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Abstract: Drought monitoring is crucial for various sectors, and soil moisture data play a pivotal role,
especially in agricultural contexts. This study focuses on the recent CYGNSS Level 3 soil moisture data
derived from the NASA Cyclone Global Navigation Satellite System (CYGNSS), notable for its wide
coverage and rapid revisit times, yet underexplored in drought research. Spanning from 1 January 2018
to 31 December 2022, this research analyzed daily CYGNSS soil moisture data, comparing them with
the ERA5, SMAP, and GLDAS-NOAH datasets. It was found that the average and standard deviation
(std) of CYGNSS soil moisture exhibited spatial patterns largely similar to other datasets, although
some regions showed discrepancies (std differences reached up to 0.05 in some regions). The correlation
coefficients and RMSE values between CYGNSS and other datasets depended on climate and land cover
types. Four drought indicators from different soil moisture datasets were compared with the improved
monthly Standardized Precipitation Evapotranspiration Index (SPEI). The drought indicators based
on CYGNSS data demonstrate the capacity to describe drought extent and intensity. The correlation
coefficients between certain drought indicators obtained from CYGNSS and SPEI reached 0.27 for
drought percentage and 0.16 for drought intensity. Further investigations with selected extreme drought
cases revealed that the indicator from CYGNSS data is relatively weak, influenced by the selected regions,
times, and drought indicators. The results of this study provide insights into the potential application
of CYGNSS soil moisture data in drought monitoring, offering a foundation for future research and
practical implementation with current and future improved products.

Keywords: CYGNSS; soil moisture; drought; drought monitoring

1. Introduction

In the context of escalating global warming, drought incidents have become increasingly
prevalent worldwide [1–3]. These droughts have precipitated significant disasters, profoundly
impacting various facets of local communities, including socioeconomic, agricultural, eco-
logical, and hydrological domains [4,5]. Categorically, droughts are classified into distinct
types—meteorological, agricultural, hydrological, and socioeconomic—depending on the
areas of concern and impact [3,6]. Among these, agricultural drought, owing to its direct
implications for food security and rural economies, has consistently garnered substantial
attention in the realm of drought monitoring and research [7,8]. A pivotal component of
agricultural drought monitoring is soil moisture, a variable that is intricately intertwined
with essential processes such as terrestrial water, energy, and carbon cycling. Its paramount
significance lies in its crucial role in nurturing plant and crop growth [7,9,10]. Consequently,
soil moisture monitoring has emerged as a focal point of inquiry and application in the field
of drought management [11–15].

In recent years, the proliferation of soil moisture data from various sources, encom-
passing satellite observations, in situ measurements, and model-derived datasets, has
significantly expanded, and this surge in data availability has propelled the integration
of soil moisture information into the domain of drought monitoring [14,16–19]. Notably,
satellite-derived soil moisture data offer distinct advantages in terms of spatial coverage
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and temporal resolution, owing to their extensive coverage and frequent revisits [20]. Two
predominant methodologies have emerged in drought monitoring using satellite-based
soil moisture [16,21–23]. The first approach involves the construction of drought indica-
tors based on anomalies derived from long-term averages [22,24–26]. For instance, Liu
et al. [25] utilized the Soil Moisture Anomaly Percentage Index (SMAPI) derived from
satellite-retrieved and model-simulated soil moisture datasets to analyze global drought
patterns spanning multiple decades (1991–2015). While this anomaly-based method enables
the description and comparison of drought conditions across regions with varying climates,
it necessitates a prolonged dataset for robust analysis. To address the short-term nature of
The National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive
(SMAP) data, Sadri et al. [22] employed the beta distribution fitting technique to derive
percentiles, offering a methodological alternative for depicting drought dynamics in the
contiguous United States. The second methodology involves the construction of drought
indicators with respect to plant water availability, considering factors such as soil proper-
ties, field capacity, and available water content [9,21,23,27–29]. Mishra et al. [23] utilized
the Soil Water Deficit Index (SWDI) in conjunction with SMAP data and soil properties
information to quantify agricultural drought across the continental United States. Similarly,
Cao et al. [27] calculated the SWDI and evaluated the performance of two satellite soil
moisture products for drought detection and assessment in the North China Plain over the
period of 2015–2018. While this approach obviates the need for extensive historical data
records, it has limitations concerning cross-location comparisons and may be confined to
specific growth periods or seasonal variations. However, it is noteworthy that most existing
studies have focused primarily on regional-scale analyses, with limited efforts directed
toward evaluating global drought patterns employing satellite-derived soil moisture data,
particularly in densely populated subtropical regions [16]. Moreover, the variations in
drought indicators derived from different methodologies using the same soil moisture data
lack a comprehensive evaluation, necessitating a systematic examination of their respective
strengths and weaknesses.

The Cyclone Global Navigation Satellite System (CYGNSS), a pioneering NASA small-
satellite (smallSat) mission, has been crafted to monitor and analyze the internal structures
and intensity fluctuations of hurricanes and storms, offering invaluable insights into these
meteorological phenomena [30]. Operating via a constellation of small microsatellites,
CYGNSS harnesses L-band reflectivity observations over the Earth’s surface to discern
intricate surface characteristics, including vital information about soil moisture dynam-
ics [31,32]. Specifically, CYGNSS Level 3 soil moisture data, a product stemming from this
mission, deliver estimations of volumetric water content within soils at depths of 0–5 cm.
These estimations are disseminated at 6 h discretization intervals, focusing primarily on
subtropical regions and spanning from March 2017 to the present [33]. Noteworthy is the
CYGNSS’s unique approach, which draws upon SMAP data for its soil moisture devel-
opment process, albeit with a significantly higher revisit frequency, setting it apart from
its predecessors. Yang et al. [34] demonstrated the CYGNSS as a powerful data source
for producing large-scale and relatively precise soil moisture datasets. Wang et al. [35]
evaluated CYGNSS-R-based soil moisture data at a quasi-global scale with in situ validation
using International Soil Moisture Network stations. Their results showed that CYGNSS-
R-based soil moisture data showed overall higher absolute accuracy than SMAP data in
various land cover types, highlighting its potential to improve fusion products. Dong
et al. [36] also showed that CYGNSS-based soil moisture data exhibited lower performance
in southern China compared with radiometry-based data. Despite the potential significance
of CYGNSS-derived soil moisture data, the landscape of the research remains relatively
unexplored in drought monitoring. Presently, there is a dearth of comprehensive studies
investigating the distinctive features of CYGNSS data and their applicability in drought
detection. The absence of established indicators based on CYGNSS datasets underscores
the need for related research in this domain.
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Given the CYGNSS’s high revisit frequency, coupled with its extensive coverage of tropi-
cal and subtropical regions—encompassing over half of the global population and numerous
developing nations—it becomes imperative to unravel the features of this satellite-derived
soil moisture dataset. This research aims to delve into the characteristics of CYGNSS data,
comparing them against existing soil moisture products. Meanwhile, the study endeavors to
harness CYGNSS data to identify drought patterns, thereby enhancing our understanding of
these critical events. The structure of this article is organized as follows: Section 2 elucidates
the data utilized in this study, outlining the research areas under consideration. Section 3
expounds on the methodologies employed, encompassing the construction techniques of
diverse drought indicators, cumulative distribution function correction methods, and the
evaluation of drought characteristic indicators. Section 4 presents a quality assessment of
CYGNSS-derived soil moisture data in relation to three other established soil moisture prod-
ucts. Subsequently, Section 5 delves into the performance analysis of drought indicators,
calculated based on diverse soil moisture datasets. Section 6 provides a discussion. Finally,
the concluding section encapsulates this study’s findings.

