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Abstract: The impact of mining effects is undoubtedly an important research topic, especially in the
case of assessing the effects of postmining factors. This study examines the drought in the Olkusz
region using satellite imagery (Sentinel-2) and remote sensing indices. The analysis reveals that the
region experienced multiple types of drought, including hydrogeological drought due to groundwater
level lowering caused by mining activities, agricultural drought resulting from insufficient soil
moisture, hydrological drought characterized by reduced water flow in rivers, and meteorological
drought linked to decreased precipitation and high temperatures. This study demonstrates the
usefulness of optical imaging and remote sensing indices in monitoring and assessing drought
conditions. The results indicate significant changes in vegetation health and water content, as well as
alterations to the natural environment within the region. This research highlights the importance
of considering both human-induced and natural factors when evaluating drought phenomena.
Continued monitoring and expansion of the study area would provide valuable insights into the
long-term effects of weather conditions and the broader impacts on the ecosystem.

Keywords: remote sensing; drought; postmining

1. Introduction

Monitoring and assessing drought conditions have become increasingly crucial in the
context of climate change and anthropogenic activities [1–3]. Remote sensing technologies
offer a powerful tool for these evaluations, allowing for the monitoring of large and
inaccessible areas and providing quantitative data for analyses [4–6]. Hydrological and
hydrogeological drought occurring within mining areas is a commonly encountered and
hazardous phenomenon [7,8]. The exploitation of deposits conducted in underground
mines involves dewatering, which results in changes in water conditions [9,10]. This, in
turn, can have an impact on increases in surface water pollution, as well as the drainage of
wetlands and marshy areas [11,12].

Gerwin [13] drew attention to the decrease in groundwater levels in the western brown
coal mining district of the Rhineland, the largest brown coal mining area in Europe, which
has affected an approximately 4400 km2 area [14,15]. Similar issues have arisen in other
mining regions in Germany, such as in the Lusatia region [16]. In this area, as mines are
being progressively closed, the water level continues to decline, raising concerns about
maintaining the minimum water level in the Sprewa River.

The above implies that the proper management of areas affected by mineral extrac-
tion, the rational use of groundwater resources, and ensuring necessary environmental
protection even after the cessation of mining activities play a crucial role in regions heavily
impacted by human intervention in nature. Accurate and continuous monitoring plays
a significant role in the proper reclamation of postmining areas. Modern imaging meth-
ods such as aerial scanning or satellite imagery are utilized for this purpose. This issue
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is addressed, for example, by Sun et al. [17], who describe a method for quantitatively
determining the impact of mining activities on groundwater level declines and vegetation
using Sentinel-2 time series in monitoring iron mining areas in Liaoning Nanfen (LNMA),
Sanheming (IMMA), and Sichuan Hongge (SCMA). Jawecki et al. [18] report the use of
LiDAR data to estimate water retention in the region of the town of Strzelin in southern
Poland, which includes approximately 80 inactive quarries and around 270 sand mines.

The evaluation and estimation of droughts using remote sensing data with limited
access to ground observations are an important direction of research [1,19,20]. Remote
sensing indices have been widely used for drought monitoring, providing an efficient way
to assess large areas over time [21–23]. Each index is designed to measure specific variables
like vegetation health, soil moisture, or water content and thus offers different insights into
drought conditions.

The Normalized Difference Vegetation Index (NDVI) is a key tool for assessing vegeta-
tion health and is widely used in environmental monitoring [24–26]. NDVI values decrease
when vegetation is stressed, often because of drought conditions [27]. In a study by Tucker
et al. [28], the researchers expanded the NDVI datasets to be compatible with MODIS and
SPOT data, enhancing their applicability in assessing vegetation health during drought
events. Modified Soil-Adjusted Vegetation Index 2 (MSAVI2) was designed to improve
upon earlier vegetation indices; MSAVI2 has proven useful in monitoring areas with sparse
or mixed vegetation [29]. This index is sensitive to soil background, allowing for more
accurate assessments of drought, particularly in regions with less dense vegetation. The
Moisture Stress Index (MSI) was introduced to monitor vegetation leaf water content and
has been used for assessing water stress in plants [30]. The index aids in the identification
of plant water content, which is critical in evaluating drought conditions. The Normalized
Difference Water Index (NDWI) was introduced as a tool to monitor liquid water in vegeta-
tion; NDWI is commonly used to observe hydrological drought by detecting changes in
water bodies [31]. This index can effectively track reductions in water level or flow, making
it invaluable for drought monitoring. The Normalized Multiband Drought Index (NMDI)
provides a sensitive measure of moisture conditions, particularly useful in drought-affected
regions [32]. This index has been employed in long-term studies to assess the impacts of
drought over extended periods.

