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Abstract: As a critical component of many remote sensing satellites and model validation, pixel-scale
surface quantitative parameters are often affected by scale effects in the acquisition process, resulting
in deviations in the accuracy of image scale parameters. Consequently, various successive scale
conversion methods have been proposed to correct the errors caused by scale effects. In this study, we
propose ResTransformer, a deep learning model for scale conversion of surface reflectance using UAV
images, which fully extracts and fuses the features of UAV images in the sample area and sample
points and establishes a high-dimensional nonlinear spatial correlation between sample points and
sample area in the target sample area, so that the scale conversion of surface reflectance at the pixel-
scale can be completed quickly and accurately. We collected and created a dataset of 500k samples
to verify the accuracy and robustness of the model with other traditional scale conversion methods.
The results show that the ResTransformer deep learning model works best, providing average MRE,
average MRSE, and correlation coefficient R values of 0.6440%, 0.7460, and 0.99911, respectively,
and the baseline improvements compared with the Simple Average method are 92.48%, 92.45%, and
16.59%, respectively. The ResTransformer model also shows the highest robustness and universality
and can adapt to surface pixel-scale conversion scenarios with different sizes, heterogeneous sample
areas, and arbitrary sampling methods. This method provides a promising, highly accurate, and
robust method for converting pixel-scale surface reflectance scale.

Keywords: pixel scale; surface reflectance; scale conversion; deep learning; UAV

1. Introduction

Scale conversion is a critical link in many remote sensing physical modelling, remote
sensing product applications and quantitative description of surface parameters at the pixel
scale [1–4]. The primary problem in remote sensing scale conversion is effectively convert-
ing remote sensing data and information from one scale to another and simultaneously
giving the evaluation index and uncertainty of the scale conversion results [2,5,6]. The
pixel-scale surface reflectance is necessary for satellite verification and inversion of other
quantitative remote sensing parameters [7]. In obtaining the surface reflectance at the pixel
scale, the surface reflectance of the sampling points collected on the ground needs to be
scaled up to the pixel scale via the point-to-surface scale conversion method [8–10].

The main methods of upscaling remote sensing parameters in the past decades include
Simple Average, empirical regression, geostatistical, and Bayesian methods. Among them,
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the Simple Average method calculates the arithmetic mean of multiple sample points or the
weighted mean of each sample point according to the components within the sample area
as the actual image element scale value, which is a simple method [11–13]. However, it
only applies to areas with low heterogeneity of surface parameters. Otherwise, the results
will bear significant uncertainty [14]. The empirical regression method establishes the
interrelationship between the measured values of each sample point, the related metadata
and the actual values of the image element scale through the historical observation samples.
A series of regression models are then used such as the least squares method to fit [15–17],
which has improved accuracy compared with Simple Average, but is overly dependent on
historical observation data and has poor portability [18]. The geostatistical method aims to
combine the theory of regional variation with the variation function as a tool to reconstruct
the measured values of internal sampling points to the metric scale [19,20]. Moreover, the
geostatistical method has no interference from other metadata, and its accuracy is only
related to the distribution of the number of sampling points; however, this also leads to an
overdependence of its result accuracy on the sampling method [21]. The Bayesian method
adopts the Bayesian maximum entropy method [22], incorporates various prior information,
and has no requirement for the distribution of prior knowledge [23]. However, this method
is more complex, and the probabilistic transformation of various prior knowledge is still in
the research stage.

Due to subsurface heterogeneity during the field measurement of quantitative re-
motely sensed surface parameters, the quantitative inversion models of the corresponding
parameters and the accuracy of the results produce variations of different sizes. While
validating the lake surface albedo model, Du et al. found that spatial heterogeneity led
to lower precision of the point-scale reflectance due to the lack of scale conversion, which
significantly impacted the accuracy of the validation results of the model [24]. The cur-
rent research on scale conversion for many remotely sensed surface parameters mainly
focuses on surface temperature, LAI, BRDF, total primary productivity and landscape
phenology parameters. Liang et al. used high-resolution remote sensing images to upscale
ground point-scale reflectance measurements to low-resolution images with reasonable
accuracy [25]. Yue et al. used high-resolution remote sensing images to upscale ground
point-scale albedo measurements to the 500 m image scale [26], and Sanchez-Zapero
et al. combined the spatial heterogeneity of the subsurface. They employed geostatistical
methods that combined the subsurface’s spatial heterogeneity and scaled the observation
tower’s albedo measurements to the image element scale by the geostatistical method and
the Simple Average method [27].

