E] [°N] [m a.s.l.] [ppb] D/C [year/month] [year/month]

ABP Arembepe, Bahia Brazil NOAA -38.17 -12.76 6.00 4.5 D 2006/10 2010/01
ABT Abbotsford, British Columbia Canada EC -122.34 49.01 93.00 30.0 C 2014/03 2019/06
ALT Alert, Nunavut Canada NOAA -62.51 82.45 190.00 15.0 D 1999/01 2021/02
ALT Alert, Nunavut Canada EC -62.51 82.45 195.00 15.0 C 1999/01 2019/07
AMT Argyle, Maine United States NOAA -68.66 45.01 157.00 30.0 D 2003/09 2006/11
AMY Anmyeon-do Republic of Korea NOAA 126.33 36.54 87.00 30.0 D 2013/12 2021/03
ARA Arcturus Australia CSIRO 148.47 -23.86 185.00 15.0 D 2010/05 2013/10
ASC Ascension Island United Kingdom NOAA -14.40 -7.97 90.00 15.0 D 1999/01 2021/02
ASK Assekrem Algeria NOAA 5.63 23.26 2715.00 25.0 D 1999/01 2019/11
AZR Terceira Island, Azores Portugal NOAA -27.36 38.76 24.00 15.0 D 1999/01 2021/02
AZV Azovo Russian Federation NIES 73.03 54.71 190.00 30.0 C 2009/10 2018/12
BAL Baltic Sea Poland NOAA 16.67 55.35 28.00 75.0 D 1999/01 2011/06
BAR Baranova Russian Federation FMI 101.62 79.28 30 4.5 C 2015/11 2020/12
BCK Behchoko, Northwest Territories Canada EC -115.92 62.80 220.00 15.0 C 2010/10 2019/06
BHD Baring Head Station New Zealand NOAA 174.87 -41.41 90.00 4.5 D 2002/03 2020/08
BIK Bialystok Poland MPIBGC 23.01 53.23 483.00 25.0 C 2005/07 2014/06
BIR Birkenes Norway NILU 8.25 58.39 219 25.0 C 2009/05 2018/12
BKT Bukit Kototabang Indonesia NOAA 100.31 -0.20 875.00 75.0 D 2004/01 2021/03
BLK Baker Lake, Nunavut Canada EC -96.01 64.33 61.00 15.0 C 2017/07 2019/07
BME St. Davids Head, Bermuda United Kingdom NOAA -64.65 32.37 17.00 15.0 D 1999/01 2010/01
BMW Tudor Hill, Bermuda United Kingdom NOAA -64.88 32.26 33.00 15.0 D 1999/01 2021/03
BRA Bratt’s Lake Saskatchewan Canada EC -104.71 50.20 630.00 75.0 C 2009/10 2019/07
BRW Barrow Atmospheric Baseline Observatory United States NOAA -156.61 71.32 27.46 15.0 C 1999/01 2021/04
BRW Barrow Atmospheric Baseline Observatory United States NOAA -156.58 71.32 16.00 15.0 D 1999/01 2021/03
BRZ Berezorechka Russian Federation NIES 84.33 56.15 248.00 75.0 C 2008/05 2018/12
BSC Black Sea, Constanta Romania NOAA 28.66 44.18 5.00 75.0 D 1999/01 2011/12
BSD Bilsdale United Kingdom UNIVBRIS -1.15 54.36 628.00 30.0 C 2014/01 2019/12
CBA Cold Bay, Alaska United States NOAA -162.71 55.21 25.00 15.0 D 1999/01 2021/04
CBY Cambridge Bay, Nunavut Territory Canada EC -105.06 69.13 47.00 15.0 C 2012/12 2019/07
CDL Candle Lake, Saskatchewan Canada EC -105.12 53.99 630.00 30.0 C 2002/06 2008/01
CFA Cape Ferguson Australia CSIRO 147.06 -19.28 5.00 25.0 D 1991/06 2021/04
CGO Cape Grim, Tasmania Australia NOAA 144.68 -40.68 164.00 4.5 D 1999/01 2021/02
CGO Cape Grim Australia CSIRO 144.68 -40.68 94.00 15.0 C 2012/07 2021/07
CGR Charles Point, Darwin Australia CSIRO 12.65 37.67 9.00 25.0 C 2015/04 2018/12
CHL Churchill, Manitoba Canada EC -93.82 58.74 89.00 15.0 C 2011/10 2019/07
CHM Chibougamau, Quebec Canada EC -74.34 49.69 423.00 30.0 C 2007/08 2011/04
CHR Christmas Island Republic of Kiribati NOAA -157.15 1.70 5.00 15.0 D 1999/01 2020/01
CIB Centro de Investigacion de la Baja Atmosfera Spain NOAA -4.93 41.81 850.00 25.0 D 2009/05 2021/03
CMN Mt. Cimone Station Italy UNIURB 10.68 44.17 2172.00 15.0 C 2008/07 2017/12