In the field of remote sensing applied to drought monitoring, these spectral indices
have been tailored to capture various dimensions of drought phenomena. The Normalized
Difference Water Index (NDWI) has two distinct variants, each serving specific purposes.
For example, Islam and Sado [33] employed the first variant of NDWI to delineate open
water features in Bangladesh and found it efficacious in tracking hydrological changes,
thereby indirectly signaling drought conditions. Conversely, Xiao et al. [34] used the second
NDWI variant to scrutinize water stress in rice paddy fields in South and Southeast Asia,
demonstrating its utility in agricultural drought assessment. Similarly, the Normalized
Difference Vegetation Index (NDVI) remains a prevalent tool in vegetation monitoring.
Pettorelli et al. [35] used the NDVI to scrutinize ecological responses to environmental
changes, concluding that diminishing NDVI values serve as robust indicators of drought-
induced vegetation stress. Fensholt and Sandholt [36] also employed NDVI, along with
other indices, to assess water stress in semiarid environments, corroborating its effectiveness
in drought monitoring. Roerink et al. [37] used Modified Soil-Adjusted Vegetation Index 2
(MSAVI2) in the Sahel region to assess vegetation response to water availability, affirming
its suitability for drought studies. The Normalized Multiband Drought Index (NMDI) has
been adopted for long-term drought impact evaluations. For instance, Gu et al. [12] used
the NMDI to examine a five-year drought cycle in the central Great Plains, establishing the
index’s sensitivity to moisture conditions. Similarly, Feng et al. [38] utilized the NMDI to
corroborate Gravity Recovery and Climate Experiment (GRACE) data, concluding that it
provides valuable insights into groundwater depletion, a key factor in prolonged droughts.
Finally, the Moisture Stress Index (MSI) has been applied to detect plant water stress.
Ceccato et al. [30] utilized the MSI to monitor vegetation leaf water content, identifying it
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as an effective marker of drought-induced plant stress, while Peñuelas et al. [39] found it
reliable for assessing water stress as an early sign of impending drought conditions.

A slightly different approach, using additional data, has been presented In many
other works. In [40], satellite data and indices were utilized to assess drought in wetland
areas, addressing the challenge of limited ground observations. The study employed
the Vegetation Temperature Condition Index (VTCI), derived from satellite-based mea-
surements of Land Surface Temperature (LST) and the Normalized Difference Vegetation
Index (NDVI), to monitor drought patterns in Lake Chad’s wetlands from 1999 to 2018.
By integrating WorldView-3 imagery to evaluate the methodology, the approach achieved
high accuracy (over 90%) in estimating spatially distributed VTCI values, highlighting its
effectiveness in drought monitoring where conventional meteorological data are scarce.
Another excellent example is presented by Bijaber [41], where the Composite Drought
Indicator (CDI) was calculated for the purpose of monitoring drought in Morocco. The
CDI utilizes the Normalized Difference Vegetation Index (NDVI) provided by the United
States Geological Survey Earth Resources Observation and Science (USGS EROS) Center,
generated by the Moderate Resolution Imaging Spectroradiometer (MODIS). It also incor-
porates Evapotranspiration (ET) anomalies derived from surface energy balance modeling,
the Standardized Precipitation Index (SPI) using rainfall data from CHIRPSv2 (Climate
Hazards Group InfraRed Precipitation with Stations), and Land Surface Temperature (LST)
data from MODIS sensors. The indicator is used to create maps of the entire country, which
are provided on a monthly basis, serving the assessment and monitoring of drought.

The present study focuses on the utilization of satellite imagery to describe the eco-
logical catastrophe occurring in the postmining areas of the Olkusz district in southern
Poland. It represents a critical case study because of its vulnerability to various forms of
drought exacerbated by postmining activities. The cessation of mining operations and
the subsequent stoppage of pumps have led to the disappearance of the Sztoła River. The
authors want to show that, by using satellite methods, it is possible to study changes in
post-industrial areas. This study aims to address these gaps by applying a multifaceted
remote sensing approach to monitor and assess drought conditions in the region. Utilizing
Sentinel-2 satellite imagery, the authors focus on a comprehensive set of remote sensing
indices such as the NDVI, the MSAVI2, the Moisture Stress Index (MSI), the Normalized
Difference Water Index (NDWI), and the Normalized Multiband Drought Index (NMDI) to
gain a holistic view of the drought phenomenon in this unique setting.

