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Abstract: This study aims to explore the roles of multiple gust fronts (i.e., outflow boundaries)
during a short-lived extreme rainfall that occurred in the Greater Bay Area of South China in the
afternoon of 1 August 2021. Through the use of microbarographs and Doppler weather radars, the
research highlights how the interactions of five gust fronts, approaching the region from different
directions, have contributed to the high precipitation efficiency and damaging surface winds during
the event. The close convergence of these gust fronts funneled unstable air masses into the region of
interest, priming the mesoscale convective environment. Some isolated convection initiated before
the gust fronts’ arrival. Preceding the arrival of these gust fronts, subtle wave-like pressure jumps
were identified from the high-frequency (1 Hz) microbarograph observations. The amplitude of the
pressure jump is approximately 40 Pa with minimal changes in air temperature. During the early
stage of the gust front passages, very high-frequency oscillations in surface pressure are recognized,
indicating interaction between the density currents and the low-level troposphere. As suggested
through numerical simulations, the subtle pressure jumps are associated with upward displacements
of isentropic surfaces aloft, deepening the moist layer and enhancing the lapse rate that are conducive
to convective development. The simulated vertical profiles show no evident capping inversion above
the dry neutral boundary layer, suggesting that the pressure jumps are likely to be dynamically
induced through the collision of the outflows and environmental air masses. The findings of this
study suggest the potential application of microbarographs in the nowcasting of the convective
development associated with gust fronts.

Keywords: warm-sector rainfall; gust front; pressure variation; microbarograph

1. Introduction

Located on the southern coasts of China, the Guangdong-Hong Kong-Macao Greater
Bay Area (also referred to as the Greater Bay Area) is the largest and most populated (popu-
lation of more than 60 million) urban area among the four largest bay areas in the globe (i.e.,
the bay areas of New York City, San Francisco, and Tokyo). Climatologically, the Greater
Bay Area is a rainfall hotspot that is characterized by an annual rainfall accumulation of
~2000 mm. The large urban agglomerations in this region are vulnerable to heavy rainfall
and the possibly associated flood exposure. In the rainy season, the warm-sector heavy rain-
fall (defined as a type of heavy rainfall that occurs in the warm sector at least 200−300 km
from a surface front or without any front in South China) often abruptly occurs with poorer
forecasting skill compared with frontal rainfall [1–5]. Sometimes, it can be an extreme
rainfall event and thus often leads to flash floods and waterlogging. Prior studies have
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suggested that the frequency of extreme rainfall in the Greater Bay Area has significantly
increased along with hourly rainfall enhancement in recent years [6,7]. Understanding the
mechanisms of regional warm-sector extreme rainfall is thus one of the keys to potentially
improve the forecasting skill of severe weather in this highly populated area.

The warm-sector rainfall in South China is demonstrated to be associated with many
factors, such as topographic effects, surface heating, urban heat island, and low-level
jets [8–14]. This type of rainfall is often associated with weak synoptic disturbances, respon-
sible for up to 39% of the extreme hourly rainfall records in this region [15]. When strong
synoptic disturbances are absent, the initiation of warm-sector rainfall may be closely
related to surface convergent boundaries, such as cold outflow boundaries, and wind shift
lines, especially in the presence of high moisture content and instability [4,5,16,17]. Storm-
generated surface outflows often play an important role in the initiation of convection and
subsequent convective development by providing forced lifting. For example, during the
high-impact record-breaking rainfall (daily maximum of 524.1 mm) that occurred in the
Greater Bay area during 6–7 May 2017, the interaction between cold pool outflows and low-
level onshore flows is demonstrated to be responsible for the initiation and maintenance
of extreme-rainfall-producing systems [18,19]. The forcing of an urban heat island also
combinedly impacts the timing and location of convection initiation and the subsequent
rainfall distribution [18].

The interaction (e.g., merging, intersecting, and colliding) of surface convergent bound-
aries often produces favorable conditions for convection initiation (CI) or intensification
and thus provides guidance for CI nowcasting [20–26]. Based on ground-based radars,
Wilson and Schreiber [21] documented that 71% of boundary collision processes triggered
thunderstorms in the Denver, Colorado area. The satellite-based studies also showed that
73% of afternoon thunderstorms in the Southeastern United States were a result of the
interactions of outflow boundaries [27]. The colliding outflow boundaries can enhance
the low-level convergence and upward motions and thus aid in convective initiation and
evolution [28]. Although boundary interaction tends to increase the probability of initiating
deep convection, it does not always trigger convection. The triggering of convection can
also take place prior to the boundary interaction [29–33].

