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Abstract: The Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS/DNB) nighttime
light data is a powerful remote sensing data source. However, due to stray light pollution, there is a
lack of VIIRS data in mid-high latitudes during the summer, resulting in the absence of high-precision
spatiotemporal continuous datasets. In this paper, we first select nine-time series interpolation meth-
ods to interpolate the missing images. Second, we construct image pixel-level temporal continuity
constraints and spatial correlation constraints and remove the pixels that do not meet the constraints,
and the eliminated pixels are filled with the focal statistics tool. Finally, the accuracy of the time series
interpolation method and the spatiotemporally constrained interpolation method (STCIM) proposed
in this paper are evaluated from three aspects: the number of abnormal pixels (NP), the total light
brightness value (TDN), and the absolute value of the difference (ADN). The results show that the
images simulated by the STCIM are more accurate than the nine selected time series interpolation
methods, and the image interpolation accuracy is significantly improved. Relevant research results
have improved the quality of the VIIRS dataset, promoted the application research based on the
VIIRS DNB long-time series night light remote sensing image, and enriched the night light remote
sensing theory and method system.

Keywords: NPP-VIIRS; time series interpolation; spatiotemporally constrained interpolation; time
continuity constraint; spatial correlation constraints; accuracy comparison

1. Introduction

Nighttime light has important application value in the research and development of
remote sensing applications. As a technology different from traditional optical remote
sensing or microwave remote sensing, it uses earth observation sensors to obtain visible
light-near-infrared electromagnetic wave information emitted by the Earth’s surface under
cloudless conditions at night, providing a unique and direct perspective for human social
activities [1], and is widely used in the fields of population spatialization estimation [2–5],
socioeconomic evaluation [6–8], and ecological environment and urbanization process
assessment [9–15]. The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the
Suomi National Polar-Orbiting Partnership Satellite (S-NPP) provides a new generation
of nighttime light remote sensing data. Compared with the stable nighttime light dataset
acquired by the Defense Meteorological Satellite Program/Operational Linescan System
(DMSP/OLS), the VIIRS data have been significantly improved and are more developed in
terms of radiation accuracy, spatial resolution, and geometric quality, which further expands
the research direction and application field of nighttime light remote sensing [16–20]; thus,
these data are currently attracting the attention of an increasing number of researchers and
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are being widely applied [21–25]. Accessible, continuous monthly and annual synthetic
nighttime light datasets are essential for applied research in various fields.

The National Oceanic and Atmospheric Administration (NOAA) has released vcm
(VIIRS Cloud Mask) and vcmsl (VIIRS Cloud Mask Stray Light) monthly DNB synthetic
data products at the National Geophysical Data Center (NGDC) since 2014. Due to stray
light pollution, the monthly synthetic data of VIIRS DNB vcm in mid-high latitudes during
the summer are highly distorted. These data exclude all pixels affected by stray light,
resulting in many missing values and discontinuities in both space and time. The vcmsl
product corrects the pollution data according to the stray light correction method proposed
by Mills (2013) et al. [26] and retains more data in the mid-high latitudes in summer, but the
overall data quality of this product is reduced. The currently released corrected VIIRS DNB
annual synthetic nighttime light data contain two versions, V1 and V2. The V1 version data
only include two periods: 2015 and 2016. This dataset was produced only using vcm data,
not any other data affected by stray light, excluding the effects of short-lived lights and
nonlight signals. The V2 version data contain continuous annual synthetic data from 2012
to 2021, which are based on the vcmsl monthly synthetic dataset [27]. However, due to
defects in the stray light removal process of the vcmsl dataset, the method still retains the
problem that noise cannot be removed in the high latitudes of the Northern Hemisphere.
The lack of high-precision, spatiotemporally continuous datasets is becoming a significant
obstacle to advancing the in-depth application of VIIRS DNB monthly and annual synthetic
data.