2. Area of Interest

The study area, depicted in Figure 1, encompasses four municipalities within the
Olkusz district, Bolesław (41 km2), Bukowno (65 km2), Klucze (119 km2), and Olkusz
(151 km2) in the Lesser Poland Voivodeship, as well as one municipality in the Będzin
district, Sławków (37 km2), in the Silesian Voivodeship. The average annual temperature is
8 ◦C, and the growing season, defined as days with temperatures exceeding 5 ◦C, spans
200–210 days. Annual precipitation averages between 700 and 800 mm [42].

The topography of the study area exhibits variability, significantly influenced by
human activities. Intensive mining operations have led to the formation of various anthro-
pogenic features, predominantly excavations and spoil tips resulting from sand, zinc, and
lead ore exploitation, along with quarries featuring limestone rocks [24]. The presence of
limestone is linked to karst phenomena, manifested in monadnocks, caves, and sinkholes.
Wood extraction for metallurgical purposes has exposed loose sands, contributing to the
formation of the Błędowska Desert in the northern part of the study area [43]. There are
four aquifers within the analyzed area, Quaternary, Jurassic, Triassic, and Paleozoic, with
the Quaternary and Triassic being the most significant for this study. The Pomorzany
Mine heavily exploited the Quaternary aquifer, resulting in substantial drainage and the
formation of an extensive depression cone [44].

The limited river system in the Olkusz region is attributed to intense groundwater
drainage and specific geological characteristics. The research area falls within the Biała
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Przemsza River Basin, at the confluence of the Sztoła River, nourished by underground
waters from the Baba River. Waters downstream from mining discharge points maintain
a quality rating of very good or good. Despite pronounced mining and metallurgical
activities related to zinc and lead ores, the study area holds significant natural value.
Protected zones include areas within the Kraków Valleys Landscape Park and the Eagles’
Nests Landscape Park, along with their buffer zone. The selection of the study area was
influenced by the presence of a depression cone, and additionally, the western part was
extended to incorporate the municipality of Sławków because of the Sztoła River’s mouth
location [45].
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Figure 1. Area of interest. Sentinel-2 data acquired from AWS services.

3. Methods

The primary objective of the authors was to capture the environmental changes result-
ing from the discontinuation of water pumping from the Pomorzany Mine. These changes
have frequently been the subject of media reports and interest from the local community.
Moreover, given limited possibilities for in situ measurements, as well as the lack of re-
search stations in the area and appropriate measuring instruments, the team decided to
utilize a time series analysis of optical satellite images from the Sentinel-2 mission. The
analyzed time series consisted of images obtained in May and August. This choice was
dictated by two factors. The first was the phenomenon of meteorological drought, which
occurs periodically in Poland. The second factor was the cloud cover level of the acquired
images. Only in these two months was it possible to obtain data with a cloud cover level
that allowed for analysis.

In the next step, six indices were calculated that could indicate problems with existing
drought for images from the years 2017–2023. These indices were subsequently subjected
to processing for the purpose of cloud masking and statistical calculations. The overall
research scheme is presented in the figure below (Figure 2).
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Figure 2. Methodological flow chart. A full set of comparative maps is presented in Supplementary
Materials. Statistical analysis included computing average values and histograms. Cross-index vali-
dation checked if the changes in the environment, as evidenced by individual indices, were consistent.

3.1. Input Data

Data from the Sentinel-2 satellite mission for the years 2017–2023 for the months of
May and September were used. The primary constraint imposed by the limited temporal
scope of the analysis is the availability of satellite imagery from the Sentinel-2 mission.
Concerning the monthly dimension, attention was directed toward changes in vegetation
cover throughout the growing season, as well as the availability of imagery (varied levels
of cloud cover throughout the year). The Level-2A product was used, which provides
atmospherically corrected images. In a comparable growing season, representative images
were selected for each year. In addition, weather data from one of the nearest meteorological
stations—Kraków–Balice, located within a radius of 30 km from the study area—was used.
For the analysis, the values of average monthly temperatures and monthly precipitation
totals (for months falling into the growing season), obtained from the aforementioned
station over the years 2017–2023, were used. In addition, the Land Cover Living Atlas
(https://livingatlas.arcgis.com/landcover/, accessed on 10 September 2023) was used to
assess land use. Based on the analysis of the available data, the impact of the change in
land classification on the observations carried out in this study was excluded.

The analyses were carried out using the FME software and the R language. FME was
used to determine 6 remote sensing indices (Table 1) and R to visualize the results.

https://livingatlas.arcgis.com/landcover/
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Table 1. Formulas used to calculate remote sensing indices.

