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Abstract: The detection of dim and small space-targets is crucial in space situational awareness
missions; however, low signal-to-noise ratio (SNR) targets and complex backgrounds pose significant
challenges to such detection. This paper proposes a space-target detection framework comprising a
space-target detection network and a k-means clustering target centroid positioning method. The
space-target detection network performs a three-dimensional convolution of an input star image
sequence to learn the motion features of the target, reduces the interference of noise using a soft
thresholding module, and outputs the target detection result after positioning via the offsetting branch.
The k-means centroid positioning method enables further high-precision subpixel-level centroid
positioning of the detection network output. Experiments were conducted using simulated data
containing various dim and small space-targets, multiple noises, and complex backgrounds; semi-real
data with simulated space-targets added to the real star image; and fully real data. Experiments
on the simulated data demonstrate the superior detection performance of the proposed method for
multiple SNR conditions (particularly with very low false alarm rates), robustness regarding targets
of varying numbers and speeds, and complex backgrounds (such as those containing stray light and
slow motion). Experiments performed with semi-real and real data both demonstrate the excellent
detection performance of the proposed method and its generalization capability.

Keywords: space-target detection; dim and small target; centroid positioning; deep neural network;
k-means clustering

1. Introduction

The deterioration of the outer-space environment owing to the increasing number
of space-targets in orbit, such as spacecraft, rocket bodies, and space debris, poses severe
threats to spacecraft safety and operations [1,2]. In addition, near-Earth asteroids may
pose a potential threat to Earth [3]. Consequently, these targets must be monitored. In
this context, dim and small space-target detection is of substantial value. However, the
detection of such targets entails several limitations, including the low signal-to-noise ratio
(SNR) of the targets, which causes difficulties in discriminating these small targets from
background noise; the minute size of the targets, which often corresponds to a few pixels
with only gray-scale information and lacks features such as texture and shape; and the
simultaneous appearance of multiple targets with different speeds and directions in the
field of view.

To overcome the aforenoted limitations, this paper proposes a novel framework for
dim and small space-target detection. The framework comprises a dim and small space-
target detection network and a k-means target centroid positioning method. The detection
network is an end-to-end model that accepts a sequence of star images as input and outputs
coarse centroid-positioned bounding boxes containing targets, which is the interim result
of the detection framework. This interim result is then fed into the k-means centroid
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positioning algorithm to obtain the final precisely located target detection result. Figure 1
llustrates the flowchart of the detection framework. The target detection network com-
prises two main structures: the backbone network and the bounding box offset branch. The
backbone network consists of several modules called shrinkage convolution (SC) blocks,
which perform a three-dimensional (3D) convolution of the input and reduce the noise
effects using soft thresholding modules. At the end of the backbone network, there is a
fully connected layer that obtains the initial bounding boxes of the target. These bounding
boxes are then offset by the offset branch to derive an interim coarse positioning result.
The k-means centroid positioning algorithm comprises bilinear interpolation, k-means
foreground/background segmentation, and target centroid and window iterations, result-
ing in a highly accurate subpixel-level centroid positioning result and a corrected target
bounding box.
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Figure 1. Flow chart of the proposed dim and small space-target detection framework.

The proposed detection framework is tested using simulated data, semi-real data,
and fully real data. The simulated data contain dim and small space-targets with various
attributes such as number; speed; SNR; multiple noises; and complex backgrounds with
lots of stars, stray light, and slow motion. Semi-real data are the data of simulated targets
with multiple attributes added to the real captured background star image. The fully
real data are optical images containing space-targets taken by a professional observatory.
Experiments on simulated data show that the detection network has excellent detection
performance for targets with different SNRs (the detection rate reaches 99.75% when the
SNR is three) and has extremely low false alarm rates (10−4 level) under all SNR conditions.
The algorithm also has good robustness regarding different target numbers, speeds, and
complex star backgrounds that include stray light and slow motion. The k-means centroid
positioning method achieves an accuracy of 0.209 pixels when the target SNR is as low as
1.5 and can output accurate target bounding boxes. In addition, the overall detection
algorithm shows excellent detection performance and generalization abilities for both
semi-real and fully real data.

This paper is organized as follows: Section 2 provides a brief overview of related
works; Section 3 introduces the proposed method; Section 4 presents the experimental
validation of the proposed method; Section 5 discusses the experimental results; and finally,
Section 6 presents the conclusions.

2. Related Work

This section provides a brief overview of the existing techniques for deep learning
target detection, unsupervised semantic segmentation using k-means clustering, space-
target detection using image data taken by optical telescopes, and point-like target
centroid positioning.

2.1. Deep Learning Target Detection

In recent years, deep learning has achieved remarkable progress in target detection,
particularly with the introduction of convolutional neural networks (CNNs). One of the
earliest and most influential deep learning-based target detection methods is the R-CNN
(Region-CNN) [4], which consists of three main stages: region proposal, feature extraction
using a CNN, and classification using support vector machines (SVMs). Although the
R-CNN method achieved state-of-the-art performance at the time, it was computationally
expensive, with a slow detection speed. To overcome the limitations of R-CNN, the Fast
R-CNN method [5] was proposed, which achieved a faster detection speed by sharing
the feature extraction process across all target proposals. Then, the Faster R-CNN [6]
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method was proposed, which introduced a region proposal network (RPN) to generate
target proposals and improved the accuracy of the detection task. Another significant
development is the You Only Look Once (YOLO) [7] method. YOLO takes an image as
input and predicts bounding boxes and class probabilities for targets in a single forward
pass of a neural network, making it very fast and efficient. In 2018, the RetinaNet [8]
method was proposed, which addressed the issue of class imbalance in target detection
by introducing a novel focal loss function that focuses on hard examples during training.
RetinaNet achieved state-of-the-art performance on various target detection benchmarks
and is currently one of the most widely used target detection methods.

2.2. Unsupervised Segmentation Using K-Means Clustering

K-means is an unsupervised clustering algorithm with a simple idea: for a given
sample set, divide the sample set into k clusters according to the distance between the
samples, and let the points within the clusters be as closely connected as possible while
letting the distance between the clusters be as far as possible. This idea can be expressed
as follows: assume that the cluster is divided into (C1, C2, . . . , Ck); then, the goal is to
minimize the squared error, E:

E =
k

∑
i=1

∑
x∈Ci

‖x− µi‖2
2 (1)

where x is the sample point, and µi is the mean vector of cluster Ci, also known as the
cluster center, and it can be expressed as

µi =
1
|Ci| ∑

x∈Ci

x (2)

Since solving directly for the minimum of E is an NP-hard problem [9], the following
iterative method is used to minimize E:

1. Randomly select k samples from all samples as initial cluster centers.
2. Update the cluster centers: iterate through all sample points and calculate the dis-

tance of each sample point from all cluster centers. For a sample point, the cluster
center with the smallest Euclidean distance is taken as the class to which the sample
point belongs.

3. Calculate the mean square error of the updated cluster center coordinates and the
cluster center coordinates before the update. If the mean squared error is still greater
than a certain threshold, repeat step 2; otherwise, end the iteration.

The segmentation of images using k-means is a simple, effective, and widely used
approach [10,11]. The k-value, which is the number of regions to be segmented in the image,
is preset, and the k-means algorithm will classify each pixel in the image. In this paper,
k-means will be used to perform a two-class segmentation of targets and backgrounds for
the images in the bounding box of the target.

2.3. Optical Space-Target Detection Methods

In general, optical telescopes have two primary modes of operation: target-tracking
and sidereal-tracking modes. The former involves following a target along its trajectory
or maintaining a stationary focus on a target that is in geostationary Earth orbit (GEO),
where the target observed appears as a point-like object, and stars may appear as streak-like
or point-like objects, depending on the exposure time. In contrast, the sidereal tracking
mode aims to maintain the stable tracking of stars in the field of view, resulting in stars
appearing as point-like objects and targets appearing as streak-like or point-like ones,
depending on the exposure time. Figure 2 is a schematic diagram of point-like and streak-
like targets imaged in this mode. Existing methods for detecting space-targets can generally
be categorized into two groups: point-like target and streak-like target detection methods.
Additionally, based on the specific technology employed for detection, these methods can
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be classified as model-driven or data-driven. The following sections focus on point-like
target detection methods, categorized from both the model- and data-driven perspectives,
as the proposed method falls into this category. A brief overview of streak-like target
detection methods has also been provided.
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2.3.1. Model-Driven Method

Target detection is necessary because the “target-tracking” employed by telescopes
merely fixates on a target region in near space. The targets have a point-like form due to the
usually small relative velocity between a target in a particular region and the camera [12].