In response to the above problems, some scholars have researched the interpolation
and synthesis of missing pixels in VIIRS DNB data. Zhao et al. used monthly VIIRS DNB
data to evaluate US GDP economic indicators and used the single exponential smoothing
method to interpolate the missing values of vcm data [28]. Chen et al. conducted a
comparative study on the VIIRS DNB monthly product data interpolation method using
Beijing as an example and systematically compared the applicability of four interpolation
methods in terms of abnormal interpolation values, reference values, and computational
performance, namely cubic spline interpolation, cubic Hermite interpolation, gray model,
and three exponential smoothing model [29]. Fan et al. conducted a comparative study on
the interpolation of VIIRS/DNB night light remote sensing data for cities of different scales
worldwide based on eight methods: least squares linear fitting, least squares quadratic
polynomial fitting, least squares cubic polynomial fitting, cubic bezier curve interpolation,
gray forecasting model, cubic spline interpolation, cubic exponential smoothing, and cubic
Hermite Interpolation [30]. The above attempts focus on establishing a mathematical model
from the perspective of the time continuity of multiple months at a single pixel location
and carrying out fitting and approximation simulations to calculate the pixel value of the
missing month. However, such methods do not consider the relative stability of the urban
spatial structure, the relative stability of the luminous time series of the same objects, or the
spatial correlation between data pixels in the same month. Therefore, there is still much
room in the current interpolation methods for missing image pixel values in the VIIRS
dataset.

Therefore, in this paper, we propose a STCIM that considers temporal continuity, the
relative stability of the urban spatial structure, and the relative smoothness of the night light
of the same objects in time. Moreover, we chose the direct replacement method (DR), least
squares linear fitting method (LSM), least squares quadratic polynomial fitting (LSM2), least
squares cubic polynomial fitting (LSM3), cubic spline interpolation (Spline), cubic Bezier
curve interpolation (Bezier), gray forecasting model (GFM), cubic exponential smoothing
(Exponent), and cubic Hermite Interpolation (Hermite) methods. Nine kinds of widely
used time series interpolation methods were compared and analyzed. Taking Shanghai as
an example, the images of Shanghai for June of each year were simulated. The accuracy of
the time series interpolation and STCIM results were evaluated in terms of NP, TDN, and
ADN. We also analyzed whether the STCIM, with temporal and spatial relationships as
constraints on each other, is more accurate than the time series interpolation method with
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temporal relationships as constraints. This research is necessary to obtain monthly synthetic
and annual synthetic night light datasets of VIIRS DNB with spatiotemporal continuity and
higher accuracy. It is also crucial to enrich the theoretical and methodological system of
night light remote sensing and broaden the application value of night light remote sensing
images based on the VIIRS DNB long-time series.

2. Study Area and Data
2.1. Study Area

Shanghai, located at 120◦52′E–122◦12′E, 30◦40′N–31◦53′N, at mid-latitude in the
Northern Hemisphere, is a municipality directly under the Central Government of the
People’s Republic of China, a national central city, and an international center of economy,
finance, trade, shipping, science and innovation (Figure 1). At the end of 2021, Shang-
hai’s resident population was 24.8943 million, ranking second in China’s urban resident
population. In 2021, Shanghai’s regional GDP was 4321.485 billion yuan, ranking first
in China’s urban GDP. Nighttime light data can be applied to population spatialization
estimation and socioeconomic assessment. However, because Shanghai is located in the
middle latitude of the Northern Hemisphere, the VIIRS nighttime light data in summer
are missing, which hinders the rapid assessment of Shanghai’s population and economic
development using VIIRS nighttime light data. Therefore, it is very important to use a
suitable interpolation method to obtain continuous VIIRS nighttime light data for a rapid
assessment of Shanghai’s development.
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Figure 1. The geographical location of the study area.

2.2. Data

Due to stray light pollution, the pixel values of the Northern Hemisphere summer
VIIRS vcm data products are severely lacking, resulting in discontinuities in both time
and space in the nighttime light radiation values of the image pixels in this region in their
monthly data products (Figure 2); there is a high negative impact on a wide range of studies
in various fields based on the long time series VIIRS dataset. Therefore, in this paper, we
selected the VIIRS vcm monthly data of Shanghai in 2012–2015, 2018, 2020, and 2021 with
complete monthly data of night lights as the research data, choosing the June image data
from each year as the data to be interpolated and the six months before and after June as
the time-series interpolation data source. The VIIRS vcm data selected for this paper were
downloaded from the Earth Observation Group (https://eogdata.mines.edu/products/
vnl/) (accessed on 19 June 2022).

https://eogdata.mines.edu/products/vnl/
https://eogdata.mines.edu/products/vnl/
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Figure 2. VIIRS vcm images of summer in China. (a) June 2017. (b) July 2017. (c) June 2018. (d) July
2018.