Due to the influence of surface heterogeneity, sampling method and randomness of
sampling in the image element range, the scale conversion of the traditional point sur-
face conversion method yields low accuracy of the pixel-scale surface reflectance, and
the uncertainty of the scale conversion results fluctuates wildly [28]. For example, the
traditional Simple Average method provides high accuracy of the image element-scale
surface reflectance for sites with low surface heterogeneity, while the uncertainty of the
scale conversion results is more significant for areas with high heterogeneity. Regarding the
empirical regression method, due to the convenience of ground truth surface reflectance
measurements, and based on the principle of incorporating as many types of features
and multiple sample areas as possible [29], the sampling locations are often irregular and
random, making it challenging to obtain historical observation samples [30]. The surface re-
flectance will change even in the same area, so the empirical model obtained in the previous
period does not apply to scale conversion of the current environment. The geostatistical
and general interpolation method requires a high number and distribution of sample points.
It often performs better in areas with a high density of sample points. However, because
the accessibility of different feature types in the same area differs, the number of sample
points may be small and the distribution of sample points may be uneven [31]. Hence,
the accuracy of the surface reflectance results obtained by the geostatistical method varies
significantly in different types of sample areas, and the method’s robustness is low. In
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summary, the traditional point-to-surface conversion method is unsuitable for pixel-scale
surface reflectance acquisition.

Therefore, this paper proposes an adaptive and highly robust ResTransformer surface-
reflectance scale-conversion deep learning model that combines UAV images. The model
extracts, fuses, and adaptively learns the features within the UAV image of the target
sample area and the UAV image of the sampling points within the sample area through
the ResTransformer deep learning model. It then establishes a high-dimensional nonlinear
spatial correlation between the sampling points within the target sample area and the
sample area, and maps the measured surface reflectance of each sampling point within the
sample area to the surface reflectance of the sample area through the ResTransformer model.
The surface reflectance of each sampling point within the sample area is mapped to the
surface reflectance of the sample area by the ResTransformer model. It is possible to scale
the surface reflectance of arbitrary size, heterogeneous sample area, arbitrary sampling
location and the number of scenes with high-precision pixel scale.

The main objective of this study is to develop a deep learning model with UAV images
to achieve high-accuracy pixel-scale surface-reflectance scale conversion for arbitrary size,
heterogeneous sample area, arbitrary sampling location and the number of scenes. This
method provides a relatively easy-to-use method to scale the surface reflectance, and the
average MRE, average MRSE, and correlation coefficient R with the actual values on the
large-scale dataset being 0.6440%, 0.7460 and 0.99911, respectively, 92.45% and 16.59%,
respectively, compared to the baseline method. It is also found that the scale conversion
accuracy of the deep learning model remains high for arbitrary size, heterogeneous sample
area, arbitrary sampling location and the number of scenarios. Moreover, it demonstrates
higher robustness and generalizability than the traditional methods. Section 2 of this paper
introduces the normalization method for the reflectance scale conversion problem and
the data source and construction of the large-scale reflectance scale conversion dataset.
Section 3 introduces the ResTransformer deep learning model and the evaluation method of
the accuracy of the scale conversion results. Section 4 analyzes and evaluates the accuracy
of various scale conversion models on the dataset, and we conclude the above work in
Section 5.

2. Reduction Method and Dataset
2.1. Reduction Method

Reduction refers to converting a complex problem or expression into a more straight-
forward form that can be solved or processed more efficiently [32]. It is commonly used
in computer science for solving problems in computational theory, such as proving that
a problem is NP-complete and for transforming a complex problem into a known simple
problem to be solved [33,34]. The prerequisites for reductio ad absurdum are that problem
A can be transformed into problem B via rules and algorithms, and that both problems
have the same type of answer, and the reduction is reversible and valid [35,36].