Point-like target detection using model-driven approaches typically involves cap-
turing multiple successive images, detecting potential targets (referred to as “candidate
targets”), and removing pseudo-targets by exploiting the distinctive motion patterns of
targets relative to the background stars [13,14]. Frame-by-frame differencing and thresh-
olding [15] are used for this purpose; however, they are unsuitable for detecting small and
slow-moving space-targets. Reed et al. [16] proposed a weak motion target detection algo-
rithm using a 3D-matched filter; however, this method required a specific known velocity
profile. Several algorithms have been proposed to address this problem. Mohanty [17]
demonstrated assembling potential trajectories of a weak point target by searching possible
trajectories in frames and outputting the results based on the maximum likelihood ratio.
Yanagisawa et al. [18] proposed the stacking method, which extracts sub-images from the
image sequence based on the assumed trajectory of the space debris and removes stars by
generating the median of all the sub-images. However, it takes significant time to detect
invisible targets with unknown motions because of the need to assume and examine a
range of possible paths. Addressing this limitation, Yanagisawa et al. [13] proposed the
LINE method, which finds any series of targets arranged in a straight line in an image
sequence. Although this approach analyzes data more quickly, it is not as effective as the
stacking method for detecting faint targets. Sara et al. [14] proposed an efficient algorithm
for detecting the trajectories of slow-moving targets using a trajectory sequence detection
method similar to LINE, performed using the RANSAC robust method. Liu et al. [19] first
use the maximum projection method and calculate the median image to remove stars; then,
they use a target detection method based on projection time information to detect moving
targets; and finally, they use inter-frame trajectory correlation to obtain the complete trajec-
tory of the target. A two-stage detection algorithm was proposed by Jiang et al. [20]. The
first stage uses wavelet transform and guided filtering to eliminate the effect of stars, and
the second stage uses a robust principal component analysis approach to attribute the target
detection problem to the separation of the target and background in a single frame image,
which can effectively detect the target. Gao et al. [21] proposed a space debris detection
method that first performs median filtering and improves top-hat filtering on the image,
then extracts the centroid of the suspected target using connected region analysis while
removing spurious targets using saliency features, and finally performs image alignment
and data correlation to obtain the trajectory of the target. Zhang et al. [22] proposed a space
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object detection algorithm based on motion information using video image data as the
input, and the space object trajectories are associated with the Kalman filter for all frames.

In point-like target detection, the track-before-detect (TBD) method can be used to
handle darker targets. The TBD method first tracks possible targets in the image and then
applies a discriminant based on the target characteristics to filter out the incorrect trajec-
tories, finally arriving at the correct trajectory. The particle filter (PF) [23–25] is a natural
framework for TBD solutions in which the probability of selecting a particle relies on the
evaluation value of the likelihood function. Throughout the iterative process, the particles
are gradually driven to regions with high likelihood values. Multilevel hypothesis testing
(MHT) [26] is a common TBD method that organizes targets in an image sequence into candi-
date trajectory segments, constructs a tree structure, and prunes it using hypothesis testing
to retain only consistent targets. Many subsequent improvements to MHT have been pro-
posed, including Structured Branching-MHT [27], Multiple-MHT-Tracking [28], time-index
multistage quasi-hypothesis-testing (TMQHT) [29], and Spatiotemporal Pipeline-MHT
(SPMHT) [30]. However, good hypotheses are hard to design when little prior knowledge
of the target and background models is available, with the resulting algorithms being
complex and difficult to apply directly.

In streak-like object detection, matched filters are widely used to identify targets
by detecting image regions with high responses to streak-like filters [31–33]. However,
this method can produce numerous stripe templates with different directions and lengths,
leading to long computation times and high computational costs. An alternative approach is
to apply the TBD framework to locate streak-like objects by accumulating a quantity, such as
pixel intensity values along the direction of the stripes, to enhance the final response [34,35].
Takayuki et al. [36] proposed a Trajectory Segment Integration Method for GEO space debris
detection based on an inverse filter by multiplying the frequency axis. Other techniques
have also been proposed, such as the Hough transform [37,38], Radon transform [39], and
boundary tensor [40], for streak-like target detection. However, these methods are not
effective for detecting diverse targets.

2.3.2. Data-Driven Method

The current study focuses on such a method. In recent years, data-driven meth-
ods for optical space-target detection have attracted the attention of several researchers.
Do et al. [12] proposed a GEO faint target detection method based on Gaussian process
regression (GPR) supplemented with topological scanning and linear fitting. GPR is used
to remove the noise-laden background from the original image, resulting in good detec-
tion results. However, the linear fitting algorithm requires traversing all point pairs and
has high time complexity. Several methods that apply convolutional neural networks
(CNNs) to space-target detection have emerged to bypass the process of removing stars
and constructing a first-level detection pipeline. Abey and Gupta [41] proposed a feature
pyramid network (FPN)-based GEO target detection method with mask preprocessing
and a custom vector mathematics-based post-processing algorithm to track objects across
frames, achieving relatively high detection performance that minimized false detections.
This method performs target detection on a single frame, and since it uses data where
targets are point-like and stars are streak-like, it essentially classifies targets and stars based
on shape features and is not applicable to data where both targets and stars are point-like.
A number of neural network-based detection algorithms using single-frame star images
have also been proposed. Bertin and Arnouts [42] trained a neural network on simulated im-
ages, and it enables the separation of stars and galaxies from the background. Xue et al. [43]
proposed a fully convolutional neural network to implement pixel-by-pixel classifications.
This method can quickly complete target background separation in a single stage and is
robust regarding noisy and inhomogeneous backgrounds, with a high detection rate and
fewer false alarms. Jia et al. [44] proposed a detection and classification framework based
on deep neural networks for images obtained with wide-field small-aperture telescopes.
This method borrows ideas from Faster R-CNN by first extracting image features using a
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modified ResNet-50; then, it proposes regions containing celestial objects using a regional
proposal network (RPN) and subsequently performs classification and position regression
on these regions. Experiments demonstrate that this method has two times better detection
performance for dim targets than for traditional methods and can accurately classify all
celestial targets. The latter three algorithms [42–44] do not directly detect specific space-
targets of interest in star images (such as orbiting satellites, space debris, or near-Earth
asteroids), instead detecting all targets in the image (including stars). This is because they
use only a single image for detection and do not learn the motion features of the target from
the image sequence, thus failing to distinguish the space-targets of interest from the stars.

Tao et al. [45] proposed a spatial small-fragment saliency detection method based on
deep convolutional networks, which input the local contrast map of space debris together
with the frame pairs in the video into a convolutional network to obtain a spatiotemporal
domain saliency map of space debris to detect the target. Continuing the idea of saliency
detection, Tao et al. [46] very recently proposed another end-to-end space debris detection
network called SDebrisNet, which takes video as the input and obtains detection results
for moving space-targets by extracting and fusing spatial and temporal features separately.
This network uses MobileNet as the backbone and incorporates an attention mechanism to
effectively detect dim and small targets, but its applicability to multi-targets or complex
backgrounds containing stray light or slow-moving stars is unclear.

For streak-like object detection, Varela et al. [47] proposed a YOLO-based approach,
demonstrating superior results compared with classical methods, such as the Hough
transform. Duev et al. [48] presented a deep learning system called DeepStreaks, a CNN
designed to efficiently identify fast-moving streaking near-Earth objects. This system
achieved a detection rate of 96–98% while maintaining a false-positive rate of less than 1%.

2.4. Centroid Positioning Methods for Point-like Target

Several previous studies on centroid positioning have yielded significant research
findings. These centroid positioning methods include grayscale weighting [49], Gaussian
surface fitting [50], and ellipse fitting [51].

Among these, the grayscale weighting method considers the relationship between the
pixel values and weights of the centroid positioning. The traditional method calculates
the centroid of the target by using the grayscale values of the pixels as weights. The
threshold grayscale method improves upon the traditional method by adding a background
suppression threshold, which reduces the influence of stray light and enhances the accuracy
of the centroid positioning process. The squared weighted method uses the square of the
grayscale value of a pixel as the weight, increasing the target weight and decreasing the
noise weight, resulting in more accurate positioning. This method also reduces the influence
of the edges.

The Gaussian surface-fitting method utilizes a Gaussian function to simulate the point
spread function in the imaging process, with the point spread function used to locate
the center of mass of the stellar field. Although this method is stable, its calculations are
relatively complicated.

Finally, the ellipse fitting method considers the stellar field as an ellipse, extracts the
edges of the stellar field using morphological methods, and locates the centroid using a
least-squares fit. However, this method is unstable.