3. Methods
3.1. Research Ideas

In this paper, we first selected nine widely used time series interpolation methods to
interpolate the missing images in June. Second, the abnormal pixels in the interpolated
image were removed, including negative value pixels and extremely large abnormal value
pixels. At the same time, the pixel-level time continuity constraints and pixel-level spatial
correlation constraints of the monthly composite image of VIIRS night lights were con-
structed. The pixels that did not conform to the constraint relations were identified and
eliminated, and the eliminated pixels were filled by using the null pixel focus statistical tool.
A monthly composite interpolation dataset with complete spatiotemporal continuity was
generated. Finally, we evaluated the accuracy of the nine selected time series interpolation
methods and the STCIM. The accuracy evaluation was carried out from the following
indicators: NP, TDN, and ADN. The main method flow is shown in Figure 3.

3.2. Time Series Interpolation Method

In this paper, we used nine widely used time series interpolation methods, DR, LSM,
LSM2, LSM3, Spline, Bezier, GFM, Exponent and Hermite, to perform time series inter-
polation on the VIIRS DNB vcm data in Shanghai for June of each year. The Hermite
interpolation algorithm was implemented in MATLAB R2022a, and other interpolation
algorithms were implemented using C++ in the Microsoft Visual Studio 2019 environment.

The DR method is the simplest data assimilation method, where all observations are
considered to be accurate, and the observations are directly substituted for the modeled
forecast at the corresponding point. In this paper, the missing June nighttime light bright-
ness values for each year were replaced with the average of the image pixel nighttime
light brightness values for May and July for each year from 2013–2021, calculated as in
Equation (1):

x6
i = (x5

i + x7
i )/2 (1 ≤ i ≤ n) (1)
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where x5
i is the light brightness value of the i pixel in the study area in May, x7

i is the light
brightness value of the i pixel in the study area in July, x6

i is the simulated light brightness
value of the i pixel in the study area in June, and n is the total number of pixels in the study
area.
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The LSM method is a mathematical optimization technique whose core purpose is to
find the best matching function for the data by minimizing the sum of the squares of errors,
estimating certain specific parameters from several available sets of observations to find
the unknown data efficiently, and minimizing the sum of squares of errors between the
calculated data and the actual data [31]. The LSM was calculated as shown in Equation (2),
LSM2 as shown in Equation (3), and LSM3 as shown in Equation (4):

y = ax + b (2)

y = ax2 + bx + c (3)

y = ax3 + bx2 + cx + d (4)

where x is the VIIRS vcm month time node, y is the light brightness value for the cor-
responding month time node of the VIIRS, and a, b, c, and d are the parameters to be
determined.
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The Spline method was used to divide an interval into several smaller intervals and
interpolate each small interval separately to obtain a continuous and smoothly segmented
cubic curve [32], which ensures simple computation, good stability, and easy computer im-
plementation and improves the smoothness of the interpolation function [33]. Suppose there
are interpolation nodes on [a , b], a = x1 < x2 < . . . < xn = b, and the corresponding light
brightness values are y1, y2, . . . yn. If the function S(x) satisfies S(xj) = yj(j = 1, 2, . . . , n),
S(x) on [xj, xj+1](j = 1, 2, . . . , n− 1) is not higher than the three polynomials. When S(x)
in [a , b] has a second-order continuous derivative, S(x) is called the Spline.

The Bezier curve method is widely used for parametric curves in numerical analyses.
The curve is constructed according to the first and last points of the curve and the control
points in the middle [34]. In this study, the lighting data of two adjacent months were used
as the start and finish endpoints of the Bezier curve. The lighting data of these two months
were combined with the lighting data of their two adjacent months to obtain the control
points of the Bezier curve corresponding to the two endpoints. The Bezier curve through
the two vertices was drawn according to the endpoints and control points. Since the control
points of each Bezier curve segment consisted of endpoints adjacent to the start and finish
of the curve, the multi-segment Bezier curve was smooth at the adjacent intersection points.
The lighting data for two adjacent months formed a single Bezier curve, and the lighting
data for all of the months formed a complete and smooth curve.