Index Sentinel-2 Bands Formula Source

NDWI (I variant) B8A, B12 NIR−SWIR2
NIR+SWIR2 [46]

NDWI (II variant) B03, B08 GREEN−NIR
GREEN+NIR [31]

NDVI B04, B08 (NIR−RED)/(NIR+RED) [27]

MSAVI2 B04, B08 2NIR+1−
√
(2NIR+1)2−8(NIR−RED)

2
[29]

NMDI B8A, B11, B12

If NDVI ≥ 0.4:
NIR−(SWIR1−SWIR2)
NIR+(SWIR1−SWIR2)

If NDVI < 0.4:

0.9 − NIR−(SWIR1−SWIR2)
NIR+(SWIR1−SWIR2)

[47]

MSI B8A, B11 SWIR1/NIR [30]

• NDWI (I variant)

The Normalized Differential Water Index is used to monitor the water content in
vegetation in drought areas. Low values of the presented index mean drought—the lower
it is, the greater the intensity of this phenomenon, while values higher than 0.4 indicate the
absence of drought [31].

• NDWI (II variant)

The Normalized Difference Water Index in variant II is used to detect open water
reservoirs. Negative values of the NDWI indicator in the variant for monitoring water
reservoirs stand for vegetation (the smaller it is, the better its condition) or areas affected
by drought. A range from 0.0 to 0.2 indicates high humidity, while values higher than
0.2 correspond to water reservoirs [46].

• NDVI

The Normalized Difference Vegetation Index allows us to examine the condition of
vegetation and assess its development phase. High NDVI values indicate greener and
healthier vegetation. Values in a range from −1.0 to −0.1 correspond to areas of water,
snow cover, or areas covered by clouds. A range from −0.1 to 0.1 indicates bare soil, rocks,
and sand [48].

• MSAVI2

The Modified Soil Adjusted Vegetation Index makes it possible to assess the condi-
tion of vegetation in the early stages of development. Values in a range from −1.0 to
0.2 correspond to areas without vegetation, a range from 0.2 to 0.4 represents plants in
the germination stage, and a range from 0.4 to 0.6 represents plants in the stage of leaf
development. The highest values of MSAVI2 indicate dense vegetation [49].

• NMDI Soil

The Normalized Multiband Drought Index is used to monitor soil moisture and
vegetation conditions. Unlike other indicators, the NMDI ranges from 0 to 1. Values less
than 0.2 stand for very high drought and high fire risk. A range from 0.2 to 0.4 corresponds
to drought, while 0.4–0.6 corresponds to moderately wet vegetation. Values higher than
0.6 indicate vegetation with very high water content [47].

• MSI

The Moisture Stress Index is used to estimate the water content of plants and assess
the condition of vegetation. The MSI ranges from 0 to more than 3, with higher values
indicating significant water stress, while values close to 0 characterize vegetation with high
water content [50].
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3.2. Methods Used to Evaluate Results

Apart from evaluating maps and statistics, a modification of average values was
also used to facilitate the comparison and presentation of the results. The modification
was performed separately for each of the indices. In each case, a vector of average index
values was created from the consecutive satellite imagery used. Each vector was then
normalized, and for some of the indices (MSAVI2, NDVI, NDWI (I variant)), the values
were also inverted (values close to 0 are now close to 1). The average value for a given year
is calculated as an average value for the exact index calculated for imagery in May and
August. This operation allowed for the normalization of the values of all the indices into a
form that was easier to interpret. Correlations between indices were assessed based on the
Pearson coefficient calculated for flattened three-dimensional matrixes (where the third
dimension was the index values for consecutive imagery used). This procedure allowed for
the selection of a representative group of indices for the purpose of in-depth analysis but
also enabled cross-index validation.

4. Results

Changes in the average values between the periods of 2017–2021 and 2022–2023
were observed for all the considered remote sensing indexes (Figure 3). In each case,
these changes may indicate a deepening drought phenomenon and, among other things,
worsening plant conditions, increased water stress, or reduced soil moisture. A higher risk
of drought was observed for the year 2022, but the values for 2023 indicate no improvement
in the condition of the environment (Figure 4).
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There were six remote sensing indices used in this research, but because of the high
correlation between some of them (Table 2), only three were analyzed in depth: the MSI,
NMDI Soil, and MSAVI2. The NDVI and the NDWI (II variant) are highly correlated
(>0.9 | <−0.9) with MSAVI2. The NDWI (variant I) is highly correlated (<−0.9) with MSI
and slightly less (>0.8) with MSAVI2 and the NDVI.