3. Proposed Method

This section presents the details of the proposed method. The framework of the
proposed method is shown in Figure 1 and comprises two main steps: (1) space-target
detection using a deep neural network and providing a coarse localization of the target and
(2) accurate centroid positioning of the space-target using a k-means clustering algorithm.
This section first introduces the star image data used in the proposed method for training
and testing. Then, the structure of the deep neural network for space-target detection is
described (step 1). Next, the proposed method for accurate target centroid positioning
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using k-means clustering is presented (step 2). Finally, the implementation and training
details of the target-detection network are highlighted.

3.1. Image Modelling

According to [30], an optical image can be modeled in the form of

G(x, y) = T(x, y) + S(x, y) + B(x, y) + N(x, y), (3)

where G(x, y) represents the grayscale value of the pixel at the coordinate (x, y). T(x, y)
and S(x, y) denote the space-target and stars, respectively. The background, denoted by
B(x, y), is frequently nonuniform because of the presence of stray light and signals from
different charge-coupled device (CCD) channels. Noise, N(x, y), is usually a combination of
several types of noise, such as photonic noise generated by an optical system, dark current
noise, and readout noise generated by the detector. In addition, there is hot pixel noise,
which is an individual pixel with a particular brightness well above the main distribution
of the sensor noise. Later, simulation datasets based on the model in this section are also
generated, as presented in Section 4.1.1.

All blobs of stars and targets can be modeled using a 2D Gaussian distribution [43], as
defined in Equation (4):

G(x, y) = A exp

[
−
(
(x− xc)

2

2σ2
x

+
(y− yc)

2

2σ2
y

)]
, (4)

where G(x, y) denotes the grayscale value of the pixel at (x, y), and the coefficient A is the
amplitude. (xc, yc) indicates the coordinates of the center of a star or target, and σx, σy is
the standard deviation that represents the spread of the blob and controls its size. For stars
in the simulation images, their positions and grayscale values were generated based on the
SAO Star Catalog [52,53].

For noise in the simulated image, Gaussian noise was added to simulate the CCD dark
current noise, readout noise, and Poisson noise to simulate photon noise, with hot-pixel
noise also added.

For the background, stray light and slow motion were primarily considered. Two types
of stray light were simulated: linear and Gaussian. The slow movement of the background
was simulated by subtly changing the pointing coordinates of the center of the field of view.

For each target in the simulation image, its size was arbitrarily set to 1× 1, 3× 3, 5× 5,
or 7× 7 pixels. According to [43], SNR was used to indicate the darkness of the target,
calculated as

SNR =
µT − µB

σB
, (5)

where µT and µB are the average grayscale values of the star and neighboring regions,
respectively, and σB represents the standard deviation of the grayscale value in the neighbor-
ing background region, as shown in Figure 3. The shaded area between adjacent rectangles
of the target area and the larger rectangle was considered the background. In the simulation,
r = 5 was set to obtain µT , µB, and σB. The SNR of the target can also be set arbitrarily.
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3.2. Target Detection Network

The architecture of the proposed detection network is shown in Figure 4a. The input
of the detection network is the original star image sequence, and the output is the detected
image sequence, where the target position on each frame is marked with a bounding box.
The proposed network contains two main architectures: the backbone network and the
branch path. The backbone network is responsible for detecting moving space-targets in
the input sequence and can determine the position of the moving target in each frame,
configuring a bounding box with a very coarse position. The branch path is responsible for
offsetting the center of the bounding box to obtain a more precisely positioned bounding
box, which is the interim result of the entire detection framework.
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Block, and (c) the internal architecture of a soft thresholding module.

The backbone network borrows the design idea of the RPN in Faster RCNN. Several
square boxes (called anchors) were pre-placed with preset sizes on each frame of the input
image sequence. The function of the backbone network is to extract the motion features
of the targets in the input image sequence using 3D convolutional layers and predict
the anchors on each frame that contains the moving targets, that is, the positive anchors.
Specifically, each input image frame of size H ×W pixels is divided into n× n grids so
that each grid has a size of (H/n)× (W/n), and k square anchors with different scales are
placed at the center of each grid. By default, H = W = 256, n = 32, and k = 3 were set,
with the sizes of the three anchors being 16×16, 8×8, and 4×4, respectively, as shown in
Figure 5. This design ensures that targets with different sizes and locations are likely to
be detected by a particular anchor; for example, targets located at grid junctions or corner
points can be surrounded by anchors of size 16×16 without being missed. With this design,
3072 anchors were placed on each input image frame.
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The backbone network was designed using the architecture described below. It com-
prises several repeatedly applied modules called SC Blocks, each followed by a 3D max-
pooling layer for down-sampling. Because too many pooling layers can lead to the loss of
the spatial features of dim targets, this study used only a combination of three SC Blocks
and 3D max-pooling layers in series for feature extraction. Subsequently, a fully connected
neural network was used to implement positive/negative classification for each anchor. The
details of the network architecture are described below, and the hyperparameter settings
are listed in Table 1.

Table 1. Hyperparameter settings for the architecture of the backbone network.

Components of Backbone Module Inside Hyperparameters Output Size
(C × D × H ×W)

Input - - 1 × 8 × 256 × 256

SC Block 1
Conv 3D

kernel = (3 × 3 × 3) × 2

2 × 8 × 256 × 256
stride = 1 × 1 × 1

padding = 1 × 1 × 1
Soft Thresh See Table 2

Max Pool 3D 1 - kernel = 2 × 2 × 2
2 × 4 × 128 × 128stride = 1 × 1 × 1

SC Block 2
Conv 3D

kernel = (3 × 3 × 3) × 4

4 × 4 × 128 × 128
stride = 1 × 1 × 1

padding = 1 × 1 × 1
Soft Thresh See Table 2

Max Pool 3D 2 - kernel = 2 × 2 × 2
4 × 2 × 64 × 64stride = 1 × 1 × 1

SC Block 3
Conv 3D

kernel = (3 × 3 × 3) × 4

4 × 2 × 64 × 64
stride = 1 × 1 × 1

padding = 1 × 1 × 1
Soft Thresh See Table 2

Max Pool 3D 3 - kernel = 2 × 2 × 2
4 × 1 × 32 × 32stride = 1 × 1 × 1

FC FC Layers layer = {4096, 512, 6144} 4096

The internal structure of an SC Block is shown in Figure 4b, where the 3D convolutional
layer and soft thresholding module are the two core components. The 3D convolutional
layer is the foundation for the network to achieve moving target detection. As shown in
Table 1, the number of 3D convolution kernels was set to two or four because, empirically,
the number of convolutional kernels is related to the number of features that may be
abstracted from the image, and space-targets do not have rich features such as texture and
shape. The detection results of the network prove that the settings used are sufficient.
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Table 2. Hyperparameter settings for the structure of the soft thresholding module.

Soft Thresh Module Components Hyperparameters Output Size

In SC Block 1

Input - 2 × 8 × 256 × 256
GAP 1 × 1 × 1 1 × 1 × 1

Average Pool 3D {kernel = 2 × 2 × 2, stride = 2 × 2 × 2} × 3 2 × 1 × 32 × 32
FC layer = {2048, 256, 2} 2 × 1

Output - 2 × 1

In SC Block 2

Input - 4 × 4 × 128 × 128
GAP 1 × 1 × 1 1 × 1 × 1

Average Pool 3D {kernel = 2 × 2 × 2, stride = 2 × 2 × 2} × 2 4 × 1 × 32 × 32
FC layer = {4096, 256, 4} 4 × 1

Output - 4 × 1

In SC Block 3

Input - 4 × 2 × 64 × 64
GAP 1×1×1 1 × 1 × 1

Average Pool 3D {kernel = 2 × 2 × 2, stride = 2 × 2 × 2} × 1 4 × 1 × 32 × 32
FC layer = {4096, 256, 4} 4 × 1

Output - 4 × 1

The image sequences input into the backbone network contain a large amount of
noise, which can drown out dim targets and thus affect the target detection performance
of the network. Inspired by the deep residual shrinkage network [54], a soft thresholding
module was added to the SC Block to reduce the interference of noise-related features. Soft
thresholding is a frequently used denoising technique in signal processing, used to set
the absolute value of features below a certain threshold to zero and adjust other features
toward zero, i.e., “shrinkage”. Figure 6a shows the relationship between the input and
output of soft thresholding.
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Figure 6b shows that the derivative values of this function are zero and one, which
can effectively prevent the gradient from exploding or vanishing. The basic module of the
backbone network is the “Shrinkage Convolution Block”, or “SC Block” for short, because
of the “shrinkage” property of soft thresholding. The soft thresholding module is a small
subnetwork with the structure shown in Figure 4c, and its hyperparameters are listed
in Table 2.