The GFM can be used to predict interpolation by fitting the cumulative series of the
original data [35]. This method requires less modeling information, is easy to operate, has
high modeling accuracy, and can be used to interpolate shorter time series [36], which is
suitable for predicting light brightness values for fewer months. When using the GFM,
the original data from December 2012–May 2013 were first interpolated in the forward
direction. Then, the original data from July–December 2013 were interpolated in the reverse
direction. The average value of the two was finally taken as the final interpolated value,
and the VIIRS/DNB data in June of each year were interpolated in this manner.

The predicted value obtained by the Exponent method is a weighted sum of the
original series, and the closer to the prediction time, the greater the weight [29], which
is significantly superior in short- to medium-term predictions [37] and is suitable for the
prediction of light brightness values for fewer months. The Exponent will remove the
maximum and minimum values from the lighting data for known months and smooth the
lighting data. Due to the short length of the original data series, the average of the first
three time-series samples was used as the initial value to predict each image pixel of the
time series. Similar to the GFM, the Exponent method also uses the forward and inverse
interpolation averages as the final interpolation value.

The Hermite interpolation method at a given node requires not only the function
value of the interpolation polynomial to be the same as the original function value, but also
that at the node, the derivative value of the first order of the interpolating polynomial up
to the specified order is equal to the corresponding derivative value of the interpolated
function. The curve construction method of Hermite interpolation is the same as that of
Spline interpolation, and only the slope values at the endpoints are different. Since the
Hermite interpolation curve is conformal [38], even if the original data are not smooth,
Hermite interpolation will not overshoot and exceed the numerical range of the original
data [39].

3.3. Spatiotemporally Constrained Interpolation Method
3.3.1. Abnormal Pixel Removal

Since the original VIIRS monthly product did not remove transient light sources, such
as background noise, firelight, and ship lights, the image of the time series interpolation
simulation contained negative pixels and extremely large outlier pixels, collectively referred
to as abnormal pixels in this paper. To remove these transient light sources, the negative-
valued pixels were reassigned to a value of 0 [40]. Since the airport area has a high light
brightness value at night [41], we selected the maximum brightness value of the pixels in
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the corresponding regions of Shanghai Pudong International Airport (PD) and Shanghai
Hongqiao International Airport (HQ) in the original VIIRS vcm month data as the reference
value. A reference value was generated each year, and a value greater than the reference
value of 10 was used as the threshold value for removing the very large outlier pixels. The
thresholds varied from year to year, and the thresholds selected for each year are shown in
Table 1.

Table 1. Maximum value and threshold of light brightness in each year.

2013 2014 2015 2018 2020 2021

PD 215.1 196.4 211.3 391.8 314.9 339.3
HQ 263.7 212.5 235.9 435.2 585.1 438.5

Threshold 273.7 222.5 245.9 445.2 595.1 448.5

3.3.2. Time-Series Nighttime Light Relative Smoothness Feature Constraint

Considering a country or region that has not experienced severe events, such as
political turmoil, economic collapse or natural disasters, the light brightness of the region
should not change drastically between consecutive months [42]. Let A(i,j) represent the
light brightness value of the pixel in row i and column j of the study area. At

(i,j) represents

the light brightness value of the pixel in row i and column j of month t, and At
(i,j)(K)

represents the light brightness value of the pixel in row i, column j, month t, and year
K. St

(i,j) represents the difference between the light brightness value of the pixel in the i
row and j column of the t month and the pixel in the i row and j column of the adjacent
month. SMin defines the minimum value of the difference in light brightness of the pixel
in row i and column j in adjacent months of the year, that is, the lower limit value of the
difference. SMax represents the maximum value of the difference in light brightness of the
pixel in row i and column j in adjacent months of the year (i.e., the upper limit value of the
difference). If the difference in light brightness between the pixel in row i and column j of
the June image simulated by the temporal interpolation method after removing the outliers
and the pixel in the corresponding position in the preceding and following months is not
within [SMin , SMax], it is defined as the pixel that changes drastically between months and
needs to be eliminated. The extraction process of the pixel that changes drastically between
months is shown in Figure 4.