In addition to forced lifting, outflow boundaries may dynamically produce atmo-
spheric disturbances ahead of their leading edges, priming the mesoscale convective
environment or directly triggering new storms [4,5,17,33–37]. This process may produce
atmospheric bores that are a gravity wave response generated when storm-generated cold
outflows force the layer of enhanced static stability upward [38–40]. During the plain ele-
vated convection at night (PECAN) field campaign, observed bores were demonstrated to
be closely related to the initiation of nocturnal convection in the Great Plains [34,41]. By cre-
ating an upward displacement of the ambient air, bores may provide a more convectively fa-
vorable condition by increasing the convective available potential energy (CAPE), reducing
the convective inhibition (CIN), and lowering the level of free convection (LFC) [35,42–45].
These influences occur before the arrival of gust front (i.e., leading edges of outflow bound-
aries), thus providing a preconditioning for deep convection both dynamically and ther-
mally [44–47].

In addition to the appearance of ripples reflected through radar fine lines, bores
can be observed through small changes in surface pressure. A bulge in pressure that
accompanies minimal (or no) change in surface temperature typically indicates the existence
of a bore [46,47]. In addition to the surface measurements, upper-level observations from
a lidar, Doppler radar, Doppler sodar, and microwave radiometers are also helpful for
exploring the vertical structure of bores and their influences in the boundary layer [34,38,41].
Higher-precision surface pressure measurements are helpful for capturing bore signals,
such as microbarographs that typically have a precision of less than 0.1 hPa [48–51]. In
recent years, the Greater Bay area in China has deployed several microbarographs that
allow sampling pressure with a precision of 0.001 hPa at a time interval of 1 s [52–55]. These
microbarographs may be helpful for identifying subtle pressure disturbances.
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The goal of this study is to conduct a detailed analysis of a warm-sector extreme
rainfall that was associated with multiple gust fronts in the Greater Bay Area. With the
aid of newly deployed microbarographs, the detections and measurements of pressure
disturbances related to gust fronts were assessed. These microbarographs provide high-
precision pressure observations that are beneficial to the examination of the pressure
disturbances prior to the arrival and during the passage of cold pool outflows. Given
the high impact of the extreme rainfall that occurs in the highly populated and well-
industrialized Greater Bay Area, improving our understanding of the possible triggering
mechanisms would be of great help for disaster prevention and mitigation in this region.
More details of the microbarographs are presented in Section 2. Section 3 presents the
overview of the warm-sector extreme rainfall case and the interactions among multiple
outflow boundaries. The pressure disturbances associated with storm outflows in the low-
shear environment are also discussed in this section. In Section 4, numerical simulations
are conducted to discuss the preconditioning of convective development associated with
the pressure disturbances. The manuscript is then concluded in Section 5.

2. Materials and Methods

The surface analysis was conducted primarily based on the quality-controlled observa-
tions obtained from the in situ surface weather stations, including the national-level stations
and regional-level stations in South China. In the region of interest, Foshan city, there
were 251 automated weather stations during the rainfall event (Figure 1). Most stations
provided observations of surface horizontal winds, pressure, temperature, and relative
humidity as well as precipitation at a time interval of 5 min. These data were processed
with quality-controlled procedures that include the climatological limit value test, internal
consistency test, and space and time continuity tests.
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microbarograph that is deployed inside a thermometer shelter. This station provides pressure data 
at a time interval of 1 s and other meteorological variables (temperature, wind speed and direction, 
rainfall amount, and relative humidity) every 5 min. 

The mosaics of radar reflectivity factors obtained from the operational dual-
polarization S-band weather radars in South China were utilized to analyze the evolution 
of convective systems. The fine structures of storms and the associated radar fine lines 
(e.g., gust fronts) were primarily assessed using two dual-polarization S-band radars 
deployed in Guangzhou city and Zhaoqing city (Figure 1a). The storms and gust fronts of 
interest were mainly located within a 40 km range of the two radars. These radars conform 
to the weather surveillance radar-1988 Doppler (WSR-88D) used in the United States in 
terms of both hardware and software. During this event, it operated in volume coverage 
pattern 21 (VCP21) with a volumetric update time of nearly 360 s. The radar data were 
collected in 250 m range bins approximately every 1° in azimuth with the radar beam 
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Figure 1. (a) Locations of the observational platforms that include in situ surface weather sta-
tions (gray dots), microbarographs (blue dots), Hong Kong radiosonde (cyan diamond), and the
Guangzhou (S-Pol GZ, red dot) and Zhaoqing (S-Pol ZQ, green dot) S-band operational radars. The
large circles in red and green represent the detection range of 100 km. (b) A photo of the microbaro-
graph that is deployed inside a thermometer shelter. This station provides pressure data at a time
interval of 1 s and other meteorological variables (temperature, wind speed and direction, rainfall
amount, and relative humidity) every 5 min.
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In addition to the surface pressure provided by these weather stations, higher-frequency
pressure observations were available through five microbarographs that were equipped
with high-precision electronic pressure sensors (Figure 1). These pressure data provided
an opportunity to analyze pressure variability at a time interval of 1 s during the passage
of gust fronts. To eliminate the influence of temperature change on air pressure, a copper
shell was employed as an insulation box and a microbarograph was deployed in the
insulation copper shell with a constant ambient temperature of 45 ◦C. When the temperature
was lower than 45 ◦C, a heating plate inside would guarantee the temperature around
the pressure sensor and keep temperature deviation within ±0.5 ◦C. Noise filtering was
employed for the purpose of data collection to avoid interference from noise. Compared
with the barometers of traditional weather stations that have a measurement accuracy
of 0.1 hPa, these microbarographs provided a much higher measurement accuracy of
0.001 hPa and had a data sampling frequency of 1 Hz. Meanwhile, the surface stations that
were equipped with microbarographs also provided the air temperature, horizontal wind,
and humidity data every 5 min.