The role of this subnetwork is to adaptively set the threshold. The 3D feature map
input into this subnetwork is first taken at absolute value and then fed into two paths. One
performs a global average pooling (GAP) operation to obtain an average of the absolute
values of the feature map, A, which is a scalar. The other path first performs a 3D average
pooling operation, with the pooling result then fed into a fully connected network and
activated by sigmoid to obtain tensor α, where each element is a number in the range (0, 1).
Subsequently, A is multiplied by α to obtain an output soft threshold, τ, each element of
which represents the soft threshold of the corresponding channel. The feature map output
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by the 3D convolutional layer will then be soft-thresholded according to τ as the output
feature map of an SC Block.

The feature map derived in the feature extraction stage is flattened into a 4096-d vector
and fed into a fully connected network, which is used to classify each anchor placed on
each input image frame to determine whether it contains a target. All anchors predicted to
be positive are retained.

However, the original positive anchors derived at this point are only a rough localiza-
tion result of the target. Therefore, a branch in the network structure was designed to offset
the center of the roughly localized positive anchors to optimize localization accuracy. As
shown in Figure 4a, the working process of this branch is simple: it finds the coordinates of
the pixels with the maximum value (one or more, depending on the number of targets) on
each frame in the feature map output by the first SC Block and considers this coordinate to
be the target position. This is because the backbone network extracts the motion features of
the target in the spatial–temporal domain; thus, the moving targets will have the maximum
feature responses in the shallow feature map. Then, the difference between the found
target positions and the center positions of the positive anchors in each frame is calculated,
and the centers of the positive anchors are moved to the found positions according to the
difference. Finally, nonmaximal suppression (NMS) is performed on these anchors based
on the predicted probabilities. This positioning approach is similar to a common method
used in critical point detection tasks: locating the target position based on the location
of extreme points in a heatmap [55–57]. Note that only the center of the positive anchor
was moved, and the bounding area of the anchor was not adjusted. The operation for
adjusting the bounding region of the anchor is described in Section 3.3. After offsetting
the center of the positive anchors, the network output is obtained, as shown in the part
of Figure 4a denoted as “Output”. This result is the interim result of the overall target
detection framework.

3.3. K-Means Clustering Target Centroid Positioning

The interim results obtained via the detection network must be further improved
in terms of their positional accuracy. This section presents a novel centroid positioning
method based on k-means clustering, which can obtain subpixel-level positioning for the
target centroid and accurately correct the range of the bounding box. This method has the
following main characteristics: (a) because the target contains few pixels, which results in
low centroid positioning accuracy, bilinear interpolation was performed on the image in
the bounding box to increase the number of pixels in the target to improve the centroid
positioning accuracy; (b) k-means clustering was used to segment the foreground and
background of the interpolated image and find the target region; and (c) because noise
pixels may affect the segmentation, the study adopted the iterative target region window to
reduce the centroid positioning error caused by noise. The specific process of the centroid
positioning method is as follows:

1. Bilinear interpolation is performed on the image inside the positive anchor to expand
both the rows and columns by a factor of four, as shown in Figure 7a,b. Usually, the
positive anchor output from the detection network surrounds the target or is already
very close to the target, as shown in Figure 8.

2. Two-class clustering is performed on the interpolated image using k-means to segment
the target and background regions and to obtain the respective cluster centers, which
are two grayscale values representing the average of the pixel grayscale values of the
two regions. The segmentation results of the target and background regions obtained
from clustering are shown in Figure 7c.

3. The centroid coordinates of the target are derived via the cluster center and the
window of the target region, as shown in Figure 7d,e.

4. The error, e, between the centroid coordinates of the target and the geometric center
coordinates of the target region window is calculated. If e is greater than the threshold
t, the center of the window is shifted to the centroid; t = 0.1 is set by default.
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5. The k-means clustering is performed again in the new window, and new target
centroid coordinates and a new window are obtained, along with a new error, e′.

6. This process is iterated until e′ < t to obtain the final centroid coordinates and the
final window. This step generates the output of the centroid coordinates and converts
the window to the original image for output as a bounding box.
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Figure 8. Examples of the positional relationship between the positive anchor output by the detec-
tion network (the red anchors) and the ground truth of the target (the green boxes). 

  

Figure 7. (a) Original image within the positive anchor; (b) image after bilinear interpolation;
(c) results of target/background segmentation after k-means clustering; (d) the red dots represent the
m pixels whose grayscale value is closest to the cluster center of the target region, and the blue dot
represents the center derived by averaging the coordinates of the m pixels; and (e) the window of the
target region (the red rectangle) obtained by calculating the outer rectangle of the outer contour of
the target region.
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network (the red anchors) and the ground truth of the target (the green boxes).

Specifically, in step 3, the method to obtain the centroid coordinates is as follows: First,
the cluster center of the target region is determined from the two cluster centers of the
k-means, based on the premise that the value of the cluster center of the target region is
greater than the value of the cluster center of the background, which also indicates that
this method needs to be used on images where the SNR is greater than one to obtain the
best performance. Then, the coordinates of the m pixels, whose grayscale value is closest to
the cluster center of the target region, are averaged to obtain the centroid coordinates of
the target. m = 16 was set as the default, as shown in Figure 7d. The window of the target
region was obtained by calculating the outer rectangle of the outer contour of the target
region, as shown in Figure 7e.

3.4. Training the Detection Network
3.4.1. Label Assignment, Handling Imbalance, and Loss Function

To train the detection network, a binary label was assigned to each anchor to indicate
whether the anchor contained a target. A label assignment strategy was adopted similar
to Faster RCNN: if the intersection-over-union (IoU) of an anchor with any of the ground
truth boxes is greater than 0.5, a positive label is assigned to this anchor, or, if the IoU of an
anchor with any of the ground truth boxes is less than 0.1, then a negative label is assigned
to the anchor. Anchors that are neither positive nor negative are discarded and do not
participate in training. Usually, an image contains only one target, and the rest of the image
is background, which makes the small space-target detection task an extremely unbalanced
problem in terms of classes. For all anchors placed on the image, the proportions of positive
and negative anchors were approximately 0.09% and 8.1%, respectively. To solve this
problem, focal loss [8] was used as a loss function, which is defined as

L(pt) = −α(1− pt)
γ log(pt), (6)
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where α and γ are the parameters used to balance the positive and negative samples and
balance the hard and easy samples, respectively. pt is defined as

pt =

{
p, if y = 1
1− p, otherwise

, (7)

where p is the probability predicted by the model for class with y = 1, and y denotes the
binary label. In the training, α = 0.02 was set to balance imbalanced samples, and γ was
set to two according to [8].

3.4.2. Training Details and Implementation

The training process adopted the same approach as Faster RCNN to handle the anchors
that cross the image boundaries; they do not contribute to the loss. After ignoring the
cross-boundary anchors, 2947 anchors were left on the image to participate in the training.
However, during testing, all anchors on the image are predicted, which may produce
positive anchor predictions across the boundary, with these anchors cropped into the
image boundary.

The proposed detection network was implemented using PyTorch, with the Adam
optimizer [58] employed for network weight optimization. The training lasted 100 epochs,
with the initial learning rate set to 0.01. The learning rate decay was set at every 10 epochs
with a decay factor of 0.5. The weights of the 3D convolution kernel were initialized,
and the fully connected layer was located in front of the rectified linear unit or ReLU
in the network based on He initialization [59], with the parameters of the other fully
connected layers based on Xavier initialization [60]. The training and test sets contained
20,000 and 2000 simulated star image sequences, respectively, each with 8 frames and a
size of 256 × 256 pixels per frame. It took approximately 10 h to train on a single NVIDIA
GTX1080Ti GPU.

4. Experimental Results

This section details the experiments performed to verify the performance of the
proposed space-target detection method. Experiments on simulated, semi-real, and real
data were conducted in the entire detection framework. These experiments were performed,
respectively, on a simulated dataset, a semi-real dataset comprising real captured star
images with the simulated target added, and fully realistic images with space-targets. In
the experiments on simulated data, the detection performance of the proposed method
was first verified under different conditions by controlling different simulation parameters
and comparing it with other algorithms for dim and small target detection. Then, the
ablation experiments were performed to verify the effectiveness of the key structures of
the detection network. Finally, experiments were conducted on the performance of the
centroid positioning method in the detection framework and compared with other classical
centroid positioning methods. In the experiments on semi-real and real data, experiments
concerning the performance of detection and centroid positioning were also carried out on
the entire detection framework.