Remote Sens. 2024, 16, 111 8 of 17Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 4. Average values for indices for each of the analyzed years (inverted values for MSAVI2, 
NDVI, and NDWI (I variant)). 

There were six remote sensing indices used in this research, but because of the high 
correlation between some of them (Table 2), only three were analyzed in depth: the MSI, 
NMDI Soil, and MSAVI2. The NDVI and the NDWI (II variant) are highly correlated (>0.9 
| < −0.9) with MSAVI2. The NDWI (variant I) is highly correlated (<−0.9) with MSI and 
slightly less (>0.8) with MSAVI2 and the NDVI. 

Table 2. Pearson correlation values between indices. 

Index Name MSAVI2 MSI NDVI NDWI v1 NDWI v2 NMDI Soil 
MSAVI2 - −0.770 0.961 0.875 −0.942 0.788 

MSI −0.770 - −0.776 −0.943 0.638 −0.620 
NDVI 0.961 −0.776 - 0.891 −0.935 0.785 

NDWI v1 0.875 −0.943 0.891 - −0.764 0.722 
NDWI v2 −0.942 0.638 −0.935 −0.764 - −0.737 

NMDI Soil 0.788 −0.620 0.785 0.722 −0.737 - 

4.1. NMDI Soil—Soil Moisture Assessment 
The lower the average NMDI value, the drier the areas in the analyzed region. For 

the years 2017–2021, the wet and extremely wet classes (NMDI Soil ≥ 0.4) cover most of 
the analyzed area. In the two following years, the dominant classes are dry and extremely 
dry (NMDI Soil < 0.4). Particularly notable dry areas are found in the Olkusz area and in 
the valleys of the Biała Przemsza and Sztoła Rivers (Figures 5, 6 and S1). The average 
values of the NMDI for individual months (May and August) in the years 2017–2023 are 
presented in the table below (Table 3), and they confirm the mentioned change. 

Table 3. Average values for NMDI Soil. 

Average Values Month 2017 2018 2019 2020 2021 2022 2023 

NMDI Soil 
May 0.539 0.542 0.538 0.486 0.479 0.333 0.340 

August 0.511 0.502 0.521 0.530 0.553 0.275 0.358 

Figure 4. Average values for indices for each of the analyzed years (inverted values for MSAVI2,
NDVI, and NDWI (I variant)).

Table 2. Pearson correlation values between indices.

Index Name MSAVI2 MSI NDVI NDWI v1 NDWI v2 NMDI Soil

MSAVI2 - −0.770 0.961 0.875 −0.942 0.788

MSI −0.770 - −0.776 −0.943 0.638 −0.620

NDVI 0.961 −0.776 - 0.891 −0.935 0.785

NDWI v1 0.875 −0.943 0.891 - −0.764 0.722

NDWI v2 −0.942 0.638 −0.935 −0.764 - −0.737

NMDI Soil 0.788 −0.620 0.785 0.722 −0.737 -

4.1. NMDI Soil—Soil Moisture Assessment

The lower the average NMDI value, the drier the areas in the analyzed region. For the
years 2017–2021, the wet and extremely wet classes (NMDI Soil ≥ 0.4) cover most of the
analyzed area. In the two following years, the dominant classes are dry and extremely dry
(NMDI Soil < 0.4). Particularly notable dry areas are found in the Olkusz area and in the
valleys of the Biała Przemsza and Sztoła Rivers (Figures 5, 6 and S1). The average values of
the NMDI for individual months (May and August) in the years 2017–2023 are presented
in the table below (Table 3), and they confirm the mentioned change.

Table 3. Average values for NMDI Soil.

Average Values Month 2017 2018 2019 2020 2021 2022 2023

NMDI Soil
May 0.539 0.542 0.538 0.486 0.479 0.333 0.340

August 0.511 0.502 0.521 0.530 0.553 0.275 0.358
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4.2. MSAVI2—Vegetation Condition Assessment

The use of MSAVI2, which eliminates the impact of bare soil, allowed for the examina-
tion of the condition of even very small plants at various stages of development [49]. In
the years 2017–2021, the study area was predominantly covered with classes >0.6 (dense
vegetation) (Figures 7, 8 and S2). This was also confirmed by average values (Table 4). In
2022 and 2023 (compared with previous years), a weakening of the vegetation condition
can be observed. The shares of classes 0.4–0.6 (leaf development) and 0.2–0.4 (germination
phase) are higher (Figures 7 and S1), and the average values decrease toward 0.5 (Table 4).
This may indicate that conditions occurred that limited growth and prevented plants from
fully developing. In addition, a significant deterioration of the vegetation can be observed in
the Sztoła River Valley compared with the Biała Przemsza River Valley (Figures 7 and S2).