Since the process of imaging the sample area observation by UAV is similar to the
process of detecting the reflectance of the sample point by the spectrometer above the
sample point [37–39], the scale conversion problem of surface reflectance is considered to
be reduced to the scale conversion problem of the grayscale value of the sampling point
of the UAV image, as shown in Figure 1. The surface reflectance at the image element
scale for any sample area N is the average of the reflectance of each continuous element
within it [40]. However, measuring the reflectance of each continuous element in the field
measurement is impossible, and the efficiency could be better [41]. Therefore, only the
reflectance Re f (nk) of k sampling points inside the sample area N is usually measured,
and the image-scale surface reflectance of the sample area is obtained by establishing a
functional relationship F between the reflectance of the sampling points and the reflectance
Re f (N) of the sample area N, as shown in Equation (1).

Re f (N) = F(Re f (n1), Re f (n2), . . . , Re f (nk)) (1)
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Figure 1. Schematic diagram of surface-reflectance scale conversion reduction. A,B,C,D are the
numbers of sampling points respectively.

The panchromatic images obtained from UAV capture can simultaneously measure
the grayscale values of each consecutive element within the sample area N. Therefore, the
complex nonlinear correlation between all the sampling points in the sample area N and
the sample area N is established by using the UAV images in the sample area, all the UAV
images in the sampling points, and the average grey value DN(N) of the UAV images in
the sample area and the average grey value DN(nk) of the UAV images in the sampling
points are calculated to optimize and verify F, as shown in Equation (2).

DN(N) = F(DN(n1), DN(n2), . . . , DN(nk)) (2)

Moreover, the result of the convolution of the surface reflectance of the sample area
and the spectral response function of the UAV imaging spectrometer is related to the
grayscale value of the UAV image so that Equation (3) exists, allowing arbitrary surface
reflectance to be converted to the grayscale value of the UAV image in polynomial time,
where Γ(λ) is the spectral response function at the corresponding wavelength.

DN(N) =
∫ ∞

0
Re fN(λ)Γ(λ)dλ (3)

In summary, the input of the pixel-scale surface reflectance scale conversion is con-
verted into the input of the scale conversion of the UAV image of the sampling point using
Equation (3). The features of the sample area and the UAV image of the sampling point
are extracted by the deep learning model to obtain the feature representation of the corre-
sponding space. The similarity weights of the features of the sample area and the sampling
point are then obtained by feature fusion. After that, the average DN value of the UAV
images of the sampling points is multiplied by the corresponding feature weights, and the
corresponding corrected sampling results are obtained through the fully connected layer
calculation. The nonlinear correlation model between the UAV images of the sampling area
and the UAV images within the sampling points is then established by mining the complex
nonlinear spatial relationship between the effective sampling points and the sample area,
solving the problem of scale conversion of the grayscale values of the sampling points of
the UAV images, and the correlation model is applied to the reflectance of the sampled
points to complete the normalization of the reflectance scale conversion problem.

2.2. UAV Image Data

A DJI (DJI Technology Co., Ltd., Shenzhen, China) Mavic 2 UAV took the UAV
images used in this paper with a diagonal field of view of 84◦ and a single shot of
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3000 px × 4000 px in actual size. Our team travelled to Xiong’an, Hebei, Shihezi,
Xinjiang, Yuanmou, Yunnan, and Sanya, Hainan, between 2022 and 2023 to capture
feature types specific to the destinations. Figure 2 shows the image locations and
feature types. Table 1 shows the number of UAV images of each feature type and the
observation area corresponding to the UAV images.
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Figure 2. UAV image acquisition location and feature type.

Table 1. Number of UAV images of different feature types and corresponding observation areas.

Feature
Type Num Area km2 Feature

Type Num Area km2 Feature Type Num Area km2

Chili 56 1.83 × 100 Corn 211 6.09 × 100 Sweet potato 36 2.16 × 100

Rice 143 1.52 × 101 Eggplant 6 3.08× 101 Orange trees 42 1.10 × 100

Wheat 52 1.56 × 101 Cauliflower 48 1.26 × 100 Water bodies 73 3.69 × 100

Grassland 136 4.92 × 100 Peanut 11 2.00× 101 Chrysanthemum 20 8.02× 101

Cotton 8 3.01 × 101 Soybean 15 3.21× 101 green cabbage 12 2.35 × 100

Zucchini 74 3.33 × 100 Sandy 56 8.36 × 100 Lover’s Grass 88 1.96 × 100

Concrete 65 7.38 × 100 Tomatoes 222 6.14 × 100 Fluffy grass 185 4.87 × 100

Greenhouse 86 4.94 × 100 Bare soil 482 3.39× 101 Golden peach 60 3.63 × 100

Okra 5 3.40 × 101 Date palm 2 3.53× 101 Purple kale 111 2.89 × 100

Pitch 16 1.14 × 101 Open space 2 2.68× 101 Green onions 132 5.98 × 100

Beans 14 2.82 × 100 Gravel 2 3.15× 101

Weeds 12 7.87 × 102 Straw 47 2.77 × 100
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2.3. Dataset Construction