CMN Mt. Cimone Station Italy ICOS-ATC,CNR-ISAC 10.70 44.19 2173.00 15.0 C 2018/05 2021/05
CPS Chapais,Quebec Canada EC -74.98 49.82 431.00 15.0 C 2011/12 2019/07
CPT Cape Point South Africa NOAA 18.49 -34.35 260.00 25.0 D 2010/02 2021/03
CRI Cape Rama India CSIRO 73.83 15.08 66.00 75.0 D 1993/02 2013/01
CRV Carbon in Arctic Reservoirs Vulnerability Expe... United States NOAA -147.60 64.99 643.13 15.0 C 2011/10 2021/05
CRZ Crozet Island France NOAA 51.85 -46.43 202.00 4.5 D 1999/01 2020/11
CUR Monte Curcio Italy IIA 16.42 39.32 1801.00 15.0 C 2014/12 2017/12
CYA Casey Station, Antarctica Australia CSIRO 110.52 -66.28 55.00 4.5 D 1997/06 2021/01
DEM Demyanskoe Russian Federation NIES 70.87 59.79 155.00 30.0 C 2005/09 2018/12
DRP Drake Passage Drake Passage NOAA -61.68 -59.07 10.00 4.5 D 2006/03 2020/12
DSI Dongsha Island Taiwan NOAA 116.73 20.70 8.00 15.0 D 2010/03 2021/03
DVV Danville, Virginia United States PSU -79.44 36.71 492.00 15.0 C 2016/07 2017/12
EGB Egbert, Ontario Canada EC -79.78 44.23 276.00 25.0 C 2005/03 2019/06
EIC Easter Island Chile NOAA -109.45 -27.13 72.00 4.5 D 1999/01 2019/11
ENA Eastern North Atlantic, Graciosa, Azores Portugal LBNL-ARM -28.03 39.09 40.48 25.0 C 2015/07 2019/12
ESP Estevan Point, British Columbia Canada EC -126.54 49.38 47.00 25.0 C 2009/03 2019/07
EST Esther, Alberta Canada EC -110.21 51.67 757.00 30.0 C 2010/01 2019/07
ETL East Trout Lake, Saskatchewan Canada EC -104.99 54.35 598.00 30.0 C 2005/08 2019/07
FNE Fort Nelson, British Columbia Canada EC -122.57 58.84 376.00 30.0 C 2014/07 2019/07
FSD Fraserdale Canada EC -81.57 49.88 250.00 30.0 C 1999/01 2019/07
GAT Gartow Germany ICOS-ATC,HPB 11.44 53.07 411.00 25.0 C 2016/05 2021/05
GCI Millerville, AL United States PSU -85.89 33.18 428.00 25.0 C 2017/10 2018/05
GMI Mariana Islands Guam NOAA 144.66 13.39 8.00 15.0 D 1999/01 2021/03
GPA Gunn Point Australia CSIRO 131.04 -12.25 37.00 75.0 D 2010/08 2021/02
HBA Halley Station, Antarctica United Kingdom NOAA -26.21 -75.61 35.00 4.5 D 1999/01 2020/02
HEI Heidelberg Germany IUP 8.68 49.42 143.00 30.0 C 2005/01 2014/09
HNP Hanlan’s Point, Ontario Canada EC -79.39 43.61 97.00 25.0 C 2014/06 2019/04
HPB Hohenpeissenberg Germany NOAA 11.02 47.80 941.00 25.0 D 2006/04 2021/03
HPB Hohenpeissenberg Germany ICOS-ATC,HPB 11.02 47.80 1065.00 25.0 C 2015/09 2021/05
HSU Humboldt State University United States NOAA -124.44 41.57 7.60 30.0 D 2008/05 2017/05
HTM Hyltemossa Sweden ICOS-ATC,LUND-CEC 13.42 56.10 265.00 25.0 C 2017/04 2021/04
HUN Hegyhatsal Hungary NOAA 16.65 46.95 344.00 25.0 D 1999/01 2021/01
HUN Hegyhatsal Hungary HMS 16.65 46.95 344.00 75.0 C 2006/03 2014/10
ICE Storhofdi, Vestmannaeyjar Iceland NOAA -20.29 63.40 121.70 15.0 D 1999/01 2021/02
IGR Igrim Russian Federation NIES 64.41 63.19 89.00 30.0 C 2005/04 2013/07
INU Inuvik,Northwest Territories Canada EC -133.53 68.32 123.00 15.0 C 2012/02 2019/07
IPR Ispra Italy ICOS-ATC,JRC 8.64 45.81 310.00 30.0 C 2017/12 2021/04
IZO Izana, Tenerife, Canary Islands Spain NOAA -16.48 28.30 2377.90 25.0 D 1999/01 2021/02
JFJ Jungfraujoch Switzerland EMPA 7.99 46.55 3580.00 15.0 C 2014/01 2017/12
JFJ Jungfraujoch Switzerland ICOS-ATC,HFSJG 7.99 46.55 3585.00 15.0 C 2016/12 2021/04
KEY Key Biscayne, Florida United States NOAA -80.20 25.67 6.00 25.0 D 1999/01 2021/02