Table 4. Average values for MSAVI2.

Average Values Month 2017 2018 2019 2020 2021 2022 2023

MSAVI2
May 0.718 0.719 0.688 0.614 0.598 0.499 0.505

August 0.688 0.661 0.696 0.708 0.711 0.461 0.513
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4.3. MSI—Water Stress Assessment

A difference between the years 2017–2021 and 2022–2023 is noticeable for imagery
from August (Table 5, Figures 9, 10 and S3). For the first five years, lower MSI values are
noticeable for forested areas and river valleys, while higher values are observed for urban
areas and cultivated fields. However, for the years 2022–2023, this distinction disappears,
and the dominant class on the map becomes 0.5–0.8 (Figure 9). The changes described may
indicate a significant increase in water stress (water availability for vegetation), which can
have an impact on the deterioration of vegetation.

Table 5. Average values for MSI.

Average Values Month 2017 2018 2019 2020 2021 2022 2023

MSI
May 0.597 0.600 0.580 0.702 0.784 0.717 0.666

August 0.623 0.633 0.583 0.572 0.514 0.692 0.678
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4.4. Cross-Index Validation

Both indices related to assessing vegetation cover exhibit similar changes, with the
average observed change for MSAVI2 being −27%, with −37% for the NDVI (Figure 3).
Concerning water-related indices, the change in NDWI v1 was −34%, while for NDWI
v2, it was +33%. The contrasting nature of these changes stems solely from the different
interpretations of these indices. An increase in values for NDWI v2 in areas not covered by
water does not indicate a higher water quantity but rather deteriorating vegetation quality.
In the case of the MSI and the NMDI, indices with similar interpretations were not applied;
however, regarding the analysis of temporal variability, they exhibit the same relationships
as the other indices (Figure 3). The consistency of the changes indicated by all used indices
is also reflected in the correlation values (Table 2).

5. Discussion

The application of remote sensing methods to monitor drought within the region
turned out to be a very good solution because of the possibility of making a large-scale
and long-term analysis of the state of the natural environment. The use of optical imaging,
on the basis of which individual indicators were calculated, made it possible to estimate
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changes in the state of vegetation in subsequent years. Creating maps of various indicators
made it possible to identify the factors that influenced the dynamics of changes between
2017–2021 and 2022–2023. Vegetation has become the main determinant of the intensified
drought phenomenon that occurred in the last few years. The poor hydrographic network
and the presence of few and small water reservoirs were best visualized in the case of the
NDWI indicator in variant II. The lowering of the groundwater level, as a result of many
years of drainage from the zinc and lead ore mines in Olkusz, proves the occurrence of
hydrogeological drought in all years covered by the analysis. However, the number of
water bodies increases slightly in the western part of the study area, which may be related
to the location of the area beyond the influence of the main depression cone. Until the
beginning of 2022, mine waters were discharged into nearby surface watercourses, e.g., to
the Baba River and through it to the Sztoła River. The conditions prevailing in this period
in the study area did not significantly limit the development of vegetation and did not
cause its clear degradation.

The application of remote sensing methods to monitoring drought within the region
proved to be invaluable, echoing the sentiments expressed by Pettorelli et al. [51], who
emphasized the potential of satellite remote sensing in large-scale ecological assessments.
The advantage of making large-scale and long-term analyses of the state of the natural
environment via optical imaging is indisputable. These methods, through which individual
indicators were calculated, have enabled the estimation of changes in the state of vegetation
over the years. Ji and Peters [52] demonstrated a similar application in the Northern Great
Plains, where vegetation and drought indices provided crucial insights into vegetation re-
sponses over different timeframes. Our approach in applying these indicators, particularly
the NDWI, as discussed by [31], clearly highlighted the region’s poor hydrographic net-
work and scarce water reservoirs. The NDWI’s capacity to monitor vegetation liquid water
was indispensable in visualizing these features, especially in relation to hydrogeological
drought exacerbated by many years of drainage from the zinc and lead ore mines in Olkusz.
The insights from [53] on global greenness trends in semiarid areas further contextualize
the observations of this study. Their findings underscore the resilience and vulnerability of
vegetation in the face of varying hydrological conditions. In our study area, we observed
that, despite the impact of these long-standing drought conditions, vegetation degradation
was not significantly apparent until 2022. This observation was even more pronounced with
the continuous discharge of mine waters into nearby surface watercourses, such as the Baba
River and, subsequently, the Sztoła River. Furthermore, the intensification of the global
water cycle, as pointed out by Huntington [54], brings to light the long-term implications of
human interventions like mine drainage. While the western part of the study area showed
a slight increase in water bodies, possibly because of its location beyond the influence of
the main depression cone, the larger region reflects a more intricate relationship between
human activity and natural hydrology.