3.3.3. Constraints on the Relative Stability of the Urban Spatial Structure

Considering the relative stability of the urban spatial structure and the relative stability
of the luminous time series of the same objects, the light brightness in adjacent areas should
not change drastically [43]. In this study, we calculated the difference in light brightness
between the pixel in row i, column j and the pixels in its 5× 5 neighborhood window of
the existing monthly images each year to obtain the minimum and maximum values of the
difference between the pixel in row i, column j and the neighboring pixels for all months in
the corresponding year. Tt

(i,j)(K) and Ut
(i,j)(K), respectively, represent the minimum and

maximum values of the difference between the pixel in row i and column j of month t of
year K and its neighborhood pixels. T(K) defines the maximum value of the difference
between the pixel in row i and column j of all months in K years and the adjacent pixel, that
is, the upper limit of the difference. U(K) represents the minimum value of the difference
between the pixel in row i and column j of all months in K years and the adjacent pixel, that
is, the lower limit of the difference. If the difference between the pixel in row i and column
j of the simulated image in June of the K year and the pixels in its 5× 5 neighborhood
window is not in [T(K), U(K)] , it is defined as the inter-neighborhood variation pixel,
which needs to be identified and eliminated. Tt

(i,j)(K) and Ut
(i,j)(K) are calculated as shown

in Equation (5) and Equation (6), respectively, and T(K) and U(K) are computed from
Formula (7) and Formula (8), respectively.
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(8)

3.3.4. Correction of Abnormal Pixels

The abnormal pixels, inter-month variation pixels, and inter-neighborhood variation
pixels identified in the June image simulated by the time series interpolation method were
eliminated. After eliminating pixels, the simulated image had null value pixels that needed
to be filled. In this study, considering the relative stability of the urban spatial structure
and the relative stability of the luminous time series of the same objects, we used the null
pixel focus statistical tool rectangular 5× 5 and 3× 3 neighborhood window of the light
brightness of the average value of the image pixel to fill, as shown in Figure 5.
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3.4. Accuracy Evaluation

In order to evaluate the accuracy of the time series interpolation method and STCIM
method, we evaluated the accuracy based on the following indicators: NP, TDN, and ADN.

In this paper, we use NP to represent the number of abnormal pixels in the simulated
image, where the abnormal pixels include negative pixels and maximum outlier pixels.
The negative pixel refers to the pixel whose light brightness value is negative, and the
maximum outlier pixel refers to the pixel whose light brightness value is greater than the
annual threshold of light brightness. The maximum thresholds for each year are shown
in Table 1; TDN represents the sum of the brightness values of all pixels in the study area;
ADN represents the absolute value of the difference in lighting brightness between the
simulated image pixel and the corresponding position pixel in the original image.

4. Results

The images of Shanghai in June 2013 that are simulated by the time series interpolation
method, spatiotemporally constrained interpolation focus statistics tool 5× 5 rectangular
window fill (STCI5), and spatiotemporally constrained interpolation focus statistics tool
3× 3 rectangular window fill (STCI3) are shown in Figures 6–8. To verify the accuracy of
the time series interpolation method and STCIM in this study, the original VIIRS vcm June
image was selected as the reference image. We compared the simulated June image with
the original image. The accuracy of time series interpolation and STCIM was evaluated
from three aspects: NP, TDN, and ADN.

4.1. Comparison of the Number of Abnormal Pixels

We calculated the NP in the VIIRS image data simulated by the time series interpolation
method, STCI3 method and STCI5 method, including negative pixels and huge anomalous
pixels in the images. As shown in Table 2, we found that among the time series interpolation
methods, the NP in the images in June of each year simulated by the Spline method was
the largest, and the total NP in the June images simulated by the GFM method was the
smallest. Moreover, the NP in the images simulated by the DR and Exponent methods in
June each year was the same. The NP in the images simulated by the LSM2 and LSM3
methods in June of each year was the same. However, there were no abnormal pixels in the
images in June of each year simulated by the STCI3 and STCI5 methods. In terms of NP
indicators, the accuracy of the STCIM was higher than that of the time series interpolation
method.
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Table 2. The number of abnormal pixels of the interpolated image in June.