The mosaics of radar reflectivity factors obtained from the operational dual-polarization
S-band weather radars in South China were utilized to analyze the evolution of convec-
tive systems. The fine structures of storms and the associated radar fine lines (e.g., gust
fronts) were primarily assessed using two dual-polarization S-band radars deployed in
Guangzhou city and Zhaoqing city (Figure 1a). The storms and gust fronts of interest
were mainly located within a 40 km range of the two radars. These radars conform to the
weather surveillance radar-1988 Doppler (WSR-88D) used in the United States in terms of
both hardware and software. During this event, it operated in volume coverage pattern
21 (VCP21) with a volumetric update time of nearly 360 s. The radar data were collected
in 250 m range bins approximately every 1◦ in azimuth with the radar beam widths of
approximately 1◦ in both horizontal and vertical directions.

To investigate the upper-level mesoscale convective environment, high-resolution dy-
namically downscaled numerical simulations were conducted using the advanced research
weather research and forecasting (ARW-WRF) model [56]. Three two-way nested domains
were configured with horizontal grid spacings of 9 km, 3 km, and 1 km, respectively
(Figure 2a). The model had 50 vertical levels and the highest model level was located at
50 hPa. The main physical parameterization schemes that were used included the WSM
six-class microphysics scheme [57], Monin–Obukhov–Janjic Eta scheme [58] for surface
layer parameterization, YSU PBL scheme [59], and RRTMG (the revised rapid radiative
transfer model) longwave and shortwave radiation scheme [60] for longwave and short-
wave radiation. The model was initiated at 0800 LST on 1 August 2021 and integrated for
24 h. The initial and lateral boundary conditions for modeling were provided through the
fifth generation of ECMWF atmospheric reanalysis data (ERA5) [61]. The ERA5 data were
hourly available at a horizontal resolution of 0.25◦ with 37 vertical pressure levels. The
model outputs of the innermost domain were saved every 1 min.



Remote Sens. 2024, 16, 101 5 of 22Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 24 
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hPa. (d) Bulk wind difference (shaded) between the 6 km and ground layers. The 500-hPa horizontal 
winds (vectors) are also plotted for reference. In all panels, the meteorological variables are 
calculated based on the ERA5 data at 1500 LST on 1 August 2021. Half and full barbs denote wind 
speeds of 2–4 and 4–6 m s−1, respectively. The triangle and diamond in cyan represent the region of 
interest and the location of the Hong Kong sounding, respectively. In (a), the gray and white 
rectangle represents the WRF domains of d02 and d03, respectively. 
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storms dominated the coastal regions while the Foshan area was convection-free (Figure 
3a,b). The first occurrence of convective echoes (greater than 40 dBZ) in Foshan was 
recognized before 1700 LST, indicating the initiation of convection. The initiated 
convection appeared to be several scattered isolated storms (Figure 4). These initiated 
storms were surrounded pre-existing storms to the west, south, and east (Figure 3c). In 
the following hour, the triggered storms rapidly grew upscale (refer to the arrow in Figure 
2d), creating a peak rain rate of 124.3 mm h−1 at one weather station (marked through the 
arrow in Figure 5a). Such a rain rate became the second highest recorded in this city 
(highest record = 126.6 mm h−1). Strong gusts were also observed during 1720–1800 LST, 
reaching a maximum speed of 22.1 m s−1 (Figure 5b). The rainfall systems underwent 
dissipation after 1830 LST, indicating short-lived extreme rainfall. 

Figure 2. (a) Geopotential heights (blue isopleths, units: gpm) and horizontal winds on 500 hPa
overlaid with the surface-based CAPE (shaded). (b) Mean sea-level pressure (blue isopleths, units:
hPa), 10-m horizontal winds, and 925-hPa equivalent potential temperature (shaded). (c) Geopotential
heights (blue isopleths, units: gpm), horizontal winds, and divergence (shaded) on 300 hPa. (d) Bulk
wind difference (shaded) between the 6 km and ground layers. The 500-hPa horizontal winds (vectors)
are also plotted for reference. In all panels, the meteorological variables are calculated based on
the ERA5 data at 1500 LST on 1 August 2021. Half and full barbs denote wind speeds of 2–4 and
4–6 m s−1, respectively. The triangle and diamond in cyan represent the region of interest and the
location of the Hong Kong sounding, respectively. In (a), the gray and white rectangle represents the
WRF domains of d02 and d03, respectively.