In summary, remote sensing, as both our findings and the established literature suggest,
offers a holistic perspective on the dynamics of vegetation and water resources. Through
the comprehensive lens of satellite indices and on-the-ground observations, we can better
understand and predict the evolving landscape and its implications for the future.

Analyzing all the determined indicators, it can be concluded that the results obtained
for 2022 differ significantly from the results obtained for previous years. On this basis, it can
be concluded that the cause of the situation was the disconnection of the dewatering pumps
of the Pomorzany Mine at the turn of 2021 and 2022. Calculating the NMDI index enabled
the assessment of soil moisture over the analyzed years. High soil hydration in 2017–2021,
in contrast with its significant drying in 2022, may indicate an agricultural drought at that
time. The lack of appropriate conditions for plant growth and development could have
been the cause of a significant decline in the condition of the vegetation in the year in
question. This is confirmed by the results obtained for vegetation and water indices—on
their basis, deterioration in the health of the plant cover and a decrease in the water content
in plants can be observed. In addition, the analysis of the state of vegetation in the vicinity



Remote Sens. 2024, 16, 111 13 of 17

of the Sztoła River Valley in 2017–2022 proves the occurrence of unfavorable changes in
the environment. Significant differences in the condition of the vegetation cover within
Sztoła, compared with Biała Przemsza and other forest areas, may be a sign of hydrological
drought. An additional factor affecting the degradation of the natural environment in 2022
could also be weather conditions. The decline in the condition of the vegetation in the
discussed year could be partly related to the extremely dry May and the relatively low
rainfall in April and June. The lowest rainfall, combined with the very high temperatures
of May and June 2022, most likely caused the drought to deepen. Meteorological drought
could delay the start of the growing season, which is confirmed by the illustrations made
for MSAVI2. Visible changes in vegetation cover—low vegetation interspersed with bare
soil—may indicate the start of plant growth and development in later months. However,
the results for indices from May 2023 confirm the observations from 2022 despite high
precipitation during that month.

The complicated geological structure, the almost complete drying of the Quaternary
stage as a result of the drainage of the Olkusz mines, the presence of a depression funnel,
the lack of new mine water supplies due to the disconnection of the drainage system of the
Pomorzany Mine [55], and the weather conditions that occurred in 2022 led to significant
changes in the entire ecosystem of the region. The presented factors caused the occurrence
of four types of drought within the analyzed area: hydrogeological drought, with the
longest time range, resulting from lowering the groundwater level; agricultural drought,
manifested by insufficient soil moisture, preventing the provision of appropriate conditions
for plant development; hydrological drought, characterized by reduced water flow in rivers
or their drying up; and meteorological drought, resulting from a significant decrease in
precipitation and high temperatures, in particular in May 2022. The combination of both
factors—human and natural—caused the occurrence of unfavorable changes in the natural
environment of the Olkusz region, the effect of which was visible on a large scale. The
results from the year 2023 suggest the low significance of the impact of weather conditions
on the intensification of the drought phenomenon.

To mitigate the impact of drought in the Olkusz region, the adoption of an integrated
water resource management approach is imperative, emphasizing both conservation and
optimized utilization. This encompasses the enhancement of agronomic practices through
the introduction of drought-resistant crop varieties and the implementation of water-
efficient irrigation systems. Additionally, the promotion of rainwater-harvesting techniques
and the rehabilitation of local aquatic ecosystems are crucial for re-establishing hydrological
equilibrium. The rehabilitation of local aquatic ecosystems is another critical element in this
integrated approach. Restoring wetlands, rivers, and lakes enhances their capacity to store
water, thereby improving the region’s hydrological balance. These ecosystems also play
a vital role in maintaining biodiversity and providing natural filtration for water quality
improvement. Efforts to rehabilitate these ecosystems should be coupled with measures to
prevent pollution and the over-extraction of water resources.

The experiences and findings from the Olkusz region’s drought phenomena offer a
strategic framework for other mining-dominated regions. The execution of proactive water
management strategies, including the meticulous monitoring and regulation of mine water
discharge and the reinforcement of adjacent ecological systems, is vital. The integration of
remote sensing methodologies for the precocious detection of environmental alterations
is a critical component in facilitating anticipatory measures against drought risks. These
methodologies, in conjunction with concerted endeavors among mining corporations,
community entities, and environmental regulatory bodies, can substantially diminish the
probability of analogous drought occurrences in other mining-intensive areas.