*Sampling heights from which atmospheric CH4 is sampled in TM5. **Observations used in this study
between 2010 and 2018.



Table S2. Continuation to the table S2.

Sitecode Site Name Country Contributor Longitude Latitude Height∗ Obs. Unc. Data type Date min.∗∗ Date max.
[°E] [°N] [m a.s.l.] [ppb] D/C [year/month] [year/month]

KIT Karlsruhe Germany ICOS-ATC,HPB 8.42 49.09 310.00 30.0 C 2016/12 2021/04
KJN Kjolnes Norway Univ. Exeter 29.23 70.85 20 15.0 C 2013/10 2018/08
KRE Kresin u Pacova Czech Republic ICOS 15.08 49.57 784.00 25.0 C 2017/04 2021/04
KRS Karasevoe Russian Federation NIES 82.42 58.25 156.00 30.0 C 2004/09 2018/12
KUM Cape Kumukahi, Hawaii United States NOAA -155.01 19.51 3.00 15.0 D 1999/01 2021/04
KZD Sary Taukum Kazakhstan NOAA 75.57 44.45 600.00 75.0 D 1999/01 2009/08
KZM Plateau Assy Kazakhstan NOAA 77.87 43.25 2524.00 25.0 D 1999/01 2009/08
LEF Park Falls, Wisconsin United States NOAA -90.27 45.95 868.00 30.0 C 2010/09 2021/05
LEF Park Falls, Wisconsin United States NOAA -90.26 45.95 868.00 30.0 D 1999/01 2021/04
LIN Lindenberg Germany ICOS-ATC,HPB 14.12 52.17 171.00 30.0 C 2015/10 2021/05
LLB Lac La Biche, Alberta Canada NOAA -112.45 54.95 546.10 30.0 D 2008/01 2013/02
LLB Lac La Biche, Alberta Canada EC -112.47 54.95 590.00 30.0 C 2007/04 2019/07
LLN Lulin Taiwan NOAA 120.86 23.47 2867.00 25.0 D 2006/08 2021/04
LMP Lampedusa Italy NOAA 12.63 35.52 50.00 25.0 D 2006/10 2021/02
LMP Lampedusa Italy ICOS-ATC,ENEA 12.63 35.52 53.00 25.0 C 2020/01 2021/04
LMT Lamezia Terme Italy ISAC 16.23 38.88 14.00 30.0 C 2015/01 2016/12
LPO Ile Grande France LSCE -3.58 48.80 20.00 15.0 D 2005/01 2013/08
LUT Lutjewad Netherlands ICOS-ATC,RUG 6.35 53.40 61.00 25.0 C 2018/08 2021/04
MAA Mawson, Antarctica Australia CSIRO 62.87 -67.62 32.00 4.5 D 1984/04 2021/02
MEX High Altitude Global Climate Observation Center Mexico NOAA -97.31 18.98 4469.00 15.0 D 2009/01 2021/02
MHD Mace Head, County Galway Ireland NOAA -9.90 53.32 26.00 25.0 D 1999/01 2021/03
MID Sand Island, Midway United States NOAA -177.38 28.21 8.00 15.0 D 1999/01 2021/03
MKN Mt. Kenya Kenya NOAA 37.30 -0.06 3649.00 25.0 D 2003/12 2011/06
MLO Mauna Loa, Hawaii United States NOAA -155.58 19.54 3437.00 15.0 C 1999/01 2021/04
MLO Mauna Loa, Hawaii United States NOAA -155.58 19.54 3402.00 15.0 D 1999/01 2021/04
MNM Minamitorishima Japan JMA 153.98 24.29 27.10 15.0 C 1999/01 2019/12
MQA Macquarie Island Australia CSIRO 158.97 -54.48 13.00 4.5 D 1990/04 2021/02