2. Data and Study Region
2.1. Data
2.1.1. CYGNSS Soil Moisture Data

The CYGNSS constellation, leveraging GNSS reflectometry technology, captures L-
band reflectivity observations over the Earth’s surface, forming the basis for the CYGNSS
Level 3 soil moisture product [33]. This product furnishes estimations of the volumetric
water content within soils at depths ranging from 0 to 5 cm, discretized at 6 h intervals,
and gridded to a resolution of 36 km, spanning from 38◦S to 38◦N latitude for the period
from 2017 to the present. It was crafted by calibrating CYGNSS reflectivity data to soil
moisture retrievals from NASA’s SMAP mission. The reported volumetric water content
is denoted in units of cm³/cm³. For this study, daily averages of soil moisture data from
the CYGNSS were utilized, covering the period from 1 January 2018 to 31 December 2022.
Comprehensive details regarding this dataset can be accessed at https://podaac.jpl.nasa.
gov/dataset/CYGNSS_L3_SOIL_MOISTURE_V1.0 (accessed on 1 April 2023).

2.1.2. SMAP Soil Moisture Data

The SMAP passive microwave radiometer has been instrumental in retrieving soil
moisture information for global land surface conditions [37]. This study incorporated
SMAP Level 3 soil moisture data, available on a daily basis and gridded at a resolution of
36 km × 36 km, spanning from 31 March 2015 to the present. The dataset was sourced from
https://nsidc.org/data/spl3smp/versions/8 (accessed on 1 April 2023).

2.1.3. ERA5-land and GLDAS-NOAH Soil Moisture Data

To complement the aforementioned satellite datasets, we incorporated soil moisture
data from ECMWF Reanalysis v5 (ERA5)-Land and NASA Global Land Data Assimilation
System Version 2.1 (GLDAS) integrated observational data with the NOAH land surface
model (GLDAS-NOAH), owing to the exceptional accuracy, frequent updates, and robust
spatial coverage inherent to these model-derived datasets.

The ERA5-land dataset provides volumetric water content information for soil layer
1 (0–7 cm) from the ECMWF Integrated Forecasting System. Featuring an impressive
spatial resolution of 0.1◦ × 0.1◦ and an hourly temporal interval spanning from 1950 to the
present [38], this dataset can be accessed at https://cds.climate.copernicus.eu/cdsapp#
!/dataset/reanalysis-era5-land (accessed on 25 April 2023). To ensure consistency in our
analysis, the ERA5-land soil moisture data were resampled to match the 36 km × 36 km
grid, mirroring the CYGNSS soil moisture dataset. This resampling process was executed
utilizing bilinear interpolation, preserving the integrity of the data. Furthermore, NASA
GLDAS-NOAH offers a comprehensive understanding of surface conditions. Specifically,
the GLDAS_NOAH025_3H dataset, with a spatial grid resolution of 0.25◦ × 0.25◦ and a
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temporal interval of 3 h, was utilized. Accessible at https://disc.gsfc.nasa.gov/datasets/
GLDAS_NOAH025_3H_2.1/summary (accessed on 25 April 2023), this dataset covers the
period from 2000 to the present [39]. To maintain consistency across datasets, surface soil
moisture data from the 0–10 cm layer were selected and subsequently interpolated to the
36 km × 36 km grid on a daily basis.

2.1.4. Climate Classification and Land Cover

We employed the Köppen–Geiger climate classification, as outlined by Beck et al. [40].
Derived primarily from high-resolution climatic data from 1980 to 2016, this classification
system is based on observations of air temperature and precipitation patterns. The dataset,
essential for our climate analysis, can be accessed at https://www.gloh2o.org/koppen/
(accessed on 13 April 2023).

Concurrently, the land cover data utilized in our research were sourced from the
MODIS Terra+Aqua Combined Land Cover product (MCD12C1v061) [41]. This compre-
hensive dataset categorizes land cover into 17 distinct classes, encompassing 11 natural
vegetation types, 3 human-altered categories, and 3 non-vegetated classifications. The
dataset details can be explored further at https://lpdaac.usgs.gov/products/mcd12c1v061/
(accessed on 13 April 2023). This land cover categorization was pivotal for our analysis,
providing crucial context for understanding the environmental dynamics under scrutiny.

2.1.5. The Standardized Precipitation Evapotranspiration Index (SPEI)

The Standardized Precipitation Evapotranspiration Index (SPEI) was employed to
assess drought conditions, drawing on extensive climatic data. This multiscale drought
index offers nuanced insights into drought onset, duration, and magnitude concerning
normal conditions across diverse ecosystems, crops, rivers, and water resources [42,43]. The
Global SPEI dataset, available at temporal scales ranging from 1 to 48 months and spatially
resolved at 0.5◦ lat/lon, was instrumental in our comparative analyses. Specifically, the
1-month SPEI was used for comparison with drought indicators derived from soil moisture
data, ensuring a careful evaluation of drought dynamics. The SPEI dataset utilized in this
study is accessible at https://digital.csic.es/handle/10261/332007 (accessed on 12 May
2023) and was interpolated to align with the spatial grid of the CYGNSS soil moisture data,
enhancing the precision and relevance of our assessments.

2.2. Study Area

The study area focused primarily on the spatial coverage range of the CYGNSS data,
spanning from 38◦S to 38◦N latitude. Encompassing this broad geographic expanse, our
study area is of paramount importance as it encompasses a significant portion of developing
countries globally. To provide a comprehensive overview of the climatic and environmental
dynamics within our study area, we leveraged the Köppen–Geiger climate classification
system and land cover types, as depicted in Figure 1. Specifically, our analysis involved
merging climate types and land cover categories, resulting in the classification of climate
types into nine distinct categories and land cover types into six distinct classes.

Within this region of interest, the prominent climate types were revealed. Notably,
arid and desert climates (BW) were prevalent in regions such as the Sahara Desert, the
Arabian region, and western Australia. Tropical savanna climates (AW) were identified in
central Africa and Brazil, while arid steppe climates (BS) manifested on the peripheries of
deserts, signifying a diverse climatic spectrum within our study area.

The land cover types within our study area exhibited rich diversity. Barren lands,
characteristic of desolate regions such as the Sahara Desert, the Arabian region, and Iran,
were prominent. Grasslands flourished on the southern fringes of the Sahara Desert in
southern Africa. Forested areas thrived in the Amazon River Basin, equatorial regions
of Africa, Indonesian islands, and scattered locations in Southeast Asia. Croplands were
identified in the Indian region, as well as in the Huai River Basin of China and Southeast
Asia, underscoring the agricultural significance of these regions. Savannas, notable for

https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_3H_2.1/summary
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their distinctive ecosystems, were found in Brazil, both hemispheres of the equatorial
region in Africa, and southern China. Shrubs dominated landscapes in western Australia
and western South Africa. In our detailed analyses, specific locations denoted by white
dots were chosen to present time series data, with comprehensive details elaborated in
subsequent sections of this paper. This selection of study locations facilitated a focused
exploration of the temporal dynamics within our diverse study area, enabling insights into
the climatic and environmental variations prevalent in this region.
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Figure 1. Köppen–Geiger climate classification (a) and land cover types from the MODIS Terra+Aqua
combined land cover product (MCD12C1v061) (b) in the investigated region. In the climate clas-
sification (a), distinct codes represent various climatic zones: Af (tropical rainforest), Am (tropical
monsoon), Aw (tropical savanna), BW (arid desert), BS (arid steppe), Cs (temperate dry summer), Cw
(temperate dry winter), Cf (temperate and no dry season), and DE (cold or polar). Land cover types
(b) encompass forests (evergreen needleleaf forest, evergreen broadleaf forest, deciduous broadleaf
forest, and mixed forest), shrublands (closed shrubland and open shrubland), savannas (woody
savannas and savannas), grasslands, croplands (permanent wetlands, croplands, urban and built-up
areas, cropland/natural vegetation mosaic, and snow and ice cover), and barren lands (barren or
sparsely vegetated areas). This comprehensive categorization provides a foundation for our in-depth
analysis of the region’s ecological and climatic intricacies. The four white dots in the figure indicate
the specified location used in Figure 4.