3. Results
3.1. Overview of the Short-Lived Extreme Rainfall

The extreme rainfall event occurred in Foshan city (refer to the blue ellipse in Figure 3)
during the late afternoon on 1 August 2021. Before 1600 LST on that day, widespread storms
dominated the coastal regions while the Foshan area was convection-free (Figure 3a,b).
The first occurrence of convective echoes (greater than 40 dBZ) in Foshan was recognized
before 1700 LST, indicating the initiation of convection. The initiated convection appeared
to be several scattered isolated storms (Figure 4). These initiated storms were surrounded
pre-existing storms to the west, south, and east (Figure 3c). In the following hour, the
triggered storms rapidly grew upscale (refer to the arrow in Figure 2d), creating a peak rain
rate of 124.3 mm h−1 at one weather station (marked through the arrow in Figure 5a). Such
a rain rate became the second highest recorded in this city (highest record = 126.6 mm h−1).
Strong gusts were also observed during 1720–1800 LST, reaching a maximum speed of
22.1 m s−1 (Figure 5b). The rainfall systems underwent dissipation after 1830 LST, indicat-
ing short-lived extreme rainfall.
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terest, respectively.

The synoptic analysis suggests that the widespread rainstorms in the coastal area
of South China took place in an environment that was characterized by strong synoptic
forcing but low vertical wind shear (Figure 2). It was a warm-sector rainfall event since the
rainfall process occurred in South China without frontal systems [1,2]. The region of interest
(refer to the triangle in Figure 2) was beneath an almost zonally oriented elongated 500-hPa
trough and was located in a surface low-pressure area with high instability (Figure 2a,b).
This area was characterized by deep-layer wind shifts according to a southwest–northeast
orientation and divergence on the upper level (Figure 2a–c). Although the synoptic-scale
disturbances primed the mesoscale environment for storms by way of large-scale mean
ascent, this region featured modest vertical wind shear (Figure 2d). The sounding profiles
taken at Hong Kong at 0800 LST (Figure 6a) and 2000 LST (not shown) on 1 August show
that, despite the high values of surfaced-based CAPE in place (2882 J kg−1), the 0–6 km
layer bulk wind differences (BWDs) as a proxy of vertical wind shear [62] were only
3.8 m s−1 and 2.3 m s−1, respectively. Considering that 0–6 km BWD is typically applied to
cases in middle latitudes with an equilibrium level (EL) height near 12 km [63], the storm
environments were also assessed by referencing the EL height in this case. According to
the observed sounding profile at Hong Kong, the computed EL height of a surface-based
air parcel was 16.1 km AGL. The halfway point in EL height (8 km layer) was thus selected
to assess the characterized vertical wind shear. The computed 0–8 km BWD was 4.6 m s−1,
slightly greater than the 0–6 km BWD.
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Figure 4. Reflectivity at different elevation angles from the S-Pol GZ at (a) 1648, (b) 1700, (c) 1712,
and (d) 1748 LST on 1 August 2021. The yellow and cyan dots in (a) represent the locations of
microbarographs and selected surface weather stations, respectively. The identified five radar fine
lines (labeled GF1–GF5) with regular movements are marked through dashed curves in (a). The fine
line GF5 was identified through the S-Pol ZQ.
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Figure 6. Skew T–logp diagrams of the (a) observed Hong Kong sounding (Figure 1a) at 0800 LST and
(b) the WRF sounding at 1430 LST on 1 August 2021. (b) The extracted WRF sounding as described
in the main text. The ambient temperature and dewpoint (both units ◦C) are represented through the
solid black and green lines, respectively. The parcel that ascends undiluted from the surface is shown
through the dashed red curve. Half and full barbs denote the wind speeds of 2–4 m s−1, 4–6 m s−1,
respectively. The orange curve represents the parcel that ascends from the variables at 1400 LST
observed by a station in the region of interest (surface temperature and relative humidity of 36.0 ◦C
and 50%, respectively).

It is worth noting that the Hong Kong sounding is located on the coast while the
Foshan area is located inland. After a simple correction to the soundings using the surface
air temperature (36.0 ◦C) and relative humidity (50%) at 1400 LST as observed from a
surface station in the storm region, the surfaced-based CAPE increased to 3009 J kg−1. Prior
studies have suggested that such environmental conditions (low shear, high CAPE) are
conducive to pulse storms that often produce severe weather in a short period of time and
also dissipate in a short time [62].