MRC Marcellus Pennsylvania United States PSU -76.42 41.47 652.00 75.0 C 2015/05 2019/01
NAT Farol De Mae Luiza Lighthouse Brazil NOAA -35.19 -5.51 20.00 15.0 D 2010/09 2020/03
NGL Neuglobsow Germany UBA 13.03 53.14 62.00 75.0 C 2005/01 2013/12
NMB Gobabeb Namibia NOAA 15.01 -23.58 461.00 25.0 D 1999/01 2021/02
NOR Norunda Sweden ICOS-ATC,LUND-CEC 17.48 60.09 146.00 15.0 C 2017/04 2021/04
NOY Noyabrsk Russian Federation NIES 75.78 63.43 188.00 30.0 C 2005/10 2018/12
NWR Niwot Ridge, Colorado United States NOAA -105.57 40.05 3526.00 15.0 D 1999/01 2021/04
OPE Observatoire perenne de l’environnement France ICOS-ATC,LSCE 5.50 48.56 510.00 30.0 C 2016/08 2021/04
OTA Otway Basin Australia CSIRO 142.82 -38.52 50.00 30.0 D 2005/09 2014/08
OXK Ochsenkopf Germany NOAA 11.81 50.03 1185.00 30.0 D 2003/03 2019/06
OXK Ochsenkopf Germany ICOS-ATC,HPB 11.81 50.03 1185.00 30.0 C 2019/09 2021/04
PDM Pic du Midi France LSCE 0.14 42.94 2887.00 15.0 D 2005/02 2018/02
POC Pacific Ocean Pacific Ocean NOAA -130.75 0.12 20.00 15.0 D 1999/01 2017/07
PSA Palmer Station, Antarctica United States NOAA -64.05 -64.77 15.00 4.5 D 1999/01 2020/12
PTA Point Arena, California United States NOAA -123.74 38.95 22.00 25.0 D 1999/01 2011/05
PUY Puy de Dome France ICOS-ATC,LSCE 2.97 45.77 1475.00 15.0 C 2016/08 2021/05
RGL Ridge Hill United Kingdom UNIVBRIS -2.54 52.00 294.00 25.0 C 2012/02 2019/12
RPB Ragged Point Barbados NOAA -59.43 13.16 20.00 15.0 D 1999/01 2021/03
RUN La Réunion France ICOS-ATC,LSCE 55.38 -21.08 2160.00 15.0 C 2018/05 2021/04
RYO Ryori Japan JMA 141.82 39.03 280.00 15.0 C 1999/01 2019/12
SAC Saclay France ICOS-ATC,CEA 2.14 48.72 260.00 75.0 C 2017/05 2021/04
SCT Beech Island, South Carolina United States NOAA -81.83 33.41 420.20 75.0 C 2015/08 2021/05
SDZ Shangdianzi China NOAA 117.12 40.65 298.00 15.0 D 2009/09 2015/09
SEY Mahe Island Seychelles NOAA 55.53 -4.68 7.00 15.0 D 1999/01 2020/12
SGP Southern Great Plains, Oklahoma United States NOAA -97.50 36.62 339.00 75.0 D 2002/04 2021/04
SGP Southern Great Plains, Oklahoma United States LBNL-ARM -97.49 36.61 374.00 75.0 C 2010/11 2020/01
SHM Shemya Island, Alaska United States NOAA 174.08 52.72 28.00 25.0 D 1999/01 2021/03
SMO Tutuila American Samoa NOAA -170.56 -14.23 60.30 15.0 D 1999/01 2021/03
SNB Sonnblick Austria EAA 47.05 12.96 3111.00 15.0 C 2012/04 2018/12
SPO South Pole, Antarctica United States NOAA -24.80 -89.96 2821.30 4.5 D 1999/01 2021/01
SSL Schauinsland Germany UBA-Germany 7.92 47.90 1217.00 30.0 C 2004/12 2018/12