A large number of a priori samples are needed to extract the features and correlation
between the corresponding sample areas and the sampled UAV images by deep learning
models and to solve the scale conversion problem of the grayscale values of the sampled
UAV images, for which the construction of a large-scale dataset is one of the critical
steps [42,43]. In this paper, we build a large-scale scale-conversion dataset (SCD) containing
multiple feature types, sample area sizes and sampling methods based on the UAV images
acquired from several field experiments, and it includes 500k training samples. Figure 3
shows the overall process of SCD dataset construction.
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The UAV images obtained from the field experiment acquisition first need to judge
whether the image acquisition height is greater than 2 m to avoid the sample area being
too small, leading to many overlapping simulated sampling points, which affects the
accuracy of the data set. Since the surface reflectance acquisition and the pixel-scale
surface reflectance acquisition process require the ground sample area to be square, and
the UAV image is a rectangle of 3000 px × 4000 px, so for any UAV image, it needs to be
cropped to a square of 3000 px in length and width. The SCD database is a large-scale
pixel-scale reflectance scale conversion dataset containing multiple feature types, multiple
sample area sizes, and multiple sampling methods. In addition, the deep learning model
requires a large number of a priori samples, in order to increase the training samples,
perform sample enhancement and achieve the purpose of simulating different high-spatial-
resolution satellite pixel-scale size sample area scale conversion, by simulating UAV at
different altitudes. The sample enhancement is achieved by simulating the UAV at different
heights and imaging the sample area to obtain a variety of samples with different sample
sizes. Figure 4 illustrates the overall process of sample enhancement. The spatial resolution
of individual pixels of the original UAV image is calculated by Equation (4). The edge
length of the square sample area under the simulated height h is calculated by Equation (5),
in which 2htan(42

◦
) is the length of the diagonal of the corresponding enhanced sample

because the cutting according to the long edge is prone to the problem of wide edge crossing,
so the short edge cuts the enhanced sample as the square sample area. The short edge
length is 0.6 times the diagonal length, and the corresponding sample area is calculated
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by Equation (6). The number of pixel points in the edge length of the enhanced sample
simulated UAV image widthpx is calculated by Equation (7).

resolution =
2Htan(42

◦
)× 3

5
3000

=
Htan(42

◦
)

2500
(4)

width = 2htan(42
◦
)× 3

5
(5)

area = width × width =
36
25

h2 tan2(42◦) (6)

widthpx =
width

resolution
=

6
5 htan(42

◦
)

Htan(42
◦
)

2500

=
3000h

H
(7)
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After obtaining the UAV images of the corresponding sample area through the above
steps, it is necessary to simulate the field feature spectral acquisition process by selecting
sampling points on the UAV images for simulated sampling. Sampling point selection
includes standard and random sampling, and standard sampling adopts equal spacing sam-
pling. The sampling methods include one-point sampling, two-point sampling, 2 × 2 four-
point sampling, five-point sampling, 3 × 3 nine-point sampling and 4 × 4 sixteen-point
sampling [44]. Random sampling uses randomly selected points, and the number of
sampling points ranges from 1 to 16. Figure 5 shows the sampling locations of various
sampling methods.
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In order to make the samples in the dataset as close as possible to the actual
field reflectance acquisition scene, we limit the acquisition height of each sampling
point to 1 m~1.4 m by randomly selecting the sampling height hpoint as the sampling
point. The side length wpoint of the corresponding sampling point UAV image is
calculated by Equation (6). The corresponding sampling radius rpoint can be calculated
by Equation (7), where IFOVSEI is the SEI spectrometer of IFOV. The IFOV in SCD was
set to 25◦ because the field of view of the fiber optic probe of most of the mainstream
spectrometers, such as SEI and ASD, is 25◦.