To assess the detection performance in a quantitative manner, evaluation metrics
were used, including the detection rate, Pd; the false alarm rate, Pf ; receiver operating
characteristic (ROC) curves; and the area under the curve (AUC).

The detection rate and false alarm rate are calculated based on true positives (TP),
false positives (FP), true negatives (TN), and false negatives (FN) and are defined as

Pd =
TP

TP + FN
=

TP
GT

(8)

Pf =
FP

FP + TN
=

FP
BG

, (9)
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where TN denotes the number of false alarms correctly classified, FN denotes the number
of true targets not correctly predicted, TP denotes the number of true targets detected, FP
denotes the number of false alarms misclassified as targets, GT denotes the total number of
true targets, and BG denotes the number of background pixels.

The ROC curve is a widely used performance metric for target detection tasks and
reflects the detection rate of an algorithm at different false-alarm rates. The AUC is the area
under the ROC curve and is an evaluation metric that combines the probability of detection
and the false alarm rate, reflecting the global performance of the detection algorithm. A
larger AUC value indicates a higher overall detection performance.

To quantitatively evaluate the centroid positioning performance, the average posi-
tioning error of multiple positioning tests was used to characterize the performance. The
positioning error, ep, is the distance between the target centroid position calculated by the
algorithm and the true centroid position of the target, which is defined as

ep =

√
(x− xtrue)

2 + (y− ytrue)
2, (10)

where (x, y) represents the centroid coordinates of the target calculated by the algorithm,
and (xtrue, ytrue) represents the true centroid coordinates of the target.

4.1. Experimental Image Preparation
4.1.1. Simulated Image Generation

Because the number of real star images is very limited, a large number of simulated
star images were generated for training and testing the target detection network based on
the image model described in Section 3.1. The training and test sets contained 20,000 and
2000 image sequences, respectively, as described in Section 3.4.2.

Some of the simulation results are shown below. Figure 9 shows the simulation results
for typical elements of the image. Figure 10 shows three examples of the simulated images.
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Figure 10. Examples of simulated images: (a) a target and a background containing no stray light;
(b) a target and a background containing stray light; and (c) three targets and a background containing
no stray light. The targets are marked with green boxes.

4.1.2. Real Star Image Preparing

In the experiments, in addition to the simulated star images, real star image data
captured by an optical telescope (employed in this study) were used. The telescope had an
aperture of 279.4 mm, a focal length of 2800 mm, a focal ratio of f/10, and a field of view of
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0.8◦. A Canon EOS R5 camera was attached to a telescope to capture images of the stars
using a CMOS sensor with a single pixel size of 4 µm.

The shots were taken on a clear night, and the telescope worked in sidereal-tracking
mode, such that the stars appeared point-like in the images. Examples of real star images
are shown in Figure 11.
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Figure 11. Examples of real star images.

4.2. Experiments on Simulated Data

The simulation experiments were performed on the simulation dataset, which allowed
for free control of many of the simulation parameters, including the SNRs, number, size,
speed of targets, presence or absence of stray light, and slow motion of the background. In
the simulation, we set the SNR of the target = {3, 1.5, 1, 0.7}, the number of targets = {1, 2, 3},
the size of the target = {1, 3, 5, 7} square pixels, and the speed of targets = {1, 3, 6, 9} pixels
between two adjacent frames and generated backgrounds with and without stray light or
slow motion. Figure 12 shows examples of the simulated targets with different SNRs.
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4.2.1. Experiments of Target Detection Performance

Experiments were conducted using the proposed overall detection framework to test
its detection performance under different simulation parameters and compared with other
detection methods for small, dim targets such as Max–Mean [61], Top-Hat [62], the Local
Contrast Method (LCM) [63], the Multiscale Patch-based Contrast Measure (MPCM) [64],
the Spatial-Temporal Local Difference Measure (STLDM) [65], and Infrared Patch-Image
(IPI) [66]. The STLDM uses image sequences as inputs, while other methods use single-
frame images as inputs. Here, only the target detection performance of the algorithm was
focused on and not its centroid positioning performance, which is evaluated in Section 4.2.3.

Detection Performance of Targets with Different SNRs

Experiments were conducted on the test data with different SNR targets, and the
parameter settings for the experiments are listed in Table 3.

Table 3. Parameter settings for the experiments of detection performance of targets with different SNRs.

Target Background

SNR Number Size Speed Stray Light Slow Motion

3, 1.5, 1, 0.7 1 7, 5, 3, 1 1 No No
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Figure 13a–d show example results for four different target SNRs. ROC curves for
various SNRs are illustrated in Figure 14, drawn using the raw output of each algorithm.
Table 4 shows the comparative experimental results of the detection performance, which
are the average results of 2000 image sequences from the test set. The detection rate of each
comparison method was made as close as possible to our detection rate by adjusting the
binarization threshold to compare the false alarm rates. Figures 15–18 show the binarized
trajectory plots of the output of each algorithm.
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Table 4. Detection performance results of targets with different SNRs.

SNRs Metrics Ours Max–Mean Top-Hat LCM MPCM STLDM IPI

3
Detection Rate (%) 99.75 96.5 95.25 98.875 96.375 98.5 98.125

False Alarm Rate (%) 0.0243 0.5955 37.1474 1.2897 1.2183 0.2328 0.2074

1.5
Detection Rate (%) 96 96.375 96.625 93 97.25 95.75 93.875

False Alarm Rate (%) 0.0206 0.7234 39.0416 1.4999 8.7156 0.3196 0.2179

1
Detection Rate (%) 83 81.875 85.25 82.5 82.75 84.875 68.875

False Alarm Rate (%) 0.0260 0.8782 8.2603 1.6380 3.0551 2.1185 0.2378

0.7
Detection Rate (%) 61.5 61.25 61.25 60.5 61.75 62.5 30.25

False Alarm Rate (%) 0.0662 5.5468 4.5269 2.5264 4.0263 2.2766 0.2646

Bold numbers represent the best data in the row.
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The results of the ROC curves show that, although the detection rate decreases as the 
SNR of the target decreases, our approach can always achieve the best AUC performance: 
0.9972, 0.9857, 0.9129, and 0.8628 for SNR = 3, SNR = 1.5, SNR = 1, and SNR = 0.7, respec-
tively. 

The results in Table 4 show that the proposed method achieved good detection rates 
for both sets of test data at SNR = 3 and SNR = 1.5, with average detection rates of 99.75% 
and 96%, respectively. When SNR ≤ 1, the target is extremely dim, at which point, the 
average detection rate of our algorithm decreases relatively more, but it is still 83% at SNR 
= 1, which is an acceptable result for a neural network approach. At the same time, the 
proposed method still outperformed the IPI method in terms of the detection rate and 
magnitude of its decline at SNR ≤ 1. 

Table 4 also shows that the proposed method has the lowest false alarm rate for all 
SNRs when achieving the same detection rate and can be 1–3 orders of magnitude lower 
than the false alarm rate of the comparison method. An example of the feature map output 
by the third max-pooling layer of the network (final feature map) is shown in Figure 19. 

Figure 17. Detection results of target SNR = 1: (a) ground truth; (b) ours; (c) Max–Mean; (d) Top-Hat;
(e) LCM; (f) MPCM; (g) STLDM; and (h) IPI.
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Figure 18. Detection results of target SNR = 0.7: (a) ground truth; (b) ours; (c) Max–Mean; (d) Top-Hat;
(e) LCM; (f) MPCM; (g) STLDM; and (h) IPI.

The results of the ROC curves show that, although the detection rate decreases as the SNR
of the target decreases, our approach can always achieve the best AUC performance: 0.9972,
0.9857, 0.9129, and 0.8628 for SNR = 3, SNR = 1.5, SNR = 1, and SNR = 0.7, respectively.

The results in Table 4 show that the proposed method achieved good detection rates
for both sets of test data at SNR = 3 and SNR = 1.5, with average detection rates of 99.75%
and 96%, respectively. When SNR ≤ 1, the target is extremely dim, at which point, the
average detection rate of our algorithm decreases relatively more, but it is still 83% at
SNR = 1, which is an acceptable result for a neural network approach. At the same time,
the proposed method still outperformed the IPI method in terms of the detection rate and
magnitude of its decline at SNR ≤ 1.