STE Steinkimmen Germany ICOS-ATC,HPB 8.46 53.04 281.00 75.0 C 2019/07 2021/04
STM Ocean Station M Norway NOAA 2.00 66.00 5.00 25.0 D 1999/01 2009/11
SUM Summit Greenland NOAA -38.42 72.60 3214.54 15.0 D 2000/08 2020/08
SVB [1] Svartberget Sweden ICOS-ATC,SLU 19.77 64.26 419.00 25.0 C 2017/06 2021/04
SYO Syowa Station, Antarctica Japan NOAA 39.59 -69.00 16.00 4.5 D 1999/01 2021/01
TAC Tacolneston United Kingdom NOAA 1.14 52.52 236.00 25.0 D 2014/06 2016/01
TAP Tae-ahn Peninsula Republic of Korea NOAA 126.13 36.73 21.00 75.0 D 1999/01 2021/02
THD Trinidad Head, California United States NOAA -124.15 41.05 112.00 25.0 D 2002/04 2017/06
TIK Hydrometeorological Observatory of Tiksi Russia NOAA 128.89 71.60 29.00 15.0 D 2011/08 2018/09
TIK Tiksi Russian Federation FMI 128.89 71.60 29.00 15.0 C 2010/09 2019/12
TOH Torfhaus Germany ICOS-ATC,HPB 10.53 51.81 948.00 25.0 C 2017/12 2021/04
TPD Turkey Point, Ontario Canada EC -80.56 42.64 266.00 25.0 C 2012/11 2019/07
TRN Trainou France ICOS-ATC,LSCE 2.11 47.96 311.00 25.0 C 2016/08 2021/04
USH Ushuaia Argentina NOAA -68.31 -54.85 32.00 4.5 D 1999/01 2021/03
UTA Wendover, Utah United States NOAA -113.72 39.90 1332.00 25.0 D 1999/01 2021/04
UUM Ulaan Uul Mongolia NOAA 111.10 44.45 1012.00 25.0 D 1999/01 2020/10
VGN Vaganovo Russian Federation NIES 62.32 54.50 277.00 30.0 C 2008/06 2018/12
VKV Voeikovo Russian Federation MGO 30.70 59.95 76.00 25.0 C 2008/05 2014/12
WIS Weizmann Institute of Science at the Arava Ins... Israel NOAA 35.06 29.96 482.00 25.0 D 1999/01 2021/04
WKT Moody, Texas United States NOAA -97.32 31.31 256.00 75.0 D 2001/03 2006/11
WLG Mt. Waliguan Peoples Republic of China NOAA 100.90 36.27 3890.00 15.0 D 1999/01 2020/12
WPC Western Pacific Cruise Western Pacific NOAA 143.70 0.13 10.00 15.0 D 2004/12 2013/06
WSA Sable Island, Nova Scotia Canada EC -60.01 43.93 8.00 25.0 C 2003/06 2019/07
YAK Yakutsk Russian Federation NIES 129.36 62.09 344.00 30.0 C 2007/09 2013/12
YON Yonagunijima Japan JMA 123.01 24.47 50.00 30.0 C 1999/02 2019/12
ZEP Ny-Alesund, Svalbard Norway and Sweden NOAA 11.89 78.91 479.00 15.0 D 1999/01 2021/03
ZEP Ny-Alesund, Svalbard Norway and Sweden ICOS-ATC,NILU 11.89 78.91 489.00 15.0 C 2017/07 2021/04
ZOT Zottino Russian Federation MPIBGC 89.21 60.48 415.00 25.0 C 2009/05 2016/12
ZOT Zottino Russian Federation MPIBGC 89.21 60.48 415.00 15.0 D 2006/10 2013/06
ZSF Zugspitze / Schneefernerhaus Germany UBA-Germany 10.98 47.42 2670.00 30.0 C 2004/12 2019/12