wpoint =
5000hpoint tan(IFOVSEI)

hUAV tan(42◦)
(8)

rpoint =
hpoint tan(IFOVSEI)

hUAV tan(42◦)
(9)

After obtaining the sample area UAV image and the sample location by simulated
cropping and simulated sampling, the UAV image of the sample location is cropped. The
average DN values of the sample point and the sample area UAV grayscale images are
calculated, respectively, to complete the construction of the single SCD sample. Figure 6
shows the sample construction process. Since then, a single sample in the dataset has been
created, which contains the UAV images of the sample area and the sample point and the
average DN values of the UAV grayscale images of the sample area and the sample point.
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Since the ResTransformer model is not an end-to-end model, it requires the same input
data shape. However, in the process of surface reflectance measurement, due to various
natural factors such as topography, geomorphology and subsurface state, the size of each
sample area, the number, location and sampling height of sampling points are different,
resulting in different resolutions of UAV images of sampling points within the sample area
and the number of average DN values of sampling points. Hence, it is necessary to unify
the samples in the SCD dataset by coding each. The samples in the SCD dataset need to be
coded into the same structure.

Each sample in the SCD dataset includes the UAV images of the sample area, the
sample points, and the DN mean of the UAV grayscale images. At the same time, for
the UAV images of the sample points, since the number of sample points is usually less
than 16 in the ground-based spectral acquisition process, we reserve 16 filled areas for the
sample points and place the sample point images into the squares along the image channel
dimension, each of which has a size of 56 px × 56 px. Similarly, the average grey value of
the sampled UAV images is filled into a matrix of length 16 by cyclic mode-taking, and
Figure 7 illustrates the sample normalization process.
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3. Methods and Evaluation Indicators
3.1. Traditional Scale Conversion Methods

The traditional scale conversion methods include Simple Average, Ordinary Kriging,
and Cubic Spline Interpolation. Among them, the Simple Average method uses Equation (8)
to calculate the mean value of DN values of each sampling point in the sample area as
the scale conversion result of the sample area. Where n is the number of sample points in
the SCD data set, DNpoint_i is the average DN value of the UAV grayscale image at the ith
sample point.

resultsimple_average =
1
n

n

∑
i=1

DNpoint_i (10)

The Ordinary Kriging method first creates a variance function and a covariance
function to estimate the spatial autocorrelation value. In this paper, a Gaussian function is
used as the variance function. Equation (9) shows the mathematical model of the Ordinary
Kriging method, where Z#(x) is the unbiased optimal estimate of the DN value of the UAV
grayscale image at location (x,y). Zi(a = 1, 2, ···n) is the mean value of DN of the UAV
grayscale image at the sampling point. According to the two conditions of unbiased and
optimality, the estimation equation of the weight coefficient λi is shown in Equation (10).
The solution of the equation shown in Equation (10) is brought into Equation (9) to obtain
the estimated value of DN at the coordinates (x,y). Finally, the scale conversion result of
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the sample is obtained by calculating the mean value of all DN values within the sample
area [45–47].

Z#(x) =
N

∑
i=1

λiZi (11)



N
∑

β=1
λβγ(xα, xβ) +

K
∑

L=0
µL fL(xα) + µ0 = r(x0, x)

N
∑

α=0
λα fL(xα) = fL(x)

N
∑

β=1
λβγ(xα, xβ)

(12)

The cubic Spline Interpolation method is a smooth surface interpolation method for
estimating the function values between given data points. Similar to the one-dimensional
case, it divides the surface between a given data point into multiple cubic function slices
and ensures that the function and derivative values between adjacent slices are equal, thus
ensuring the continuity and smoothness of the surface. Equation (11) shows the general
form of Cubic Spline Interpolation, where DN(x, y) is the DN value of the whole sample
plane, wi,j is the weight, Ni(x)Nj(y) is the basis function, and m and n are the total numbers
of sampled points in the length and width direction of the sample area, respectively. The
basis function is usually three-times the spline function; they have good smoothness and
approximation properties. Equation (12) defines the spline function, where hi is the distance
between two sampling points [48–50].