3.2. Radar Analysis on the Mesoscale Boundaries and Associated Storms

In this section, the general evolution of the surface mesoscale boundaries identified
using Doppler radars are first discussed. Closer inspection of the lowest-level radar
reflectivity shows that the interactions of multiple-radar fine lines were identified prior to
the storm initiation of interest. Figure 4 shows the evolutions of the low-level reflectivity
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factor of the S-Pol GZ. At 1642 LST, a pulse storm that was located to the east of Foshan city
generated a radar fine line in a circular shape. The west part of the radar fine line (labeled
GF1 in Figure 4a) moved into the region of interest. Meanwhile, a series of well-defined
radar fine lines (labeled GF2, GF3, and GF4 in Figure 4a) that emanated from the southern
storms were identified. Figure 7a shows that the surface air temperature had dropped by
approximately 7 ◦C from 1630 to 1710 LST when the radar fine line GF1 moved across
station A1. An abrupt shift in wind direction occurred as the weak westerlies (~2 m s−1)
rapidly turned to easterly high winds at a speed of 18 m s−1. To the southwest of this station,
the prevailing southwesterlies also underwent a sharp enhancement in speed after the
passage of GF1 during 1710–1720 LST (Figure 7b). The changes in surface air temperature,
pressure, wind speed, and direction during the passage of radar fine lines suggest that
these fine lines were storm-generated cold outflow boundaries (i.e., gust fronts).
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Figure 7. Surface observations from the conventional surface weather stations at a time interval of
5 min during 1605–1855 LST for stations (a) A1 and (b) A2 (Figure 8), respectively. Half and full barbs
denote 2–4 and 4–6 m s−1, respectively.
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Figure 8. Schematics showing the evolutions of gust fronts (colored curves) and the locations of
focused storm initiation (red dots). The curves in green, yellow, and orange mark the rough positions
of gust fronts identified from radar observations at 1642, 1700, and 1712 LST, respectively. The black
dots, A1 and A2, denote the surface weather stations used in Figure 7.

The details of the distributions and evolution of the multiple gust fronts are presented
in Figure 8. Gust fronts GF1–GF4 manifested as a scalloped pattern on which multiple
intersection points were located. Another gust front, GF5, that was identified through the
S-Pol ZQ moved toward the east from the western border of Foshan. Prior to the arrival
of these gust fronts, several storms (e.g., storms S1 and S2 in Figure 4) had been triggered.
These storms were likely from the afternoon thermal convection or were triggered due
to other unknown factors because no evident convergence was present near the storm
positions. Storms S1 and S2 were initiated approximately 12 km ahead of the gust fronts
GF1 and GF3, respectively (Figure 4b). New vigorous storms were also located on the
gust fronts and over the intersection points of adjacent gust fronts while these storms were
generally short-lived. Previous studies have demonstrated that these intersection regions
are favorable for convection initiation, but the triggered convection tend to be short-lived
because the underlying surface is quickly dominated by cold pools [29,31].

These five gust fronts approached each other and squeezed the low-level air masses in
the region of interest (the position of later extreme rainfall). Given the gust fronts’ mutual
close approaching (Figure 8), the squeezed low-level moist air masses were presumed to
prime the mesoscale environment for convection initiation by way of moisture pooling and
forced lifting. Figure 9a presents the time series of moisture content at station M2. The
specific humidity underwent an increase before the arrival of gust fronts. The average
specific humidity during 1630–1710 LST increased by approximately 2 g kg−1 compared
with that during 1400–1630 LST. It is worth noting that, while most stations underwent a
general increase in moisture, the amplitudes varied among stations. After the passage of the
gust front from 1710 LST, the specific humidity further increased by approximately 2 g kg−1

(Figure 9a). With the low-level moistening, the conditional instability of surface-based
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air parcels would further increase, supportive of the preconditioning to the subsequent
vigorous deep convection.
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The moisture and instability from the unstable air masses that were squeezed by the
approaching gust fronts were then quickly replaced through the low-level stabilized cool
air masses behind the gust fronts. As a result, the precipitation process only lasted for a
short time period. Additionally, under the low-shear environment, the newborn storms
in the Foshan area behaved as a pulse storm nature. Circular-shape outflow boundaries
were identified rapidly emanating from these storms and cut off the inflows. Most rainfall
gauges from surface weather stations recorded a time period of rainfall less than 1 h.