3. Methods
3.1. The Drought Indicators from Soil Moisture

In the realm of drought monitoring using soil moisture data, extant research literature
delineates two principal methodologies: (1) comparative analysis with plant water demand,
and (2) the computation of soil moisture anomalies predicated on long-term records. The
former approach, though not reliant on lengthy datasets, necessitates high-quality soil
moisture data and the integration of soil properties to accurately gauge plant water demand.
In this study, we calculated the Soil Water Deficit Index (SWDI) from multiple soil moisture
datasets, including CYGNSS, SMAP, ERA5, and GLDAS-NOAH, employing a rigorous
methodology. The latter method, which involves delineating soil moisture anomalies,
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presents challenges due to the limited observational history of satellite-based soil moisture
data. Although some studies employ beta-fitting techniques to ascertain the percentage of
soil moisture, the universality of the beta distribution across diverse locations and temporal
dimensions remains a subject of inquiry. To address this, we employed the Cumulative
Distribution Function (CDF) matching technique to rectify soil moisture datasets against
ERA5 data. Leveraging the extensive ERA5 soil moisture data spanning from 1950 to
2022, we computed soil moisture anomalies as drought indicators, encompassing the Soil
Moisture Anomaly Percentage Index (SMAPI) and the Soil Moisture Anomaly (SMA).
Moreover, our innovative methodology involved treating ERA5 soil moisture time series
data, corrected via the CDF matching method, as a probability distribution instead of
employing beta fitting. This approach enabled the calculation of percentiles from the
stable distribution, yielding a novel drought indicator, thus distinguishing itself from
prior methods.

3.1.1. The Soil Water Deficit Index (SWDI)

The Soil Water Deficit Index (SWDI) serves as a pivotal metric for delineating drought
conditions, capturing the associated soil moisture deficit, and significantly impacting the soil
moisture suction capacity crucial for various crop types [44]. Widely recognized as a robust
agricultural drought index, the SWDI derives its efficacy from its foundation in soil moisture
and fundamental soil water parameters, particularly soil moisture at available water capacity
(AWC) and field capacity (FC) [21]. This index identifies key attributes defining agricultural
drought events. The SWDI is calculated employing the following formula:

SWDI =
(

θ − θFC
θAWC

)
× 10 (1)

where θ represents soil moisture (cm3/cm3), and θAWC and θFC denote the volumetric
water content (cm3/cm3) at available water capacity and field capacity, respectively. The
θAWC is calculated by subtracting the θFC from the volumetric water content at the wilting
point (θWP). Positive SWDI values indicate soil moisture contents surpassing field capacity,
indicating excess water available beyond capillary storage for crop growth. Conversely,
negative SWDI values signify drought conditions, categorized as mild (−2 to 0), moderate
(−2 to −5), severe (−5 to −10), and extreme (less than −10) droughts.

In this study, we utilized the pedo-transfer function (PTF) technique to estimate
the θWP and θFC based on soil physical characteristics derived from the Soil Database
“SoilGrids250m”, as referenced in [21]. The PTF method acts as a vital bridge between
soil data and hydraulic characteristics, proving invaluable in areas lacking specific soil
water parameters. Specifically, we employed the PTF model proposed by Saxton and
Rawls [45] to derive soil water characteristics from pertinent soil physical attributes. The
soil moisture contents at field capacity (θFC) and wilting point (θWP) were calculated from
the “SoilGrids250m” dataset [9,46]. These datasets have a spatial resolution of 250 m,
which we aggregated to a 36 km resolution to align with the CYGNSS data resolution. The
calculations for the θWP and θFC were as follows:

θWP = θ∗1500 + (0.14θ∗1500 − 0.02) (2)

θ∗1500 = −0.024S + 0.487C + 0.006OM + 0.005(S × OM)− 0.013(C × OM)+
0.068(S × C) + 0.031,

θFC = θ∗33 +
[
1.283(θ∗33)

2 − 0.374θ∗33 − 0.015
]
, (3)

θ∗33 = −0.251S + 0.195C + 0.011OM + 0.006(S × OM)− 0.027(C × OM)
+0.452(S × C) + 0.299
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where S represents sand (% weight), C signifies clay (% weight), and OM denotes organic
matter (% weight), converted from organic carbon by a factor of 0.58. The texture (% sand,
% silt, and % clay) data were sourced from the “SoilGrids250m” Soil Database.

3.1.2. The Soil Moisture Anomaly Percentage Index (SMAPI)

The Soil Moisture Anomaly Percentage Index (SMAPI) is a pivotal metric utilized to
quantify the percentage departure of soil moisture from its multiyear average, providing
crucial insights into drought severity [25]. The SMAPI, expressed as a percentage, is derived
by computing the disparity between the actual soil moisture and the multiyear average
for the corresponding period, divided by the multiyear average. This calculation captures
the relative deviation in the soil moisture from its expected value, thereby characterizing
deviations from normal climate conditions:

SMAPIk,i =
SMk,i − SMi

SMi
× 100% (4)

where SMk,i signifies the soil moisture on the i-th day of the k-th year, while SMi represents
the corresponding multiyear average for the i-th day of the year. The magnitude of the
negative SMAPI value directly correlates with the drought severity. The classification
criteria for the SMAPI are as follows: mild drought (−5 to −15), moderate drought (−15 to
−25), severe drought (−25 to −35), and extreme drought (less than −35). Importantly, the
use of a relative, rather than an absolute, soil moisture deficit enables robust comparisons
of drought severity across diverse regions and time spans, facilitating comprehensive
large-scale and long-term drought analyses.

3.1.3. The Soil Moisture Anomaly (SMA)

In several studies, researchers have employed a rescaling technique, converting vol-
umetric soil moisture content to a percentage (or degree) of saturation. This approach
corrects the soil moisture index for spatial variations in soil porosity [26,47,48]. The rescal-
ing is performed relative to the observed minimum and maximum soil moisture values
recorded over an extended period. This rescaling strategy enables the calculation of a Soil
Moisture Anomaly (SMA) using the following formula:

SMAk,i =
SMk,i − min(SMi)

max(SMi)− min(SMi)
× 100% (5)

where SMk,i represents the soil moisture value on the i-th day of the k-th year for a certain
grid, min(SMi) denotes the minimum soil moisture value on the i-th day of the year based
on multiyear records, and max(SMi) is the maximum soil moisture value on the i-th day of
the year from multiyear records. According to prior research [27], the drought classification
based on SMA is as follows: mild drought occurs when the SMA falls within the range of
30 to 40, moderate drought within 20 to 30, severe drought within 10 to 20, and extreme
drought less than 10.

3.1.4. The Percentile

Several prior studies have traditionally modeled soil moisture data to adhere to the
beta distribution, employing beta-fitting methods to derive percentiles serving as drought
indices [10,24]. However, the soil moisture dataset sourced from ERA5 spans an extensive
period, encompassing data from 1950 to 2022, thereby providing a stable distribution. This
extended timeframe permits the characterization of a population distribution for each grid.
Leveraging the probability distribution derived from ERA5 data eliminates the need to
assume a beta distribution for soil moisture, sidestepping the complexities associated with
estimating the upper and lower limits of such a distribution. Utilizing the probability
distribution from ERA5 data spanning from 1950 to 2022, we computed the percentiles
of CDF-corrected soil moisture obtained from the CYGNSS, SMAP, GLDAS-NOAH, and
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raw ERA5-land datasets within the timeframe of 1 January 2018 to December 2022. These
percentiles, rooted in ERA5 historical data, serve as comprehensive drought indicators.
The drought classification criteria based on the Percentile align with those of the SMA: a
percentile in the range of 30 to 40 denotes mild drought; within 20 to 30, moderate drought;
within 10 to 20, severe drought; and less than 10, extreme drought. This methodology
ensures a robust and comparable assessment of drought severity across various datasets
and regions.