DN(x, y) =
m

∑
i=1

n

∑
j=1

wi,jNi(x)Nj(y) (13)

Ni(x) =
1

6hi


(x − xi−1)

3 , xi−1 ≤ x < xi

3h2
i (x − xi−1)

2 − 3hi(x − xi−1)
3 + h3

i , xi ≤ x < xi+1

3h2
i (xi+1 − x)2 − 3hi(xi+1 − x)3 + h3

i , xi+1 ≤ x < xi+2

(xi+2 − x)3 , xi+2 ≤ x

(14)

3.2. ResTransformer Deep Learning Model

The ResTransformer model proposed in this paper is a deep learning framework
which aims to scale the conversion of surface reflectance by extracting the features of the
UAV images of the learning sampling points and the UAV images of the sample area and
establishing the correlation between the average DN values of the UAV images of the
sampling points and the average DN values of the UAV images of the sample area. The
ResTransformer model consists of Resnet and Swim Transformer V2. ResNet is a deep
residual network that introduces the residual block concept to add input and output data to
learn residuals [51]. This residual learning approach can solve the gradient disappearance
or gradient explosion problem encountered by neural networks during training and is
widely used in computer vision tasks. Transformer is a deep learning model based on a
self-attentive mechanism, initially proposed by Vaswani et al. in 2017 [52], whose core idea
is encoding and decoding sequences through a multi-headed attention mechanism. The
Transformer model first achieved excellent results in natural language processing [53,54].
With the Vision proposed by Dosovitskiy et al. in 2020 to achieve an image serialization
Transformer model, Transformer has also been gradually applied to computer vision [55].
A successive series of Transformer-based computer vision models have been proposed,
such as DETR and Swin Transformer [56].

The ResTransformer first extracts the features of the sample area and the sample point
UAV images, obtains the spatial representation of the corresponding features and then uses
feature fusion to obtain the similarity weights λ of the sample area and the sample point
features. The average DN value of the sample points multiplies the corresponding feature
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weight λ to obtain the corresponding corrected sampling results and establish the complex
non-linear spatial relationship f between the effective sample points and the sample area,
after which the corresponding scale conversion results are obtained by Equation (13).

resultResTransformer = f (λ1DN1, λ2DN2, ···λnDNn) (15)

ResTransformer combines the advantages of ResNet and Transformer, using ResNet-
18 as the backbone network for feature extraction of sample area and sample point UAV
images. We use a double-headed Resnet Block to extract features from the sample area and
sample point UAV images. The sample area image size is 224 × 224 × 3, so 12 Resnet Blocks
are used to compress the feature size to 14 × 14 × 256 after four times of downsampling,
and the sample point UAV image size is compressed to 14 × 14 × 64 by 4 Resnet Blocks
after two times of downsampling, after which the sample area and sample point UAV
image features are stitched according to the channel dimension.

The above output image features are passed through four Resnet Blocks and fused
after one downsampling. The typical features are then extracted and computed using an
attention mechanism by the Swin Transformer Block V2 module [57]. The input UAV image
features in Swin Transformer Block V2 are split into multiple patches, each transformed
independently. The different patches are connected by Cross-Stage Connection (CSC)
and Local Window Swapping (LWSW). The information is exchanged and integrated
between the patches through CSC and LWS. After fusing the output features of the encoder
with the input of the linear layer, the complex non-linear spatial relationship between the
sample area and the sampled points is obtained through a multi-layer full connection and
a non-linear combination of activation functions.

The above output image features are passed through four Resnet Blocks and fused
after one downsampling. After that, the typical features are extracted and computed by
the Swin Transformer Block V2 module using the attention mechanism. The input UAV
image features in Swin Transformer Block V2 are partitioned into multiple patches, and
each patch is independently transformer computed. The different patches are connected by
Cross-Stage Connection (CSC) and Local Window Swapping (LWSW). The information is
exchanged and integrated between different patches through CSC and LWS. After fusing
the output features of the encoder with the input of the linear layer, the complex nonlinear
spatial relationship between the sample area and the sampling points is obtained by the
nonlinear combination of the multilayer full connection and the activation function, and the
scale transformation results are obtained by combining the above Equation (13). Figure 8
illustrates the overall architecture of ResTransformer.
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To quantitatively describe the computational complexity of the ResTransformer model,
we calculated the Floating-Point Operations (Flops) for each module of the ResTransformer
model and the parameters of the corresponding modules to measure the computational
complexity of the model. Table 2 shows the complexity of each component module. In the
table, Head and Head small correspond to the input layer of the sample area UAV image
and sample point UAV image, respectively; Resnet Blocks 1–3 are the sample area UAV
image feature extraction layers; Resnet Block 2 small corresponds to the sample point UAV
image feature extraction layer; Resnet Block 4 is the sample area, and sample point UAV
image feature fusion. The Swin Transformer Block v2 is the function layer of feature fusion;
Linear is the linear output layer.