During this extreme rainfall event, in addition to the passage of gust fronts, observa-
tions from some microbarographs identified subtle pressure jumps immediately before
the arrival of gust fronts (refer to the black arrow in Figures 9b and 10a,b). The five mi-
crobarographs deployed in the Foshan region were located close to the interacting zone
of gust fronts GF1–GF5 (Figure 8). At 1700 LST, gust front GF3 arrived at stations M4 and
M5 as indicated through the sharp decreases in surface air temperature (Figure 10c,d). It
then arrived at stations M3 and M2 at 1705 LST and 1712 LST, respectively (Figure 8). At
1712 LST, station M1 was swept by gust front GF1. Consequently, the observations from
microbarograph stations M2–M5 were primarily representative of the measurements for
gust front GF3. In the case at hand, three microbarographs (M1, M2 and M3) captured
well-defined pressure jumps approximately 15–25 min prior to the passage of gust fronts.
The surface pressure underwent a gentle increase and then a decrease until the gust front’s
arrival when the surface air temperature started to drop rapidly. The amplitudes of pressure
jumps ranged from 30 to 50 Pa with little changes in air temperature (Figures 9b and 10a,b).
Here, the amplitudes were calculated using the differences between the peak pressure and
the subsequent minimum pressure over the periods as indicated through the horizontal
dashed lines in Figures 9 and 10. Such an amplitude of pressure rise is comparable to the
measurement of a developing bore in the Great Plains region of the United States during
the IHOP_2002 field campaign (refer to Figure 6a in Knupp 2006).

According to the observed horizontal wind speeds during the passage of gust fronts,
the pressure jumps were estimated to precede the gust fronts by 12–15 km. The distance was
estimated according to the propagation speed of gust front and the time window between
the onset of pressure jump and the following gust front’s arrival at a surface weather station.
Recalling the distances ( ~12 km) of the newborn storms and neighboring gust fronts as
discussed in the above section, these pressure jumps that preceded the gust fronts were
estimated to have arrived at the convection initiation positions when the focused storms
began to initiate.

Among the five microbarographs, the wave-like pressure variations were well-defined
only when the stations were characterized by a rapid drop in air temperature during the
passage of gust fronts. At stations M1–M3, where evident pressure jumps were present, the
air temperature decreased by approximately 7 ◦C, 10 ◦C, and 6 ◦C during a short time period
of 25 min after the gust front passages, respectively (Figures 9a and 10a,b). In contrast,
the temperature drops were relatively calmer at stations M4 and M5 where the wave-like
pressure variations were absent. At these stations, the air temperature decreased by 3.4 ◦C
and 4.0 ◦C within a 25 min period after the arrival of the gust front GF3, respectively
(Figure 10c,d). Both microbarographs M3 and M4 were located on the gust front GF3
(Figure 8), while only microbarograph M3 identified the wave-like pressure structure,
suggesting that this phenomenon was also sensitive to the horizontal heterogeneity of
density current strength along the entire length of the outflow boundary.
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Figure 10. Surface pressure (blue; plotted every 1 s) detected through the microbarographs (a) M1,
(b) M3, (c) M4, and (d) M5 as shown in Figure 8. The surface winds (wind barbs) and air temperature
(red) are plotted every 5 min at the same station. Half and full barbs denote 2–4 and 4–6 m s−1,
respectively. The dashed line in the vertical direction represents the time of gust front’s arrival.
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Near these microbarographs, pressure jumps were also observed by some conventional
surface weather stations, although they were not as distinct as those observed through
microbarographs. For example, the conventional surface weather station A2 (Figure 8)
appeared to have sampled a slight pressure jump from 1645 to 1710 LST (Figure 7b). The
pressure increased to its peak intensity at 1700 LST, while the air temperature started to
rapidly decrease from 1715 LST, indicative of the passage of gust front GF1. In this area,
the rainfall started at 1750 LST (refer to the green bars in Figure 7b). Compared with the
conventional station that was equipped with a traditional barometer, microbarographs
provided a better portrait of the surface pressure variation.

Owing to high-frequency sampling (1 Hz) and high measurement accuracy (0.001 hPa),
some turbulent components associated with small-scale eddies can be captured using
these microbarographs. During the passage of the aforementioned gust fronts, very high-
frequency oscillations were salient (refer to the pressure variations in the dashed boxes
in Figures 9b and 10a,b). Figure 9c shows the surface pressure anomalies by subtracting
the 9-point running average of pressure. The pressure anomalies were generally within
15 Pa. Figure 9d presents the turbulent pressure spectrum using the data taken during
the passage of gust front GF3. The frequency of the energy peak primarily ranged from
0.005 to 0.01 Hz. This turbulence established a cascading rate resembling the K−5/3 inertial
subrange slope toward the higher-frequency end. The high-frequency variation in surface
pressure during the passage of the gust front may suggest vigorous turbulence as a result
of the interaction between the gust front nose and the ambient atmosphere in the near
surface layer. During the passage of gust fronts, the surface pressure increased gently while
the surface air temperature rapidly decreased by approximately 6–7 ◦C (e.g., Figures 9a
and 10a,b). A detailed analysis of the evolution and dynamics of these cold pool outflow-
associated phenomena is beyond the scope of the present study, although it warrants an
investigation in the near future.