3.2. The Cumulative Distribution Function (CDF) Matching Technique

Soil moisture data acquired from various sources, such as satellite retrievals and
land surface models, have proven valuable in elucidating seasonal cycles and anomaly
patterns. However, these datasets often exhibit disparities in mean values and variability,
necessitating bias removal for meaningful comparisons of diagnostic outcomes [49]. To
address this, the Cumulative Distribution Function (CDF) matching technique has emerged
as a widely adopted method for correcting biases inherent in satellite-based soil moisture
datasets [49,50]. Previous studies, including Cao et al. [27], have successfully employed
CDF matching to rectify global satellite soil moisture data obtained from the GLDAS,
thereby enhancing the ability of satellite soil moisture data to capture drought events. In this
study, we applied the CDF matching approach, as described by Singh et al. [51], to mitigate
systematic errors arising from factors such as instrument calibration or model inaccuracies.
Specifically, we utilized soil moisture data from ERA5-land to perform bias corrections
on the soil moisture datasets obtained from CYGNSS, SMAP, and GLDAS-NOAH from
1 January 2018 to 31 December 2022. It is crucial to emphasize that when calculating the
Soil Water Deficit Index (SWDI), we used raw soil moisture values from CYGNSS, SMAP,
GLDAS-NOAH, and ERA5-land to showcase their distinct data characteristics. However,
for the computation of the remaining three indices—the Soil Moisture Anomaly Percentage
Index (SMAPI), Soil Moisture Anomaly (SMA), and Percentile—the soil moisture datasets
were subjected to CDF correction. This correction was imperative to align the datasets with
the probability distribution derived from ERA5-land soil moisture records spanning from
1950 to 2022, ensuring the accuracy and consistency of subsequent analyses.

3.3. Drought Characterization

Efficient comparison of different datasets for drought analysis necessitates a robust
characterization of drought events. Droughts exhibit various measurable characteris-
tics [25], among which we focused on two key aspects: the percentage of drought events
and drought severity, both calculated on a daily scale. To facilitate meaningful comparisons
and align our analyses with existing research, the daily computations were transformed
into monthly metrics, allowing for direct comparison with the SPEI results.

Percentage of drought events: The percentage of drought events was computed by
establishing the ratio of the number of months under severe drought conditions to the
total number of months during the study period. This ratio was then multiplied by 100,
yielding a percentage value. Essentially, this metric quantifies the proportion of time a
specific location experiences drought. Spatial distributions of the percentage of drought
events were derived based on various drought indicators.

Drought severity: Drought severity was determined based on monthly data and
quantified via the accumulation of deficits below predetermined truncation levels.

It is crucial to note that our focus was specifically on severe or more extreme drought
conditions. Therefore, the threshold values utilized were an SWDI of less than −5, an
SMAPI of less than −25, an SMA and Percentile of less than 20, and an SPEI of less than
−1.5. Furthermore, the performances of our chosen drought indicators were systematically
evaluated against SPEI using binary skill indicators, including total score (TS), hit rate
(HR), miss rate (MR), and false alarm rate (FAR) [52,53]. These indicators provided a
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comprehensive assessment of the effectiveness of our selected drought indices in capturing
severe drought events, enabling a nuanced comparison with the SPEI results.

TS =
TP

TP + FP + FN
, (6)

HR =
TP

TP + FP
, (7)

MR =
FN

TP + FN
, (8)

FAR =
FP

TP + FP
(9)

where true positives (TPs) represent instances correctly identified as drought events by
both the SPEI and the soil-moisture-based indicator. False positives (FPs) are non-drought
periods incorrectly classified as drought events, while false negatives (FNs) represent
drought periods misclassified as non-drought events.

The total score (TS) assesses the overall accuracy of drought event classification.
The TS ranges from 0 to 1, with 1 indicating perfect classification for severe drought
events and 0 signifying complete misclassification. The HR specifically measures the
accuracy of identifying severe drought events. An HR score of 1 signifies ideal performance,
whereas 0 indicates complete misclassification. The HR is calculated based on true positives
(TPs) and false positives (FPs). The MR quantifies instances where severe drought events
are incorrectly identified as non-drought events. An MR score of 1 represents perfect
classification, while 0 signifies complete misclassification. The FAR evaluates cases where
non-drought periods are falsely identified as severe drought events. A FAR score of
1 signifies optimal performance, while 0 indicates total misclassification. It is essential to
note that these metrics operate with a proportional relationship. When the denominator
equals 0, indicating a lack of data, the corresponding grid value is designated as a missing
value, ensuring the precision and reliability of the evaluation process.

4. Comparative Analysis of CYGNSS Soil Moisture Data with SMAP, ERA5,
and GLDAS-NOAH

To comprehensively elucidate the spatiotemporal variability of the CYGNSS soil moisture
dataset, we undertook a comparative analysis of the CYGNSS data with SMAP, as well as
model-derived data from ERA5-land and GLDAS-NOAH, to delineate both similarities and
distinctions in soil moisture content. It is pertinent to note that CYGNSS and SMAP, being
satellite-retrieved data products, possess certain revisit intervals, leading to the occasional
absence of data at specific spatial grids on a daily basis. In contrast, the model-generated data
from ERA5-land and GLDAS-NOAH do not have any gaps, ensuring continuous coverage. To
provide a clear depiction of data availability, Figure 2 shows the proportion of data volume from
the daily CYGNSS and SMAP datasets from 1 January 2018 to 31 December 2022 (encompassing
a total of 1825 days, excluding February 29 in leap years).

The CYGNSS dataset exhibits significant variability in temporal coverage across
different regions. Near the equatorial belt, specifically in tropical rainforest areas such as
the Amazon River Basin, equatorial Africa, and the Indonesian region, the CYGNSS data
display a substantial number of missing values. In these regions, only 15% of the time
series contain valid data due to the limited ability of satellite retrievals in tropical rainforest
and permafrost regions. Additionally, CYGNSS lacks data for the Tibetan Plateau, resulting
in extensive missing values attributed to the same limitations. However, in areas excluding
these regions, CYGNSS demonstrates a relatively high time coverage rate, exceeding 70%.
Particularly noteworthy regions with high coverage include North America, northern
Africa, northern India, Pakistan, China, and southern Australia. In contrast, the SMAP
data exhibit a lower time coverage rate, approximately 40% on average. Notably, the
Tibetan Plateau displays a relatively low time coverage rate, only approximately 20% or
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less. Seasonal variations have a minimal impact on CYGNSS data, maintaining consistent
coverage throughout different seasons. Conversely, during the summer months, SMAP
data experience a slight decrease, particularly in regions distant from the equator, resulting
in an approximate 5% reduction in data availability.
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to 31 December 2022, totaling 1825 days.

Figure 3 depicts the spatial distribution of the average (Figure 3a–d) and standard
deviation (Figure 3e–h) of the four soil moisture datasets. In terms of average soil moisture,
all datasets exhibit a consistent spatial structure, with elevated levels observed in the
tropical Amazon Basin, Indonesia region, equatorial Africa, southern China, Southeast
Asia, and the eastern United States. However, substantial differences in absolute values are
notable across the datasets. The CYGNSS values are comparatively smaller than the SMAP
data in most regions, particularly in the eastern United States, southern China, Southeast
Asia, and eastern Australia, with differences of up to 0.05 cm3/cm3. When compared with
the model data (ERA5 and GLDAS-NOAH), the CYGNSS values are smaller in tropical
rainforests (such as the Amazon Basin, equatorial Africa, and Indonesia) but larger in other
regions, notably, Iran, Pakistan, western India, and northern Australia. Furthermore, the
CYGNSS data in tropical rainforest regions are smaller than those of SMAP, yet larger than
those of ERA5-land and GLDAS-NOAH.