Table 4 also shows that the proposed method has the lowest false alarm rate for all
SNRs when achieving the same detection rate and can be 1–3 orders of magnitude lower
than the false alarm rate of the comparison method. An example of the feature map output
by the third max-pooling layer of the network (final feature map) is shown in Figure 19.
After processing by the network, the noise, stars, and stray light in the original image are
filtered out, and only the moving target responds in the first channel of the feature map,
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which is the reason for the low false alarm rate and proves the effectiveness of the network
for extracting the motion features of the target. However, this feature map contains coarse-
grained semantic information that does not provide accurate target location information.
Therefore, fine-grained information from the shallow feature map is also required to assist
in locating the target. An example of the feature map output of the first SC Block is shown in
Figure 20. The response results for each frame are derived from the convolution operation
of three adjacent frames in the original image sequence. It can be seen that the responses
to the moving target appear in the first channel in frames 2 to 7, that only the responses
to the target are present in these frames, and the positions of these responses are more
accurate than the positions of the responses in the final feature map. The response to the
star appears on the eighth frame of the feature map, but as mentioned earlier, this response
is filtered out in the subsequent network. Thus, the branch of our network used frames
2 to 7 of the feature map to localize targets in the response frames of the original image
sequence, whereas frames 2 and 7 of the feature map were also used to localize targets
in the first and eighth frames of the original image sequence, respectively. A quantitative
analysis of the localization performance of the branch is presented in Section 4.2.2.
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Remote Sens. 2023, 15, 2455 19 of 33 
 

 

After processing by the network, the noise, stars, and stray light in the original image are 
filtered out, and only the moving target responds in the first channel of the feature map, 
which is the reason for the low false alarm rate and proves the effectiveness of the network 
for extracting the motion features of the target. However, this feature map contains coarse-
grained semantic information that does not provide accurate target location information. 
Therefore, fine-grained information from the shallow feature map is also required to assist 
in locating the target. An example of the feature map output of the first SC Block is shown 
in Figure 20. The response results for each frame are derived from the convolution opera-
tion of three adjacent frames in the original image sequence. It can be seen that the re-
sponses to the moving target appear in the first channel in frames 2 to 7, that only the 
responses to the target are present in these frames, and the positions of these responses 
are more accurate than the positions of the responses in the final feature map. The re-
sponse to the star appears on the eighth frame of the feature map, but as mentioned earlier, 
this response is filtered out in the subsequent network. Thus, the branch of our network 
used frames 2 to 7 of the feature map to localize targets in the response frames of the 
original image sequence, whereas frames 2 and 7 of the feature map were also used to 
localize targets in the first and eighth frames of the original image sequence, respectively. 
A quantitative analysis of the localization performance of the branch is presented in Sec-
tion 4.2.2. 

 
Figure 19. Each row is an example of the final feature maps when SNR = 1 and SNR = 0.7, respec-
tively. Each of them has a size of 4 ×  1 ×  32 ×  32 (4 channels with 1 frame of size 32 ×  32 for each 
channel). 

 
Figure 20. Example of the feature maps output by the 1st SC Block when SNR = 3, with a size of 2 ×  
8 ×  256 ×  256 (2 channels with 8 frames of size 256 ×  256). The red boxes indicates the feature 
response of the target. 

Detection Performance of Different Target Numbers 
Experiments were conducted on the test data with different target numbers in each 

image sequence, and the parameter settings for the experiments are listed in Table 5. 

Table 5. Parameter settings for the experiments of detection performance of different target num-
bers. 

Target Background 
SNR Number Size Speed Stray Light Slow Motion 

3 3, 2 3, 1 1 No No 

Figure 20. Example of the feature maps output by the 1st SC Block when SNR = 3, with a size of
2 × 8 × 256 × 256 (2 channels with 8 frames of size 256 × 256). The red boxes indicates the feature
response of the target.

Detection Performance of Different Target Numbers

Experiments were conducted on the test data with different target numbers in each
image sequence, and the parameter settings for the experiments are listed in Table 5.

Table 5. Parameter settings for the experiments of detection performance of different target numbers.

Target Background

SNR Number Size Speed Stray Light Slow Motion

3 3, 2 3, 1 1 No No

Figure 21 shows an example of the detection results of the proposed method on the
first frame of two image sequences containing two and three targets. Figure 22 shows
an example of a target motion trajectory detected by the proposed method in two image
sequences containing two and three targets. Table 6 shows the detection performance
results for different target numbers, which are the average results of 2000 image sequences
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from the test set. The results show that the proposed method achieved good detection
performance on test data containing both two and three targets, and it is the same as on the
SNR = 3 test data with one target; therefore, the detection performance of the proposed
method is independent of the number of targets. Figure 23 shows an example of a feature
map of the output of the first SC Block when the number of targets was three. It can be
observed that three maximum responses for the three targets were generated in frames
2 to 7 of the first channel.
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Figure 22. Example of a target trajectory output by the proposed method for two image sequences.
(a) contains two targets and (b) contains three targets. In each pair, the left is the ground truth of the
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Table 6. Detection performance results of different target numbers.

Target Number Detection Rate (%) False Alarm Rate (%)

2 99.75 0.0212
3 99.625 0.0257
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Detection Performance of Different Target Speed

We conducted experiments on the test data with different target speeds in each image
sequence, and the data contain different targets with different speeds in the same sequence.
The parameter settings for the experiments are listed in Table 7.

Table 7. Parameter settings for the experiments of detection performance of different target speed.

Target Background

SNR Number Size Speed Stray Light Slow Motion

3 1 5, 3, 1 12, 9, 6, 3 No No
3 3, 2 5, 3, 1 6, 3, 1 No No

Figure 24 shows an example of a target trajectory detected using the method presented
for different target speeds. Table 8 shows the detection performance results for different
target speeds, which are the average results of 2000 image sequences from the test set. It can
be seen that at a target speed of three, when the target is still relatively slow, the proposed
method achieves a good detection performance with a detection rate of 99.5% and a false
alarm rate of only 0.0122%. As the speed of the target increased, the detection performance
of the proposed method decreased slightly, and there were a few mislocated points in the
output trajectory results. However, at a target speed of 12, there was still a detection rate of
89.625% and a false alarm rate of 0.0443%.
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Figure 24. Example of target trajectories of different speeds. From left to right: speed = 12, speed = 9,
speed = 6, and speed = 3. The first row (a): ground truths; the second row (b): results.

Table 8. Detection performance results of different target speeds.

Target Speed Detection Rate (%) False Alarm Rate (%)

12 89.625 0.0443
9 91.75 0.0372
6 93 0.0267
3 99.5 0.0122

Figure 25 and Table 9 show the experimental results for different targets with different
speeds in the same sequence. It can be seen that the proposed method can still effectively
detect the target in this type of data, achieving a detection rate of over 90% and a false
alarm rate at the same level as the previous experiments. However, the detection rate
decreases significantly compared with the results of the multi-target experiments (Table 6)
at speed = 1. This again indicates that fast-moving targets can negatively affect the detection
performance of the algorithm, and future improvements are needed to address this issue.
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Figure 25. Example of a target trajectory output by the proposed method for two image sequences
containing two and three targets with different speeds in the same sequence: (a) speed = 6 and 1;
(b) speed = 6, 3, and 1. In each pair, the left is the ground truth of the target, and the right is the
detection result.

Table 9. Detection performance results of different targets with different speeds in the same sequence.

Target Number Target Speed Detection Rate (%) False Alarm Rate (%)

3 6, 3, 1 90.125 0.0350
2 6, 1 93.5 0.0277

Robustness to Nonuniform and Slowly Moving Backgrounds

We conducted experiments on test data with nonuniform or slowly moving back-
grounds, and the parameter settings for the experiments are listed in Table 10.

Table 10. Parameter settings for the experiments of robustness to nonuniform and slowly
moving backgrounds.

Target Background

SNR Number Size Speed Stray Light Slow Motion

3 1 3, 1 1 Yes No
3 1 3, 1 3 No Yes

Tables 11 and 12 show the comparative experimental results of the detection perfor-
mance of data with background stationary light and slow motion, respectively, which are
the average results of 2000 image sequences from the test set. The detection rate of each
comparison method was made as close as possible to our detection rate by adjusting the
threshold; Figures 26 and 27 show the corresponding trajectory outputs.

Table 11. Detection performance results of image sequences with background stray light.

Metrics Ours Max–Mean Top-Hat LCM MPCM STLDM IPI

Detection Rate (%) 98.25 98.75 98.125 98.25 98 98 97
False Alarm Rate (%) 0.0241 34.5864 40.4796 1.0717 10.3268 1.4859 0.4318

Bold numbers represent the best data in the row.

Table 12. Detection performance results of image sequences with slowly moving backgrounds.