After this time period, the surface pressure dramatically increased and the air tem-
perature continued to decrease (Figures 9b and 10). A close inspection of rainfall shows
that the subsequent rapid increases in surface pressure and decreases in temperature were
associated with new cold pools produced through the new convection in the region of inter-
est (as indicated by the rainfall observations in Figure 7). These locally formed cold pools
generated surface pressure increases of 400–500 Pa. Such a cool layer near the ground and
the associated gust fronts that quickly moved away from parent storms were responsible
for the short-lived nature of the extreme rainfall in this case.

4. Discussion

Previous studies suggest that atmospheric bores may be generated when cold pool
outflows impinge upon a stable surface layer. The bores ahead of these outflow boundaries
often lead to vertical displacements of low-level layers, which tend to enhance the vertical
mixing and thus prime the convective environment [28]. Often, the near surface temper-
ature remains the same or even increases during a bore passage. In the case at hand, the
surface air temperature appeared to hold steady as the pressure pulse went by. Based on
the observations, a wave-like structure was recognized during this process. In this section,
we present an analysis on the vertical environmental profiles based on the simulated results
from the innermost WRF domain as introduced in Section 2.

Figure 11 presents the simulated maximum column reflectivity in the innermost model
domain. In the region of interest, the simulated scattered storms began in the afternoon at
1440 LST (refer to the dashed ellipse in Figure 11a). Dozens of minutes later, these storms
further developed into a larger-size precipitation system in a zonal orientation (refer to
the dashed ellipse in Figure 11b) like that observed through operational radars (Figure 4d).
Compared with the observations, the simulated convection in the Foshan area generally
began approximately 2 h sooner. A closer inspection of the evolution of these storms shows
that the modeled cold pool outflows were not exactly the same as the observed ones (refer
to the low-temperature areas in Figure 12). The strongest cold pools were located in the
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southwest part of Foshan. However, the region of interest was indeed surrounded by
multiple approaching cold pool outflows. It is worth noting that our goal is the depiction of
the environmental conditions associated with the pressure variations preceding the passage
of gust fronts, so it is not necessary to perfectly mimic the observed gust fronts GF1–GF5.
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Figure 11. Simulated composite reflectivity (dBZ) at (a) 1500 LST and (b) 1540 LST on 1 August 2021.
The dashed ellipses mark the storms of interest as described in the text.
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Figure 12. Simulated air temperature (shaded) and horizontal winds (vectors) at approximately 80 m
AGL at 1450 LST. The dashed isopleth (30.5 ◦C) with steep temperature gradient marks the rough
locations of the leading edges of cold outflows. The line BC marks the location of the vertical cross
section as described in the main text. The location A was used in Figure 13.

The simulated results show that a subtle increase in surface pressure was identified
prior to the passage of cold pool outflow boundaries (Figure 13). The simulated surface
pressure slightly increased by approximately 20 Pa from 1445 to 1450 LST and then de-
creased by approximately 20 Pa in the following 5 min. In agreement with the surface
observations, the decrease in simulated surface pressure ended with the rapid drop in air
temperature (refer to the red line in Figure 13). Figure 14 presents the vertical cross sections
of meteorological variables along the BC as shown in Figure 12. The rough locations of the
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leading edges of cold pool outflows can be identified by referring to the steep gradient of
potential temperature (Figure 14a). Slantwise upward motions were identified ahead of the
outflow boundary aloft to a layer of approximately 2 km above ground level (AGL), with
upward displacements of isentropic surfaces (denoted through the arrow in Figure 14b) and
moisture increases in the aloft layers (Figure 14c). The vertical profile of horizontal winds
suggests that the 1–3 km layer was characterized by very gentle southwesterlies (Figure 6b)
and thus the isentropic surface displacements were less likely a result of advection.
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Figure 14. Vertical cross sections of (a) potential temperature, (b) vertical velocity, and (c) water
mixing ratio along the line BC (Figure 12) valid at 1450 LST. The potential temperature is contoured
from 302 K at an interval of 0.5 K. The black and green lines represent the level of free convection
(LFC) and the lifting condensation level (LCL), respectively. The arrow in (b) marks the displacement
of isentropic surface as discussed in the text.
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Figure 15 shows the time series of the vertical profiles at location A as shown in
Figure 12. The moistening accompanied by the surface pressure jumps was found mostly ev-
ident in the 1.5–2 km AGL layer (Figure 15c). This aloft moistening started from ~1440 LST
prior to the arrival of the gust front at 1455 LST. The simulated moisture enhancement aloft
generally reached ~1 g kg−1. This phenomenon illustrates that the dynamic disturbance
ahead of the gust front could provide a beneficial environment for convection by deepening
the moist layer. Meanwhile, the vertical displacements of isentropic surfaces could lead
to an evident deficit of potential temperature above 1.5 km AGL during 1440–1455 LST
(Figure 15a). The resultant cooling tendency in the 1.5–3 km layer would be character-
ized by an enhanced low-level lapse rate (i.e., increasing the buoyant updrafts of lifted
air parcels) prior to the forced lifting of outflow boundaries. Along with the moistening
tendency in these layers, the preconditioning tended to weaken the entrainment of ambient
dry air and produce greater buoyantly updrafts when air parcels were lifted above their
levels of free convection (LFCs) after the arrival of outflow boundaries, contributing to
subsequent convective initiation and development.
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Prior studies have suggested that the bore generation typically occurs when static
stability is sufficiently high in the near-ground layer [35,36,38,41,44–46]. In the current
study, the simulated sounding profile (location A in Figure 12) shows that the boundary
layer was a well-mixed dry neutral layer (i.e., the environmental lapse rate is equal to the
dry adiabatic lapse rate below 1.7 km AGL as shown in Figure 6b). The Brunt–Väisälä