Figure 3e–h illustrates the standard deviation of the four datasets. Similar spatial
patterns are observed, particularly in the Indian region, both sides of the equator in Africa,
and eastern Brazil, owing to distinct drought seasons in these areas. Notably, the ERA5
data exhibit a greater standard deviation compared with the other datasets, followed by
the SMAP data. CYGNSS demonstrates a larger standard deviation in regions such as
the eastern United States, southern Brazil, and the equatorial region of southern Africa
while displaying smaller variations in southern China, Indonesia, western North America,
the Amazon River Basin, and Australia. The maximum difference in standard deviation
between CYGNSS and SMAP reaches 0.05. In comparison with ERA5, CYGNSS exhibits a
higher standard deviation in the Sahara region, Arabian region, Iran region, and specific
parts of the Amazon River Basin, while generally displaying lower values in other regions.
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When compared with GLDAS-NOAH, CYGNSS shows a larger standard deviation in the
Amazon River Basin, Southeast Asia, the eastern United States, and equatorial Africa,
but smaller variations in other regions. In areas where accurate soil moisture estimates
are challenging, such as tropical rainforests and desert regions, CYGNSS soil moisture
data exhibit smaller standard deviations compared with the SMAP, ERA5, and GLDAS-
NOAH results. These variations highlight the complexities and limitations of soil moisture
estimation across different geographic and environmental contexts.
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Figure 3. The spatial patterns of average daily soil moisture levels from (a) CYGNSS, (b) SMAP,
(c) ERA5, and (d) GLDAS_NOAH, along with the corresponding standard deviations depicted in
panels (e–h). The data span from 1 January 2018 to 31 December 2022.

Figure 4 illustrates the temporal dynamics of soil moisture on different days of the
year averaged over the period 2018 to 2022 for specific sample points. The first grid point
(32◦N, 110◦W) is in the western United States, characterized by scrubland (land cover
type) and an arid, steppe (BS) climate. During summer, autumn, and winter, the soil
moisture content is relatively high. Among the datasets, ERA5-land exhibits the highest
values, followed by GLDAS-NOAH, while CYGNSS records the lowest average values
with minimal variability. The second grid point (25◦N, 80◦E) is in northern India, featuring
croplands (land cover type) and a temperate, dry winter (Cw) climate. Notable distinctions
between dry and wet seasons are observed, with all datasets capturing these seasonal
variations. The ERA5 data indicate higher average soil moisture values compared with
the other datasets, with substantial variability. CYGNSS, in contrast, records the smallest
average values and exhibits limited variation. The third grid point (0◦, 65◦W) is in the
Amazon River Basin, characterized by the tropical rainforest (Af) land cover type. While
soil moisture variability remains low across all datasets, significant differences emerge
in average values. SMAP records the highest, while GLDAS-NOAH reports the lowest,
with a disparity of approximately 0.2. The fourth grid point (20◦S, 30◦E) is in southern
Africa, featuring grasslands (land cover type) and a temperate, dry winter (Cw) climate. All
datasets display consistent interannual variations. ERA5-land exhibits the highest average
values, whereas SMAP shows smaller averages with numerous discrete points, likely due
to reduced observation frequency. This analysis provides insights into the spatiotemporal
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characteristics of soil moisture across diverse geographic locations, highlighting differences
between the datasets.
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Figure 4. The mean daily time series of soil moisture at four specified locations from CYGNSS (in
red), SMAP (in blue), ERA5-land (in green), and GLDAS-NOAH (in purple). The data span from
2018 to 2022 and are averaged over each day of the year. The longitude and latitude coordinates for
each location are provided in the upper left corner of the respective panel.

To elucidate the consistency in soil moisture dynamics across the four datasets,
we present the pairwise correlation coefficients between CYGNSS, SMAP, ERA5, and
GLDAS_NOAH in Figure 5. The results show the concurrence of soil moisture variations
among these datasets. Across the studied regions, the correlation coefficients exhibit higher
values in areas characterized by significant soil moisture variability, such as North America,
India, and equatorial Africa. This phenomenon can be attributed to the presence of robust
and distinct signals in these high-variability regions. Notably, the correlation between
CYGNSS and SMAP datasets is stronger than the correlation between CYGNSS and the
other two datasets. This heightened correlation can be attributed to the incorporation of
SMAP data in the CYGNSS soil moisture retrieval process, enhancing the mutual consis-
tency between the two datasets. However, the correlation coefficients between CYGNSS
and the remaining three datasets are comparatively smaller when compared with the
correlations between the other three datasets, underscoring the nuanced interplay of soil
moisture variations captured by these datasets.

The root-mean-square error (RMSE) values of the datasets against each other are de-
picted in Figure 6, illustrating the disparities among the four soil moisture datasets. Regions
with elevated average soil moisture contents, notably, in South America, and near the equa-
torial regions of Africa, India, southern China, and Southeast Asia, exhibit larger RMSE
values. The RMSE between CYGNSS and SMAP is smaller than that between CYGNSS and
the other two datasets. The results underscore the strong correlation and interdependency
between the CYGNSS and SMAP datasets, highlighting their close connection.

In diverse climate and land cover contexts, the disparities in the average and standard
deviation of the soil moisture data from the four datasets are apparent. To scrutinize
these distinctions in soil moisture between CYGNSS and the other three datasets, the
correlation coefficients and RMSE distributions under distinct climate types are illustrated
in Figure 7. The correlation coefficients exhibit notable values in the BS, AW, and CF regions,
whereas they are relatively diminutive in the AF, AM, and DE regions. As analyzed earlier,
the correlation between CYGNSS and SMAP consistently surpasses that with the other
two datasets across varying climate types. Generally, the correlation between CYGNSS
and ERA5 outweighs that with GLDAS-NOAH. Regarding RMSE outcomes, discernible
disparities emerge in the relationship between CYGNSS and the other three datasets in
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AF and AM, while more marginal distinctions manifest in BS and BW due to significant
divergences in the average soil moisture values in these regions.
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GLDAS_NOAH from 1 January 2018 to 31 December 2022. The datasets used for calculating the cor-
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SMAP and ERA5, (e) between SMAP and GLDAS_NOAH, (f) between EAR5 and GLDAS_NOAH.
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Figure 6. Root-mean-square error (RMSE) values representing the disparity between the daily soil
moisture datasets of CYGNSS, SMAP, ERA5, and GLDAS_NOAH, observed from 1 January 2018 to
31 December 2022. The upper left corner of each panel denotes the datasets employed for calculating
the RMSE values: (a) is between CYGNSS and SMAP, (b) between CYGNSS and ERA5, (c) between
CYGNSS and GLDAS_NOAH, (d) between SMAP and ERA5, (e) between SMAP and GLDAS_NOAH,
(f) between EAR5 and GLDAS_NOAH.
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different Köppen-Geiger climate classifications for various data pairs. The distributions are depicted
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range encompassing the 75th and 25th percentile values, and horizontal lines indicating the average
values within each classification.

Figure 8 illustrates the correlation coefficients and RMSE values between CYGNSS and
the other three datasets under various land cover types. Apparently, the correlation between
CYGNSS and SMAP outperforms that between CYGNSS and the other two datasets across
diverse land cover types. The CYGNSS-SMAP pair exhibits the smallest RMSE, except
for the forest type. The preceding findings indicate that the RMSE values and correlation
coefficients between CYGNSS and the other datasets are related to CYGNSS’s own soil
moisture average and standard values, respectively. Table 1 provides the correlation
coefficients between the average correlation of CYGNSS with the other three datasets and
the standard deviation of CYGNSS soil moisture data for different land cover and climate
types. The correlation coefficients between the RMSE and average soil moisture values
are presented in Table 2, along with corresponding grid points for distinct land cover and
climate types. The correlation and standard deviation consistently show a significantly
positive relationship across all climate and land cover types, particularly in the BW and
Cw climate types, with the correlation coefficient exceeding 0.65. Correlation coefficients
above 0.6 were achieved in barren, savanna, and grassland. Regarding the RMSE and
average soil moisture values, notable correlations were observed, specifically reaching 0.77
in BW, 0.67 in shrubland, and 0.91 in barren. These results indicate the intricate relationship
between RMSE, average values, correlation coefficients, and standard deviation. However,
the variations in this relationship across different climates and land cover types emphasize
the need to carefully consider the soil moisture accuracy obtained from CYGNSS data
under specific climate conditions.
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Figure 8. The same as Figure 7a,b but for different land cover types.