*Sampling heights from which atmospheric CH4 is sampled in TM5. **Observations used in this study
between 2010 and 2018.



Figure S5. The range of annual natural CH4 fluxes (2013–2020) decomposed for selected land cover
classes estimated using proportional Corine land cover classes.

2. Using Machine Learning to Estimate LULUCF Methane Emissions

To detect LULUCF-related CH4 emissions from the inversion model estimate, we used a machine 
learning model called gradient boosting. Gradient boosting trains multiple decision trees on a random 
subset of data, and the predictions of all trees are combined to produce a final result. This ensemble 
method is more accurate than a single decision tree and is less prone to overfitting. Gradient boosting 
is also robust to outliers and can perform automatic feature selection. We used a gradient boost library 
called XGBoost [2].

We trained the machine learning model with annual natural, anthropogenic and total CH4
emissions estimates from InvJSBACH and InvLPX. The training was conducted in a resolution of 10 
km × 10 km. The training and predicting of the CH4 emissions were done separately for each year 
2013–2020.

The fraction of each land cover class was calculated at 10 km × 10 km and all the land cover 
classes were used as features in the training of the machine learning model. The annual CH4 emissions 
were resampled to the same resolution using kd-tree nearest neighbour approach in Python package 
called pyresample [3] and then used as the target value. With the trained model, we estimated the 
annual emissions for a grid cell that was occupied by only one land cover class. From the analysis, 
we excluded land cover classes that cover less than 0.2% (755 km2) of the total area of Finland. These 
classes were ’Forest land, afforested peat’, ’Transitional woodland, deforested’, ’Transitional woodland, 
peat, deforested’, and ’Wetlands, Marsh’.

When the machine learning algorithm XGBoost was trained with optimised annual natural CH4

emission estimates in Finland and the CH4 emissions were estimated by a land cover class, the two



inversions, InvJSBACH and InvLPX, mostly agreed (Figure S9). The two land cover classes with the 
highest predicted natural emissions were ’Transitional woodland, peat’ and ’Wetland, Open bogs’. 
Another notable feature was ’Forest, mineral soil’, which showed higher emissions than the other classes 
with InvLPX. ’Forest land’ in general was also higher when InvJSBACH was used. This was probably 
an artefact from the machine learning approach and the coarse resolution of CTE-CH4. ’Forest land, 
mineral soil’ is the most prominent land cover class by a large margin covering almost a third of 
the area in Finland. It also correlated with almost all the other land cover classes (Figure S8), 
meaning forests existed near almost all land cover types. This led to a situation where there were 
always forests in grid cells with high CH4 emissions. Additionally, InvJSBACH showed a larger land 
sink on mineral soils than InvLPX. These differences alongside the highlighted land cover types were 
reasonable given the land cover data the priors used. In addition, in some years XGBoost predicted a 
CH4 sink for some land cover types on mineral soil. This was more pronounced with InvJSBACH than 
with InvLPX.

The average natural CH4 emission on ’Transitional woodland, peat’ predicted by the XGBoost 
was 1.7 g/m2/year with LPX and 2.0 g/m2/year with JSBACH. Even though these values are higher than 
the emissions factor for the poorly drained forests, they are still reasonable, especially when the range 
of observed values is considered [4].

When the machine learning model was trained with annual anthropogenic CH4 emissions, 
’Settlements’ was the most prominent class (Figure S10). Predicted emissions in other classes were 
close to zero, with agricultural lands showing a bit larger emissions.

The XGBoost predicted CH4 emissions trained with annual total emissions resembled the 
combination of the natural and anthropogenic emission results (Figure S11): the natural and 
anthropogenic sources listed above (’Transitional woodland, peat’, ’Wetland, Open bogs’, ’Settlements’ 
and ’Forest land, mineral soil’) were elevated from the rest of the land cover classes.

Figure S6. The range of annual anthropogenic CH4 fluxes (2013–2020) decomposed for selected land 
cover classes estimated using proportional Corine land cover classes.



Figure S7. The range of annual total CH4 fluxes (2013–2020) decomposed for selected land cover classes 
estimated using proportional Corine land cover classes.

Figure S8. Pairwise Pearson correlation coefficient o f  t h e s e lected C o rine l a nd c o ver c l asses a t  a 
resolution of 1° × 1° in Finland. The colour of a square is related to the correlation coefficient and the 
size to the absolute value of the coefficient: an absolute value would fill the cell and a zero value would 
mean that there would be no square.



Figure S9. The range of the annual natural CH4 fluxes (2013–2020) for selected land cover classes
estimated with XGBoost using optimised natural CH4 emissions from InvLPX and InvJSBACH.

Figure S10. The range of annual anthropogenic CH4 fluxes (2013–2020) for selected land cover classes
estimated with XGBoost using optimised anthropogenic CH4 emissions from InvLPX and InvJSBACH.



Figure S11. The range of annual total CH4 fluxes (2013–2020) for selected land cover classes estimated
with XGBoost using optimised total CH4 emissions from InvLPX and InvJSBACH.
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