Metrics Ours Max–Mean Top-Hat LCM MPCM STLDM IPI

Detection Rate (%) 99.25 98.75 95.125 90 95.75 91.25 91.25
False Alarm Rate (%) 0.0336 1.2689 58.0269 5.3546 13.624 1.8536 0.3933

Bold numbers represent the best data in the row.
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Figure 26. Detection results of image sequences with stray light: (a) ground truth; (b) ours; (c) Max–
Mean; (d) Top-Hat; (e) LCM; (f) MPCM; (g) STLDM; and (h) IPI. 
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Figure 27. Detection results of image sequences with slowly moving backgrounds: (a) ground truth; 
(b) ours; (c) Max–Mean; (d) Top-Hat; (e) LCM; (f) MPCM; (g) STLDM; and (h) IPI. 

Table 11 and Figure 26 show that the proposed method achieves the best detection 
performance even when the images contain stray light, which has only a small effect on 
the detection rate of the method compared with the results of tests without stray light 
under equivalent SNR conditions. However, other methods are significantly affected by 
stray light, particularly in the form of a significant increase in false alarm rates. 

As can be seen from Table 12 and Figure 27, the proposed method also achieved the 
best results for the slow background movement data, with the slow movement of the back-
ground having no effect on the detection rate of the proposed method and only a very 
small effect on the false alarm rate. In contrast, the detection rates of LCM, STLDM, and 
IPI drop by approximately 8% compared with the absence of background motion, the false 
alarm rate increases significantly, and the movement of the background stars can be seen 
in the output plots of almost all the compared methods. 

4.2.2. Ablation Experiments 
In this section, two ablation experiments are conducted to verify the effectiveness of 

the soft thresholding module in the SC Block and the branch of the target detection net-
work. 

The Effectiveness of the Soft Thresholding Module 
Two experiments were conducted to test the effect of the soft threshold module on 

noise and stray light. The parameter settings for the experiments are listed in Table 13. 

Figure 26. Detection results of image sequences with stray light: (a) ground truth; (b) ours;
(c) Max–Mean; (d) Top-Hat; (e) LCM; (f) MPCM; (g) STLDM; and (h) IPI.
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Table 11 and Figure 26 show that the proposed method achieves the best detection
performance even when the images contain stray light, which has only a small effect on the
detection rate of the method compared with the results of tests without stray light under
equivalent SNR conditions. However, other methods are significantly affected by stray
light, particularly in the form of a significant increase in false alarm rates.

As can be seen from Table 12 and Figure 27, the proposed method also achieved the
best results for the slow background movement data, with the slow movement of the
background having no effect on the detection rate of the proposed method and only a very
small effect on the false alarm rate. In contrast, the detection rates of LCM, STLDM, and IPI
drop by approximately 8% compared with the absence of background motion, the false
alarm rate increases significantly, and the movement of the background stars can be seen in
the output plots of almost all the compared methods.

4.2.2. Ablation Experiments

In this section, two ablation experiments are conducted to verify the effectiveness of the
soft thresholding module in the SC Block and the branch of the target detection network.
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The Effectiveness of the Soft Thresholding Module

Two experiments were conducted to test the effect of the soft threshold module on
noise and stray light. The parameter settings for the experiments are listed in Table 13.

Table 13. Parameter settings for the experiments of the effectiveness of the soft thresholding module.

Target Background

SNR Number Size Speed Stray Light Slow Motion

3, 1.5, 1, 0.7 1 3, 1 1 No No
3 1 3, 1 1 Yes No

As can be seen from Table 14, the soft threshold module can improve the detection rate
of the network to some extent, and the lower the SNR, the greater the improvement in the
detection rate, but it is of little help in the suppression of false alarms. This conclusion is
also reflected in the experimental results for the stray light data in Table 15. It appears that
the soft threshold module is effective in suppressing noise interference and thus improving
detection rates, but the network suppresses false alarms mainly by recognizing the different
motion characteristics of the target and other elements (stars, noise, and stray light) in the
image sequence.

Table 14. Results of the effect of the soft threshold module for different SNRs.

SNRs Metrics With Soft Thresholding
Module

Without Soft
Thresholding Module

3
Detection Rate (%) 99.75 99.625

False Alarm Rate (%) 0.0243 0.0244

1.5
Detection Rate (%) 96 95.25

False Alarm Rate (%) 0.0206 0.0209

1
Detection Rate (%) 83 81.5

False Alarm Rate (%) 0.0260 0.0262

0.7
Detection Rate (%) 61.5 59.875

False Alarm Rate (%) 0.0662 0.0674
Bold numbers represent the best data in the row.

Table 15. Results of the effect of the soft threshold module for stray light.

Stray
Light Metrics With Soft Thresholding

Module
Without Soft

Thresholding Module

Yes
Detection Rate (%) 98.25 98

False Alarm Rate (%) 0.0241 0.0248
Bold numbers represent the best data in the row.

The Effectiveness of the Branch of the Detection Network

We conducted an experiment to verify the effectiveness of the branch of the network
in optimizing the position of the original anchor output of the network. This was tested
using four sets of data with different SNRs. The parameter settings for the experiment are
listed in Table 16.

Table 16. Parameter settings for the experiment of the effectiveness of the branch of the
detection network.

Target Background

SNR Number Size Speed Stray Light Slow Motion

3, 1.5, 1, 0.7 1 3, 1 1 No No

Table 17 shows the average positioning error results for 2000 image sequences with
different SNRs, from which it can be observed that the branch can significantly improve
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the positioning accuracy of the original anchors. The original anchors are fixed to the
image, so the positioning error is relatively large, around 5 pixels for all SNRs, while the
average positioning error of the branch-offset anchors is around 1.7 pixels for all SNRs.
Figure 28 shows two examples of the effects of branch offsetting on the original anchors.
Branch-offset anchors were used as an interim result of the overall detection framework.

Table 17. Results of the effect of the branch for different SNRs.

SNRs Metric With Branch Without Branch

3

Positioning Error

1.718 5.326
1.5 1.729 5.532
1 1.735 5.466

0.7 1.799 5.890
Bold numbers represent the best data in the row.
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4.2.3. Experiments of Target Positioning Performance

This section presents the results of the performance test of the proposed k-means
centroid positioning method in the overall detection framework. The performance of
the algorithm was evaluated by testing the average positioning error over 2000 image
sequences and comparing it with the threshold grayscale centroid method and squared
weighted centroid method. For this experiment, the parameter settings are presented
in Table 18.

Table 18. Parameter settings of the experiments of target positioning performance.

Target Background

SNR Number Size Speed Stray Light Slow Motion

3, 1.5 1 3, 1 1 No No

As can be seen from Table 19, the positioning error of all three methods gradually
increases as the SNR decreases, but the proposed method always maintains the lowest
positioning error, and the increase in the positioning error is smaller than those of the other
two methods, which can mainly be attributed to the excellent foreground/background
segmentation capability of the k-means and the error reduction effect of the window
iteration in the algorithm. At SNR = 1.5, the average positioning error of our method is
0.209 pixels, which allows for the high-accuracy positioning of the target centroid.

Figure 29 shows two examples of the positioning of targets with different SNRs (shown
in the original window size); from left to right: the original target, the interpolated target,
and the segmentation result of the k-means of the interpolated image. In the third column
of the plot, the red and blue dots represent the pre- and post-iteration centroid positions,
respectively. A high SNR target is shown in Figure 29a and it can be seen that the difference
in distance between the red and blue dots is very small, meaning that the initial positioning
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results of the centroid positioning algorithm are accurate, and the iterations do not improve
the accuracy significantly. In Figure 29b, for a lower SNR target (stronger background
noise), it can be seen that the distance between the red and blue dots is very different, and
the blue dot is a more accurate location for the centroid; therefore, for low-SNR targets,
centroid iteration can effectively improve the localization accuracy.

Table 19. Results of the performance of our centroid positioning method for different SNRs compared
with classic centroid positioning methods.

SNRs Metric Ours Threshold Grayscale
Method

Squared Weighted
Method

3 Positioning
Error

0.146 0.163 0.197
1.5 0.209 0.230 0.292

Bold numbers represent the best data in the row.

Remote Sens. 2023, 15, 2455 26 of 33 
 

 

Bold numbers represent the best data in the row. 

Figure 29 shows two examples of the positioning of targets with different SNRs 
(shown in the original window size); from left to right: the original target, the interpolated 
target, and the segmentation result of the k-means of the interpolated image. In the third 
column of the plot, the red and blue dots represent the pre- and post-iteration centroid 
positions, respectively. A high SNR target is shown in Figure 29a and it can be seen that 
the difference in distance between the red and blue dots is very small, meaning that the 
initial positioning results of the centroid positioning algorithm are accurate, and the iter-
ations do not improve the accuracy significantly. In Figure 29b, for a lower SNR target 
(stronger background noise), it can be seen that the distance between the red and blue 
dots is very different, and the blue dot is a more accurate location for the centroid; there-
fore, for low-SNR targets, centroid iteration can effectively improve the localization accu-
racy. 