Table 1. Correlation between CYGNSS soil moisture data and other datasets (SMAP, ERA5, and
GLDAS-NOAH) and standard deviation of CYGNSS soil moisture across different climate types and
land cover types. Grid numbers are presented in the second row, and correlation coefficients are
displayed in the third row.

Af Am Aw BW BS Cs Cw Cf DE

3990 3252 12,078 17,920 8209 760 4355 4152 1015
0.28 0.45 0.59 0.76 0.31 0.29 0.69 0.54 0.27

Forest Shrubland Savanna Grassland Cropland Barren

8993 6416 11,333 11,648 5416 11,849
0.45 0.37 0.61 0.44 0.65 0.69

Table 2. Correlation between root-mean-square error (RMSE) of CYGNSS soil moisture compared
with other datasets (SMAP, ERA5, and GLDAS-NOAH) and average soil moisture of CYGNSS
across different climate types and land covers. Grid numbers are presented in the second row, and
correlation coefficients are displayed in the third row.

Af Am Aw BW BS Cs Cw Cf DE

3990 3252 12,078 17,920 8209 760 4355 4152 1015
0.19 0.24 0.51 0.77 0.48 0.52 0.48 0.15 0.54

Forest Shrubland Savanna Grassland Cropland Barren

8993 6416 11333 11648 5416 11,849
0.16 0.67 0.34 0.53 0.35 0.91
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5. Performance Evaluation of Drought Indicators

Following the description in the methodology section, we employed soil moisture
data derived from CYGNSS, SMAP, ERA5-land, and GLDAS-NOAH to formulate drought
indicators. The computation of drought indicators was based on daily soil moisture values,
which were subsequently averaged to yield monthly results. Since CYGNSS and SMAP are
satellite products, they do not provide data on a daily basis. Upon monthly aggregation,
we found that for the majority of grid points, both satellite datasets offer 60 months of data
coverage spanning from January 2018 to December 2022 (figure not shown). Meanwhile,
CYGNSS exhibits missing values for grid points within the Amazon River Basin and
equatorial Africa. The Tibetan Plateau lacks CYGNSS data entirely, whereas SMAP data
do exist in this region, albeit with significant periods of missing values. Consequently, our
analysis did not include the drought situation on the Tibetan Plateau.

5.1. Drought Characteristics

In this section, we evaluate the drought indices derived from different soil moisture
datasets based on drought percentage and intensity, aiming to discern their effectiveness in
depicting drought conditions. Figure 9 illustrates the drought characteristics represented
by the SWDI across the four datasets. Concerning the drought percentage (Figure 9a–d), all
datasets indicate prolonged water scarcity in desert areas, grasslands, and specific regions
such as the Sahara Desert, Arabian Desert, South African grasslands, and parts of Australia.
These areas consistently exhibit extended periods of an insufficient water supply for plant
needs, signifying persistent drought conditions.
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Specifically, the CYGNSS data display a broader range and more intense long-term
drought conditions (with percentages exceeding 95%) in comparison with the other datasets.
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Conversely, regions with low drought occurrence (< 5%) are identified in the Amazon River
Basin, equatorial Africa, eastern North America, southern China, and Southeast Asia.
CYGNSS, when contrasted with SMAP and GLDAS-NOAH, portrays a larger extent of low-
percentage drought conditions, primarily due to higher soil moisture values detected near
the equatorial regions of Africa and South America. Additionally, the drought percentage
derived from CYGNSS surpasses that from other datasets in western North America.

Figure 9e–h presents the drought intensity from January 2018 to December 2022, where
green (values greater than 0) indicates the absence of severe drought events. The SWDI from
all four datasets exhibits similar spatial patterns and numerical values regarding drought
intensity. The intensity is notably higher in the Sahara Desert and Arabian regions, while
relatively milder drought conditions prevail in southern China, eastern North America,
and the Amazon River Basin. In some areas, particularly in southern China and parts
of eastern North America and the Amazon River Basin, no drought events have been
identified. Comparatively, CYGNSS identifies more regions without significant drought,
distinguishing it from the other datasets.

In contrast with the SWDI, the SMAPI is used to calculate the drought percentage
and severity, they are the drought indicators from soil moisture anomalies, enabling a
comparison of values across various grid points. Figure 10 shows the spatial distribution of
the drought percentage (a–d) and drought severity (e–h) derived from the SMAPI based
on the four datasets. Overall, there is a striking similarity in both the drought percentage
and severity characteristics among the four datasets. This uniformity arises from the
Cumulative Distribution Function (CDF) correction applied to the soil moisture data
from CYGNSS, SMAP, and GLDAS-NOAH, with reference to the ERA5 dataset, ensuring
consistency in their statistical distributions, including means and standard deviation. These
results depict drought characteristics with a high degree of similarity. Nonetheless, some
distinctions persist when comparing CYGNSS with the other three datasets. For instance,
the drought percentages calculated with CYGNSS are lower than those derived from the
other three datasets in regions such as western North America, southern China, and western
Australia. In terms of drought severity, CYGNSS consistently reports lower values than
the other datasets, particularly in southern China and western Australia. These differences
emphasize the subtle disparities in drought characteristics between CYGNSS and the
other datasets.

The drought characteristics derived from the Soil Moisture Anomaly (SMA) exhibit
remarkable similarities across the four datasets, as illustrated in Figure 11. When compared
with the SMAPI, the SMA indicates higher drought percentages in regions such as South
America, equatorial Africa, India, Southeast Asia, and southern China. This discrepancy
can be attributed to the differing criteria employed by these two indices to identify severe
drought conditions. Meanwhile, the SMA calculated from CYGNSS demonstrates lower
drought percentages and reduced drought severity in southern China and eastern Brazil
compared with the results derived from the other three datasets. It is crucial to acknowl-
edge a noteworthy observation: the outcomes derived from satellite-based soil moisture
assessments, encompassing both the CYGNSS and SMAP datasets, tend to overstate both
the proportion and intensity of drought in the Amazon River Basin. This discrepancy may
stem from the inherent limitations of satellite observation accuracy in tropical forest regions,
highlighting the complexities involved in accurately capturing drought dynamics in such
ecologically sensitive areas.

Figure 12 illustrates the drought percentage and severity based on the soil moisture
percentiles computed from the four datasets. The drought percentage and severity derived
from CYGNSS and ERA5 appear to be comparatively lower than those obtained from
SMAP and GLDAS-NOAH. This trend is particularly pronounced in regions such as
North America, India, and Australia, where CYGNSS and ERA5 consistently indicate
reduced drought percentages and severity when compared with SMAP and GLDAS-NOAH.
Building upon the earlier findings, it is worth emphasizing that the drought percentage
and severity values derived from CYGNSS remain notably lower in specific regions, such
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as Australia and southern China, in contrast with the corresponding outcomes from the
other three datasets.
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Figure 12. The same as Figure 9a–h but based on the Soil Moisture Percentile (Percentile).

For reference purposes, the drought characteristics defined by the Standardized Precipi-
tation Evapotranspiration Index (SPEI) are presented in Figure 13, with the selected drought
scenario being defined as cases where the SPEI value is less than −1.5. The results derived
from the SPEI analysis indicate that regions experiencing extreme drought are predominantly
concentrated in specific areas, including South America (specifically Brazil and Argentina),
the Sahara Desert, and the Arabian Desert, collectively accounting for approximately 25% of
the studied regions. Contrastingly, regions such as India, equatorial Africa, eastern North
America, and eastern Australia exhibit relatively small drought percentages, with some areas
exhibiting lower than 5%. Furthermore, examining drought intensity reveals that equatorial
Africa, eastern Australia, and India experience comparatively minor instances of drought,
with some regions even reporting no occurrence of drought. These findings underscore the
variability in drought conditions across different geographic regions from different drought
indicators based on different soil moisture datasets.