As a consequence of, among other factors, the 2030 Agenda for Sustainable Develop-
ment [56] and the European Union’s response to this document [57], Poland is undergoing
a partially compelled mining sector/energy transformation. It affects the number of mines
that are already closed or will close in the near future, meaning that the number of areas
that need to be reclaimed and redeveloped will only rise. The largest coal-based region
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in the EU—Silesia—is in southern Poland [58], with 18 coal mines operating in 2017 [59].
Furthermore, Skoczkowski et al. [59] indicate that this region will encounter challenges
associated with adapting to climate change. This is a region with high anthropogenic
pressure, for example, the changes that have been observed in the Wojkowice region, where
extensive mining activities have led to significant alterations in groundwater dynamics.
The groundwater table has decreased by over 60 m, accompanied by a deterioration in
its chemical composition, necessitating water purification efforts [60]. Another example
highlighting the need for environmental monitoring in the region pertains to areas charac-
terized by acid mine drainage, as exemplified by the case of the Wiśniówka mining area
(southcentral Poland) [61]. In Poland, there are also open-pit coal mines, where dewatering
practices are employed, as exemplified by the case of Turow (southwest Poland). The
activities of this mine have become the subject of a political conflict involving the European
Union. One of the accusations pertains to the impact of the mine’s operation on the water
table and the formation of a depression cone [62].

The utilization of remote sensing is a crucial component of the environmental impact
monitoring of mining activities, as well as assessing the effects of revitalization and re-
mediation efforts in postmining areas. This is corroborated by the abundance of research
published in these domains, particularly with respect to witnessing an increase in the
period between 2010 and 2019, with the NDVI being the most utilized index [63]. This is
further corroborated by studies conducted in regions proximate to the area analyzed in this
study, such as research pertaining to the former Babina Mine in western Poland [64] or the
active Bełchatów open-pit mine [65]. Significant impacts of mining activities on vegetation
cover were noted in these studies.

While the application of remote sensing methods in drought research is not novel, the
depth and breadth of our analysis present several innovative contributions. To start with,
our study uniquely provides a multifaceted examination of drought in the Olkusz region,
encompassing hydrogeological, agricultural, hydrological, and meteorological droughts.
This comprehensive perspective offers a more in-depth understanding of the interactions
between different drought phenomena in a single region. Moreover, the emphasis on the
effects of mining activities, particularly their role in inducing hydrogeological droughts, is a
distinctive angle that has not been frequently explored. By combining this human-induced
factor with natural drought influencers, we present a balanced and encompassing view of
the drought sources in the area.

6. Conclusions

Many years of exploitation of zinc and lead ore deposits in the Olkusz region led to
the lowering of the groundwater level, which, in turn, was associated with the appearance
of an extensive depression crater and the significant transformation of the landscape.
However, the most severe changes in the natural environment occurred after the closure of
the last of the mines discussed—the Pomorzany Mine. At that time, the pumps dewatering
the aforementioned mine were disconnected; the drained water had supplied the nearby
surface watercourses, e.g., the Sztoła River. The shutdown of the mine drainage system
at the beginning of 2022 caused the drying up of this and other rivers and a significant
reduction in the flow of the others, which ultimately led to the disruption of the entire
ecosystem of the research area. The use of satellite images of the Sentinel-2 mission
made it possible to show the disturbing changes that have recently taken place in the
Olkusz region. The use of various remote sensing indices—vegetation (NDVI, MSAVI2),
water (MSI, NDWI in two variants), and soil (NMDI)—allowed us to conclude that all
types of drought occurred within the analyzed area. Poorly hydrated soil (agricultural
drought) associated with the presence of a depression cone (hydrogeological drought)
and the lack of mine water supply (hydrological drought), combined with unfavorable
weather conditions (meteorological drought), also led to the significant deterioration of
the vegetation. Expanding the area of research would make it possible to compare the
condition of the natural environment in areas not affected by the occurrence of a depression
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cone. In addition, the extension of the Olkusz region to the western areas would allow us
to estimate the extent to which the flow of the Biała Przemsza River has decreased and to
present the related effects.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs16010111/s1, Figure S1: Full set of NMDI Soil maps used for analysis.
Figure S2: Full set of MSAVI2 maps used for analysis. Figure S3: Full set of MSI maps used for analysis.
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