2013 2014 2015 2018 2020 2021

DR 3 0 0 0 0 0
Bezier 16 0 3 5 1 0

Exponent 3 0 0 0 0 0
GFM 2 0 0 0 0 0
LSM 0 0 0 0 0 0

LSM2 13 9 14 2 4 0
LSM3 13 9 14 2 4 0
Spline 38 22 43 17 49 23

Hermite 4 0 1 0 3 0
STCI3 0 0 0 0 0 0
STCI5 0 0 0 0 0 0
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4.2. Comparison of Total Light Brightness

The TDN of the June images simulated by the time series interpolation and STCI3
and STCI5 methods was calculated, and the difference between the TDN of the simulated
images and the TDN of the original June image of the corresponding year was calculated.
The result is shown in Figure 9, which demonstrates that among the nine methods of
time series interpolation used in this study, the GFM method has the worst interpolation
effect, and the TDN of the images after GFM interpolation is smaller than the TDN of the
original June image of the corresponding year. In 2013 and 2015, the difference between
the TDN of the image simulated by the LSM method and the TDN of the original image
was the smallest; in 2014, the difference between the TDN of the image simulated by the
Spline method and the TDN of the original image was the smallest; in 2018 and 2021, the
difference between the TDN of the image simulated by the Bezier method and the TDN
of the original image was the smallest; in 2020, the difference between the TDN of the
image simulated by the DR and Exponent methods and the TDN of the original image
was the smallest, and the time-series interpolation methods applicable to different years
were different. The difference between the TDN of the image interpolated by each time
series interpolation method in all years and the TDN of the original image was added. The
difference between the TDN of the image interpolated by the LSM2 and LSM3 methods and
the TDN of the original image was the smallest, and the difference between the TDN of the
image interpolated by the GFM method and the TDN of the original image was the largest.
We also found that, except for the GFM method, the TDN of the images interpolated by the
other methods was higher than that of the original images.

According to the two different focus statistics tools, rectangular window-filling meth-
ods of the STCIM, the interpolation results of the two methods are similar. In 2014 and 2020,
the effect of the STCI3 method was better than that of the STCI5 method. In 2013, 2015,
2018 and 2021, the effect of the STCI5 method was better than that of the STCI3 method.
By adding the difference between the TDN of the interpolated image and the TDN of the
original image for each method in all years, we found that the image filled with the STCI5
method was better than the image filled with the STCI3 method. We also found that the
difference between the TDN of the image simulated by the time series interpolation method
and the TDN of the original image in all years was greater than the difference between the
TDN of the image simulated by the STCIM and that of the original image. The TDN of the
image simulated by the STCIM method was closer to the TDN of the original image.

4.3. Comparison of Absolute Values of Differences

The ADN of the light brightness of the image pixel was simulated by the time series
interpolation and STCIM methods, and the light brightness of the corresponding position
pixel of the original image was calculated. The calculation was divided into eight grades:
0–1, 1–5, 5–10, 10–20, 20–30, 30–40, 40–50, and greater than 50. Figure 10 shows that the
number of pixels with an ADN between 0 and 1 was the largest, and the number of pixels
with an ADN greater than 50 was the smallest. The number of pixels with an ADN of 0–5
in the simulated images and original images in each year accounted for more than 80% of
the total pixels.

By comparing the accuracy of images simulated by the time series interpolation and
STCIM methods, we found the number of pixels with an ADN of 0–1 between the image
simulated by the STCIM method and the original image in all years was higher than the
number of pixels with an ADN of 0–1 between the image simulated by the time series
interpolation method and the original image. Additionally, the number of pixels with an
ADN of 0–5 between the image simulated by the STCIM method and the original image was
also higher than the number of pixels with an ADN of 0–5 between the image simulated by
the time series interpolation method and the original image. In 2013 and 2015, the number
of pixels with an ADN of 0–1 between the image simulated by the STCI3 method and the
original image was more than that of the STCI5 and time series interpolation methods. In
2014, 2018, 2020 and 2021, the number of pixels with an ADN of 0–1 between the image
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simulated by the STCI5 method and the original image was more than that of the ADN of
the image simulated by the STCI3 and time series interpolation methods. In the evaluation
of the number of pixels whose ADN is located in 0–1, the accuracy of the STCI5 method,
STCI3 method and time series interpolation method decreased in turn.