When comparing the drought characteristics derived from the SPEI with those based
on soil moisture, notable disparities emerge in terms of drought percentage values, their
spatial distributions, and the spatial structure of drought intensity. To quantify and assess
these differences across various soil-moisture-based drought indicators, we computed the
spatial correlations of the drought percentage and drought intensity between the SPEI and
the results obtained from different soil moisture datasets. These correlations are presented
in Figure 14. Concerning the drought percentage, the spatial correlations between the SPEI
and the different soil-moisture-based drought indicators, namely, the SWDI, SMAPI, and
SMA, are generally strong, all exceeding 0.2, with the exception of the Percentile-based
indicator. Among the three drought indicators (the SWDI, SMAPI, and SMA), the results
obtained from ERA5 show the highest correlation with the SPEI, outperforming other
soil moisture datasets. Furthermore, the spatial correlation between CYGNSS and SPEI is
superior to that of SMAP. Conversely, for drought intensity, the spatial correlations between
SPEI and the different drought indicators derived from various soil moisture datasets are
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generally weak. The performance of the SMA indicator is notably poor, with negative
correlations observed in the cases of the CYGNSS and SMAP results. While the correlations
for the SWDI and SMAPI based on different soil moisture datasets exceed 0.1, the results
from CYGNSS rank second only to those obtained from ERA5. These findings highlight the
ability of CYGNSS to depict drought conditions using certain drought indicators.
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5.2. Comparison with SPEI

The findings in the previous section elucidate the distinctions in drought characteristics
delineated by various drought indices utilizing diverse soil moisture datasets, which also
differ from the outcomes derived from the SPEI. To further evaluate the efficacy of soil-
moisture-based drought indices, we computed their correlation coefficients with the SPEI
time series. We analyzed several metrics, including the TS, hit rate, false alarm rate, and
miss rate for drought events.

Figure 15 illustrates the correlation between the SWDI derived from the four datasets
and the SPEI. The results reveal a similar correlation pattern across these four datasets,
with higher values in western North America, southern South America, South Africa, and
Australia. Among the datasets, ERA5 demonstrates the strongest correlation with the SPEI.
Nevertheless, CYGNSS exhibits comparatively lower correlation coefficients, especially in
regions such as southern China, India, and Pakistan. Considering the spatial grid propor-
tion where correlation coefficients exceed 0.23 (critical value at the 90% confidence level
with 50 degrees of freedom), CYGNSS accounts for only 48.2%, while SMAP achieves 64.7%.
In contrast, ERA5 (and GLDAS-NOAH) outperforms the others, reaching an impressive
proportion of 73.0% (72.3%).
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The correlation between the SMAPI and SPEI is presented in Figure 16. It shows
that the correlation coefficients for CYGNSS exhibit a significant decline when compared
with the SWDI condition. This decline is particularly pronounced in Africa, where several
regions display negative correlation coefficients. CYGNSS consistently yields results with
the lowest correlation coefficients in comparison with the other three datasets. The results
corresponding to ERA5 rank the highest, followed by GLDAS-NOAH, aligning with the
trends observed in the SWDI results. Figures 17 and 18, depicting the SMA and Percentile,
respectively, exhibit similar patterns to the SMAPI. In accordance with these drought
indices, ERA5 consistently holds the highest proportion of spatial grids, with correlation
coefficients surpassing the critical value of 0.23. In contrast, CYGNSS consistently ranks
the lowest, indicating that CYGNSS can characterize drought situations to some extent,
although its performance does not consistently match that of the other three datasets.
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Utilizing the SPEI results as a benchmark, different drought indicators derived from
various soil moisture datasets for severe drought events from January 2018 to December
2022 are evaluated. Figure 19 illustrates the outcomes obtained from the SWDI. The TSs
depicted in Figure 19 reveal that in comparison with drought events identified with the
SPEI, the SWDI exhibits relatively low scores overall. The maximum value, approximately
0.3, is observed in northern Africa, the Arabian region, and Iran. In contrast, in several
regions including eastern North America, southern China, India, the Amazon Basin, Africa,
and eastern Australia, the TSs are notably low, hovering at around 0.02 or even lower.
The poor TSs stem from an excessive identification of drought events based on the SWDI
assessments in most regions (except for southern China, Southeast Asia, the Amazon River
Basin, and eastern North America). This abundance of identified drought events results in
high hit rates, often reaching 0.9 in most regions. Consequently, the miss rates remain low,
but the false alarm rates are elevated, surpassing 0.9, leading to diminished TSs. Meanwhile,
in southern China, Southeast Asia, the Amazon River Basin, and eastern North America,
the SWDI fails to accurately identify sufficient drought events. As a result, these regions
exhibit high miss rates exceeding 0.9 and low hit rates, culminating in diminished TSs.
When compared with the other three datasets, CYGNSS exhibits spatial structures and
TSs that are quite similar. However, in certain regions such as western North America,
CYGNSS yields smaller scores compared with the other three datasets.

The skill scores for the SMAPI, SMA, and Percentile are presented in Figures 20–22,
respectively. The spatial patterns of TSs for these indices closely resemble those obtained
from the SWDI. Nevertheless, Percentile exhibits a poorer performance compared with the
other three drought indicators (the SWDI, SMAPI, and SMA), with high miss rates and false
alarm rates. Meanwhile, the TSs from CYGNSS show similar patterns and values to those
from the other three soil moisture datasets, although the TS from CYGNSS in southern
China consistently lags behind that of the other three datasets.
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Figure 19. Evaluation metrics for severe drought events: (a–d) total score (TS), (e–h) hit rate (HR),
(i–l) miss rate (MR), and (m–p) false alarm rate (FAR) obtained from SWDI analysis of the CYGNSS,
SMAP, ERA5, and GLDAS-NOAH datasets compared with results identified with SPEI from January
2018 to December 2022.
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5.3. Drought Case Studies

Severe drought events exhibit distinct spatial patterns. In this section, we highlight
three extreme drought cases from different regions to illustrate the performance of various
drought indicators derived from different soil moisture datasets in depicting these events.
In the summer of 2022, southern China experienced prolonged and severe drought condi-
tions, spanning both summer and autumn. The drought, characterized by a wide spatial
extent, long duration, and high intensity, peaked in August 2022. This prolonged period



Remote Sens. 2024, 16, 116 28 of 34

of high temperatures and drought significantly impacted agricultural production, water
resources, energy supply, and human health in the Yangtze River Basin and its southern
regions. Moreover, it adversely affected the local ecosystem. Simultaneously, during the
first half of 2022, North America endured intense and consecutive heatwaves, with some re-
gions experiencing daily maximum temperatures exceeding 45 ◦C. These high-temperature
heatwaves exacerbated drought development, with the most extensive and intense drought
observed in May, as indicated by the SPEI results (Figure 23a–e). In March and April 2022,
India and Pakistan faced severe heat waves, resulting in March being the hottest in India
since 1901. These conditions persisted through April, affecting large parts of northwestern
India. To delve into these events, we illustrate their drought progression and resolution
based on the SPEI in Figure 23. This representation highlights the peak periods of these
drought events in May (North America), August (southern China), and April 2022 (India
and Pakistan). In comparison, we present the drought conditions from different drought
indicators derived from various soil moisture datasets for North America in May 2022
(Figure 24), southern China in August 2022 (Figure 25), and India and Pakistan in April
2022 (Figure 26).
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Figure 23. Drought event development process depicted by the Standardized Precipitation Evapo-
transpiration Index (SPEI) across North America from March to July (a–e), southern China from June
to October 2022 (f–j), and India and Pakistan from February to June 2022 (k–o). (c,h,m) denote the
peaks of these drought events.
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(m–p) using diverse soil moisture datasets across North America in May 2022. The datasets are or-
ganized as follows: first column—CYGNSS dataset; second column—SMAP; third column—ERA5; 
and fourth column—GLDAS-NOAH. 
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Figure 24. Drought conditions represented by SWDI (a–d), SMAPI (e–h), SMA (i–l), and Percentile
(m–p) using diverse soil moisture datasets across North America in May 2022. The datasets are
organized as follows: first column—CYGNSS dataset; second column—SMAP; third column—ERA5;
and fourth column—GLDAS-NOAH.