(a) 

 

(b) 

Figure 29. Examples of the validity of centroid iterations: (a) the 1st row: a target with higher SNR, 
and the effect of the precision enhancement of the iteration is not obvious; (b) the 2nd row: a target 
with lower SNR (stronger background noise), and the effect of precision enhancement of the itera-
tion is obvious. The red dot and the blue dot represents the pre and post-iteration centroid positions, 
respectively. 

The effect of target positioning after adding the k-means centroid positioning method 
to the network is shown in Figure 30 (third column of the figure). It can be seen that, after 
the k-means centroid positioning algorithm, the target centroid positioning effect is sig-
nificantly improved, and not only is the centroid position more accurate but the bounding 
box also fits more precisely to the ground truth box. 

   

   

Figure 29. Examples of the validity of centroid iterations: (a) the 1st row: a target with higher
SNR, and the effect of the precision enhancement of the iteration is not obvious; (b) the 2nd row:
a target with lower SNR (stronger background noise), and the effect of precision enhancement
of the iteration is obvious. The red dot and the blue dot represents the pre and post-iteration
centroid positions, respectively.

The effect of target positioning after adding the k-means centroid positioning method
to the network is shown in Figure 30 (third column of the figure). It can be seen that,
after the k-means centroid positioning algorithm, the target centroid positioning effect
is significantly improved, and not only is the centroid position more accurate but the
bounding box also fits more precisely to the ground truth box.

4.3. Experiments on Semi-Real Data

This section describes the following two experiments: In the first experiment, a test set
containing targets with SNR = 3 and speed = 3 was used and added to the real background
image to simulate low-orbit bright targets. In the second experiment, a test set containing
targets with SNR = 0.7 and speed = 1 was used to simulate a high-orbit dim target. The
performance of the proposed method was tested under these two conditions. The parameter
settings are shown in Table 20.

As can be seen from the results in Table 21, the average detection performance of the
algorithm for the SNR = 3 test set is consistent with the results in Table 4, and the results for
the test set with SNR = 0.7 are slightly better than the results in Table 4. Thus, the proposed
method is suitable for generalizing the performance of semi-real data. Figure 31 shows
the detection results for the first frame of the image sequence, and Figure 32 shows the
trajectory output of the target.
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Figure 30. Examples of the effect of the overall positioning process in this study. The third column
reflects the changes after processing via the k-means centroid positioning method. The green boxes
are ground truth, and the red boxes are anchors.

Table 20. Parameter settings of the experiments on semi-real data.

Target

SNR Number Size Speed

3 1 3, 1 3
0.7 1 3, 1 1

Table 21. Detection performance of the two experiments.

SNRs Target Speed Detection Rate (%) False Alarm Rate (%)

3 3 99.5% 0.0233
0.7 1 62.75% 0.0628
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containing targets with (a) SNR = 3, speed = 3 and (b) SNR = 0.7, speed = 1. In each pair, the left is 
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Figure 31. An example of the detection results for the first frame of two image sequences containing
targets with (a) SNR = 3, speed = 3 and (b) SNR = 0.7, speed = 1. In each pair, the left is the ground
truth of the target, and the right is the detection result.

4.4. Experiments on Real Data

This section includes three sets of experiments conducted on real-life captured data.
The first set of experimental data was tested using a dataset containing asteroid 194, which
was captured using a professional telescope at Lijiang Observatory on 24 April 2023 at
1721 UTC. This image sequence contains eight frames, each with a size of 3520 × 3520 and
a field of view angle of approximately 1. The center of the field of view points to a right
ascension of 12 h 30 m 09.23 s and a declination of +13◦06′34.6”. The exposure time of each
frame is 120 s, and the interval between each frame is approximately 24 min.
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Figure 32. An example of a target trajectory output by the proposed method of two image sequences
containing targets with (a) SNR = 3, speed = 3 and (b) SNR = 0.7, speed = 1. In each pair, the left is
the ground truth of the target, and the right is the detection result.

During the experiment, we changed the size of each frame to 256 × 256, input our
algorithm for detection, and restored the detection results back to the original image.
Figure 33 shows the trajectory results of the asteroid detected using our method in the
image sequence and displays the trajectory in the first frame of the image sequence. It can
be seen that, because the asteroid is very far from Earth, its motion trajectory in the image
is very short, and our algorithm detected this trajectory very well.
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The second group of experiments was filmed using the same equipment as the first
group, targeting asteroid 145. The data were captured on 27 April 2023 at 1806 UTC, with a
right ascension of 13 h 41 m 27.71 s and a declination of +06◦16′34.1” at the center of the
field of view. The exposure interval between frames is approximately 15 min, and the other
settings are the same as in the first group of experiments.

Figure 34 shows the detection results, and it can be seen that our method detected
some of the correct motion trajectories of the asteroid (marked with blue boxes), but there
are still three incorrectly located trajectory points (marked with yellow boxes). These false
detection points are mainly located on stars near the target. This is because the background
of this data has significant jumps caused by unstable telescope pointing, resulting in the
significant displacement of the background stars in the last three frames of the image
sequence, resulting in algorithm false detection. In the future, we should pay attention to
improving the robustness of algorithms with respect to jumping backgrounds.

The third group of experiments was carried out on a sequence of real images taken
by a professional observatory provided by the “Tianzhi Cup” competition. The sequence
consists of eight images, each measuring 4096 × 4096 (taken at 1520 UTC on 21 August
2020) with a large field of view centered at 291.38◦ right ascension and −13.94◦ declination,
each with an exposure time of 200 ms and an interval of 4 s. The first image of the real data
is shown in Figure 35.
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Because of the large size of the images, each original image of this sequence was
first cropped into 16 × 16 pieces of small images of size 256 × 256 to match the input
requirements of the detection network. Then, 256 new individual image sequences were
generated by using small images at the same position as each original image. Each new
image sequence was then detected using the detection framework. Finally, all detection
results were combined and restored back to the original image.

Figure 35 also shows the detection results, and it can be observed that the proposed
method clearly detects the five space-targets contained in the graph. In addition, there are
sparse false alarm points in the result (456 in total), which is acceptable for an image of
size 4096 × 4096, with a false alarm rate of approximately 0.002%. This is better than the
average false alarm rate measured from the simulated dataset, indicating that our method
has good generalization properties. If we had sufficient real data, we could build a real
dataset and fine-tune our detection network to obtain a better detection performance for
the real data.
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5. Discussion

The experimental results show that the overall target detection framework can achieve
high detection rates and low false alarm rates for conditions (such as SNR = 3 and
SNR = 1.5) and detect targets of varying numbers and speeds, and it is robust regard-
ing complex backgrounds. However, the detection rate of the overall detection framework
at SNR ≤ 1 was not satisfactory. Although this is related to the inherent shortcomings of
CNNs for dim–small target detection, it may still be possible to improve the detection rate
under extremely low SNR conditions by optimizing the network structure. Concurrently,
the overall detection framework is not a fully end-to-end model but still contains a separate
centroid positioning step. Therefore, it will be a direction of future research to design a
fully end-to-end model with better detection capabilities concerning extremely low-SNR
targets and accurate centroid positioning.

In addition, our method in this article was mainly trained on simulation datasets
containing point-shaped targets, which leads to two limitations: firstly, the algorithm’s
detection performance for other forms of moving targets (such as moving short streak-like
targets generated under longer exposure times) may not be satisfactory, and secondly, the
algorithm’s detection performance may also decrease for other real data with attributes
that have not been simulated before. At the same time, the scenarios we are currently
simulating are also relatively limited, and more scenarios should be considered, such as
deep space scenes or backgrounds where some parts of the Earth enter the field of view.
Therefore, in subsequent work, we will make every effort to obtain more real data, annotate
them, and train our algorithm to improve its ability to detect real data. We will increase the
shape type of the target (such as short streak-like targets) and the real scene types (such as
observing deep space targets from LEO, or observing low-Earth-orbit targets or deep space
targets from Earth–Moon space) so that the algorithm can learn additional knowledge and
better adapt to target detection tasks in the real world.

6. Conclusions

This study constructed a simulated dataset of dim and small space-targets and pro-
posed a space-target detection framework that includes a space-target detection network
and a k-means centroid positioning method. The experiments demonstrated that the
proposed method has superior detection performance for targets with different SNRs, in
particular achieving a very low false alarm rate while being robust with respect to the
number of targets, their speed, and complex backgrounds containing stray light or slow
movement. Moreover, the proposed method exhibited good detection performance and
generalization for both semi-real and real star map data.
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