frequency (N =
√

g
θv

∂θv
∂z ) was also calculated to estimate the stability of low-level air to

vertical displacements. Here, g and θv represent the acceleration due to gravity and ambient
virtual potential temperature, respectively. The N values increased from nearly 0 s−1 at
0.65 km AGL to a maximum value of 0.011 s−1 at 2 km AGL and then maintained nearly
constant value with height (Figure 16). It appears low static stability in the boundary layer
and no evident capping inversion above 2 km. The absence of an inversion layer leads
to an inability to assess the formation and strength of the bore-like disturbance using the
two-layer hydraulic theory [44]. In the case at hand, the subtle pressure jumps were more
likely dynamically induced through the collision of the outflows and environmental air
masses rather than bores.
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Although the subtle pressure jump preceding the gust front’s arrival is seemingly
contributive to storm initiation during this event, extensive case studies are warranted to
characterize the degree of such contribution to the regional extreme rainfall. The forth-
coming field campaign of severe weather over the Greater Bay Area may provide further
opportunity to sample the vertical variations associated with these disturbances with
additionally deployed microwave radiometers and wind profiling radars. On the other
hand, the high-frequency oscillation in surface pressure behind the leading edge of the
density current is also an interesting topic. The differences of such observational facts
between different scenarios, such as warm/cold fronts, and land–sea breeze fronts will be
investigated in near-future research.

5. Conclusions

On 1 August 2021, a short-lived extreme rainfall event occurred in the Great Bay Area
in South China, setting a new record of the second highest precipitation in Foshan City. The
convection occurred in a low-shear environment, but was influenced by strong mesoscale
forcings (gust fronts) observed using two dual-polarization S-band operational radars. The
evolutions of clearly visible fine lines in the reflectivity factor demonstrated the presence
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of five gust fronts approaching each other during this process. These gust fronts likely
squeezed the air horizontally and moistened the surroundings through the collision of the
cold pool outflows and environmental air masses in the dry neutral boundary layer. It is
interesting that, without any clear surface convergent boundary, several storms that were
located in the extreme rainfall region began before the arrival of gust fronts at a distance
of approximately 12 km. The subsequently arriving gust fronts triggered multiple intense
storms at their intersection points, eventually coalescing them into a large convective
system. Consequently, the sudden lifting of surface moisture and subsequent reduction of
inflow contributed to the event’s extreme and short-lived nature.

During this process, changes in surface air temperature, pressure, wind speed, and
direction were observed by conventional surface weather stations. Additionally, the use of
five microbarographs allowed for more precise pressure data with an accuracy of 0.001 hPa
at a time interval of 1 s, providing better detection and depiction of the pressure variations
compared with traditional barometers. High-frequency pressure oscillations during the
passage of the gust front, a seldomly noticed phenomenon, were also captured. Likely
owing to the effects of the horizontal squeezing of air masses by approaching gust fronts
and the collision of outflows and environmental air masses, an increase in the water
vapor mixing ratio was recognized before the arrival of the gust fronts, creating a moister
environment and favorable conditions for subsequent deep convection. Additionally, the
estimated distance between the leading edge of the subtle pressure jump and the rear
gust front was 12–15 km and was generally consistent with the distance between the new
convection and its neighboring gust front. These phenomena may imply a connection
between convection initiation and the pressure variation observed using microbarographs.

The WRF model was further employed to compensate for the lack of vertical obser-
vations, reasonably replicating a similar process. The simulation demonstrated that the
cold and dense outflows interacted with the surrounding air, generating a small wave-like
pressure jump consistent with the observations. The positive increase in the vertical veloc-
ity and the mixing ratio preceding the gust front acted as a precondition contributed via
these effects. The upward displacements of low-level airmass amplified the vertical lapse
rate of temperature and deepened the moist layer, thereby creating favorable conditions
for convection and contributing to the occurrence of extreme rainfall. However, further
investigation is needed to ascertain whether the new convection prior to the gust fronts
was directly associated with the pressure jumps or resulted from other factors.
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