The drought patterns in North America during May 2022 are depicted by various
drought indicators derived from different soil moisture datasets in Figure 24. Severe
drought events (shown in red) identified with the SWDI and SMA align closely but are
larger with the patterns identified with the SPEI. However, areas identified with the SMAPI
and Percentile are comparatively smaller and have the wrong spatial structure compared
with the SPEI. The results from CYGNSS, apart from the SWDI, demonstrate smaller areas
and weaker intensity across other drought indices compared with the other three datasets,
indicating its limited performance in describing this specific drought event.

The drought conditions prevalent in southern China in August 2022 are shown in
Figure 25. In general, the drought event as represented by diverse drought indicators
and soil moisture datasets exhibits a relatively confined geographic extent and limited
intensity. Among the datasets, ERA5 consistently yields the most robust results across
various drought indicators. It demonstrates remarkable performance, particularly evident
in the Percentile index, where it outperforms the SPEI results. In contrast, the performance
of the CYGNSS dataset across different drought indicators is notably less effective in
capturing the intensity and spatial scope of this specific drought event.

The April 2022 drought affecting India and Pakistan is well replicated by the SWDI
across various datasets, as illustrated in Figure 26a–d. However, results from alternative
drought indicators and datasets typically portray a comparatively reduced extent and
intensity in relation to the SPEI-based findings. The SMA-based results exhibit variations in
the range and location of drought occurrence for ERA5 and SMAP (Figure 26j,k). Relative
to other datasets, CYGNSS is better equipped to depict drought conditions with the SWDI
indicator, although it tends to be suboptimal when utilizing alternative drought indicators,
as it typically portrays a limited intensity and spatial extent of drought events.
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6. Discussion

The comparative analysis of CYGNSS soil moisture data with SMAP, ERA5, and
GLDAS-NOAH indicates that CYGNSS exhibits distinctive temporal coverage variations
across regions, with limitations in equatorial rainforests and the Tibetan Plateau. The
spatial patterns of the averages and standard deviation in the soil moisture reveal consis-
tent structures across the datasets. However, notable differences in absolute values are
observed, especially in regions like the Amazon Basin, southern China, and Southeast
Asia. CYGNSS tends to exhibit smaller values in certain regions compared with the other
datasets, suggesting potential biases. The standard deviation analysis demonstrates distinct
variability patterns, with CYGNSS presenting unique characteristics in specific regions.
Examining the influence of climate and land cover on data disparities reveals nuanced
relationships. Correlation coefficients and RMSE values vary across climate types, empha-
sizing the impact of specific climate conditions on soil moisture accuracy. These features
of CYGNSS are crucial for interpreting soil moisture dynamics across diverse geographic
contexts and are helpful for improving the inversion of soil moisture from CYGNSS data.

When assessing the performance of drought indicators derived from various soil
moisture datasets, our study focused on drought percentage and intensity. The drought
indicator highlights prolonged water scarcity in desert areas, grasslands, and specific
regions such as the Sahara Desert, Arabian Desert, South African grasslands, and parts of
Australia. CYGNSS data exhibit broader and more intense long-term drought conditions
compared with other datasets, especially in desert areas. However, regions with low
drought occurrence are identified in the Amazon River Basin, equatorial Africa, eastern
North America, southern China, and Southeast Asia. The drought intensity analysis
revealed consistent spatial patterns across all datasets, with higher intensity observed in
the Sahara Desert and Arabian regions. However, CYGNSS consistently identifies more
regions without significant drought. The performance of drought indicators from CYGNSS
showcases the importance of improving the accuracy of CYGNSS data.

The comparison of drought indicators with the SPEI displays some description of
their efficacy. Spatial correlations between the SWDI, SMAPI, SMA, and Percentile with the
SPEI indicate strong correlations for drought percentage, particularly with ERA5. CYGNSS
exhibits notable spatial structures and correlation coefficients, though its performance varies
across regions. In describing severe drought events, CYGNSS, while exhibiting similarities
with other datasets, may demonstrate reduced scores in specific regions, which emphasizes
the need for cautious interpretation. The case studies of severe drought events in southern
China, North America, and India/Pakistan illustrate the performance of different drought
indicators. CYGNSS tends to depict smaller areas and weaker intensities across various
drought indices compared with the other datasets. The soil moisture data from ERA5
usually exhibit a better performance in describing drought in almost all drought indicators.
This may be due to its generation process, which assimilates meteorological information
such as observation precipitation. Thus, in order to improve the accuracy of CYGNSS
soil moisture retrievals, it is necessary to introduce meteorological elements, especially
precipitation, into the generation process.

7. Conclusions

In this study, we conducted a comprehensive analysis of CYGNSS satellite soil mois-
ture data spanning from 1 January 2018 to 31 December 2022, comparing them with the
SMAP, ERA5, and GLDAS-NOAH datasets. Our analysis revealed that CYGNSS exhibited
similar spatial patterns in the mean soil moisture and standard deviation compared with
the other datasets. However, CYGNSS displayed a relatively smaller standard deviation
in most studied regions. The relationship between CYGNSS and other datasets varied
across different climate and land cover types. Specifically, CYGNSS exhibited the strongest
correlation with SMAP, followed by ERA5. This relationship was significantly influenced
by CYGNSS’s own standard deviation. Higher standard deviations led to higher correlation
coefficients. Additionally, the average RMSE was related to CYGNSS’s mean soil moisture
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values, indicating that larger average values led to higher RMSE values. These relationships
underscore the importance of accounting for diverse climate and land cover types when
interpreting CYGNSS soil moisture data.

To assess CYGNSS’s ability to characterize drought, we constructed four drought
indicators (the SWDI, SMAPI, SMA, and Percentile) using the CYGNSS, SMAP, ERA5, and
GLDAS-NOAH soil moisture datasets. These indicators were then compared with the
SPEI index on a monthly scale. The results demonstrated that CYGNSS soil moisture data
exhibited drought characterization abilities. The spatial patterns of drought characteristics,
such as the drought percentage and average intensity, presented by CYGNSS using different
drought indicators were comparable to those of the other soil moisture datasets. However,
the recognition skill for severe drought events was relatively weak for all datasets, with
CYGNSS performing the least effectively and ERA5 exhibiting the highest skill.

In an effort to construct drought indicators based on long-term soil moisture anomalies,
we corrected the CYGNSS soil moisture data with the cumulative distribution function.
Although the performance of the resulting drought indicators (the SMAPI, SMA, and
Percentile) after correction was comparable to that of the SWDI, and the comparison results
of the drought event descriptions were consistent, there is still room for improvement.
Future research directions could involve correcting soil moisture data based on site-specific
observations to enhance accuracy. Additionally, we recommend exploring the weekly or
pentad characteristics of drought indicators to provide a more detailed understanding of
drought occurrence and development.

This study shows the potential and limitations of CYGNSS satellite soil moisture
data in characterizing drought events. While CYGNSS shows promise, addressing its
limitations via further calibration and considering different temporal scales will enhance its
applicability in drought monitoring and prediction. The findings from this study contribute
to our understanding of the evolving landscape of satellite-based soil moisture data and
their utility in drought analysis.
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