In 2013, 2014 and 2015, the number of pixels with an ADN of 0–5 between the image
simulated by the STCI3 method and the original image was more than that of the ADN of
the image simulated by the STCI5 and time series interpolation methods. In 2018, 2020 and
2021, the number of pixels with an ADN of 0–5 between the image simulated by the STCI5
method and the original image was more than that of the ADN of the image simulated by
the STCI3 and time series interpolation methods. In the evaluation of the number of pixels
whose ADN was located in 0–5, the accuracy of the STCI3 method, STCI5 method and time
series interpolation method decreased in turn. In conclusion, in terms of ADN, the image
accuracy simulated by the STCIM method is higher than that simulated by the time series
interpolation method, and the image accuracy simulated by the STCI3 method is higher
than that simulated by the STCI5 method.
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5. Discussion

Due to stray light pollution, the pixel values of the VIIRS DNB nighttime light data
products in the middle and high latitudes of the Northern Hemisphere in the summer are
lacking, resulting in a discontinuity in both time and space in the nighttime light radiation
values of the pixels in this area in monthly data products. This phenomenon has a very
negative impact on research in various fields based on the long-term series VIIRS DNB
dataset. To solve this problem, in this study, we propose a spatiotemporally constrained
interpolation method that takes into account temporal continuity, relative stability of the
urban spatial structure and relative smoothness of nighttime light of the same features in
time sequence. By constructing the pixel-level temporal continuity constraint relationship
and the pixel-level spatial correlation constraint relationship of the VIIRS DNB night light
monthly composite image at the pixel scale, the spatiotemporal constraint interpolation
model of the missing image is established, and ultimately, the VIIRS DNB night light
monthly composite is realized. The missing pixel value of the image is imputed to generate
a monthly synthetic imputation dataset with complete spatiotemporal continuity, and its
accuracy was verified.
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The spatiotemporally constrained interpolation method proposed in this study sim-
ulates images of Shanghai with higher accuracy than the nine temporal interpolation
methods used in this paper in terms of NP, TDN and ADN, and the accuracy of image
interpolation is significantly improved. The relevant research results are conducive to
promoting the application value of nighttime light remote sensing images based on the
VIIRS DNB long-term series and enriching the nighttime light remote sensing theory and
method system. Furthermore, in the future, we will consider determining the seasonal
fluctuation impact factors of pixel values in different types of regions in the time dimension
and introduce seasonal fluctuation impact correction parameters into the conventional time
series interpolation method. In terms of accuracy evaluation, the socioeconomic indicators
of specific sample areas will be considered, and pixel value accuracy analysis and assess-
ment of the imputation result dataset will be carried out. The imputation methods and
models will be optimized and improved according to the results of the evaluation.

6. Conclusions

The VIIRS DNB monthly synthetic nighttime light image dataset with complete spa-
tiotemporal continuity is crucial for evaluating human economic activities and urban
development. In this study, we propose a spatiotemporally constrained interpolation
method for analyzing pixel-level VIIRS monthly products that consider the constraints of
temporal continuity and spatial correlation. The accuracy of the time series and spatiotem-
porally constrained interpolation methods was evaluated from the NP, the TDN, and the
ADN. The conclusions of this study are as follows:

(1) Among the nine-time series interpolation methods used, the images simulated by the
Spline method had the highest NP, the images simulated by the GFM method had the
smallest NP, and the images simulated by the STCI3 method and the STCI5 method
had no NP.

(2) The TDN accuracy of the images simulated by the STCIM method was higher than
that of the images simulated by the time series interpolation method, and the TDN
accuracy of the images simulated by the STCI5 method was higher than that of the
images simulated by the STCI3 method.

(3) The number of pixels with an ADN between the light brightness of the image pixel
simulated by the STCI5 method and the pixel light brightness of the corresponding
position of the original image in the range of 0–1 was the largest. The number of pixels
with an ADN between the light brightness of the image pixel simulated by the STCI3
method and the pixel light brightness of the corresponding position of the original
image in the range of 0–5 was the largest. The accuracy of the STCIM method was
higher than that of the time series interpolation method.

In conclusion, the STCIM method constructed in this paper takes into account the
time continuity of VIIRS DNB data, the relative stability of the urban spatial structure,
and the relative stability of time series night light for the same objects in the interpolation
process, significantly improving the interpolation accuracy. This method also has no strict
requirements for timing data before and after the month to be interpolated, making it
more widely available. Relevant research results are of great significance to promoting
the application of VIIRS DNB night light data and provide data and technical support for
research on the urbanization process, spatial estimation of socioeconomic indicators, and
assessment of human settlement activity intensity.
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