Table 2. Complexity of each module of the ResTransformer model.

Name Input Shape Output Shape Flops Flops
Percentage Params

Head [3, 224, 224] [64, 128, 128] 1.20 × 108 6.008% 9.54 × 103

Head Small [48, 56, 56] [64, 28, 28] 1.19 × 108 5.973% 1.51 × 105

Resnet Block 1 [64, 128, 128] [64, 56, 56] 4.64 × 108 23.327% 1.48 × 105

Resnet Block 2 [64, 56, 56] [128, 28, 28] 4.12 × 108 20.706% 5.26 × 105

Resnet Block 3 [128, 28, 28] [256, 14, 14] 4.12 × 108 20.676% 2.10 × 106

Resnet Block 2 Small [64, 28, 28] [64, 14, 14] 4.27 × 108 21.467% 8.72 × 106

Resnet Block 4 [320, 14, 14] [512, 7, 7] 2.99 × 107 1.500% 1.52 × 105

Swin Transformer Block v2 [49, 256] [49, 256] 6.81 × 106 0.342% 1.51 × 105

Linear [49, 256] [1] 1.75 × 104 0.001% 1.75 × 104

TOTAL - - 1.99 × 109 100% 1.20 × 107

The results in the table show that the overall Flops of ResTransformer are 1.99 × 109,
and the total number of parameters is 1.20 × 107, while the Flops of the traditional Resnet50
model are around 2.91 × 109. The Flops of the ResTransformer model are 31.69% lower
compared to Resnet50. Our proposed ResTransformer model has higher computational
efficiency and lower complexity.

3.3. Hyperparameter Setting

The traditional Resnet residual network is good at solving the gradient disappearance
and gradient explosion problems in deep network training. However, as its network layers
increase, there is a degradation problem of network accuracy. To solve the problem that it is
challenging to optimize the deep network, we use the Batch Normalization layer by adding
it to accelerate the model convergence and improve the accuracy and generalization ability
of the model. Furthermore, for the parameters in Resnet, we use a normal distribution for
initialization, which achieves good accuracy on ImageNet. The Transformer architecture in
the computer vision neighborhood is prone to model overfitting and bias due to the lack of
structural bias and many parameters. To solve the problem of Swin Transformer Block v2
overfitting during training, we only use a single Swin Transformer Block v2 to solve the
overfitting problem of Swin Transformer Block v2, we only use a single Swin Transformer
Block v2 to calculate the output features of Resnet, and at the same time, we add a Dropout
module to Swin Transformer Block v2 and use LayerNorm to normalize the output layer
features in order to improve the generalization ability and robustness of the model.

During the overall training of the ResTransformer model, we generated enough sample
data to improve the accuracy and generalization ability of the model. We used a 7:3 ratio to
divide the training and test sets. A batch size of 32 was used during the training process;
compared to a large batch size, training with a small batch size tends to converge to flat
minimization regions that tend to generalize better because they are more robust to changes
between the training and test sets [58]; epoch sets to 100, and the early stop strategy is
activated, so that when the accuracy of the model on the test set has still not improved after
three epochs, the training is stopped early. The model is considered to have completed
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optimization to reduce the risk of overfitting. The learning rate strategy is set to automatic
decay learning rate strategy, the initial learning rate is 0.1, the focus round is set to 2, the
decay factor is set to 0.8, and the cold start strategy is also configured. The variable learning
rate can accelerate the convergence of the model; the optimizer adopts Adam optimizer,
the weight decay of the optimizer is set to 0.0001, and the weight decay coefficient of L2
regularization is used to improve the convergence speed of the model. All input UAV
images and DN values are divided by 255 to normalize their values to between [0, 1], and a
fixed threshold is used to crop the gradient in the backpropagation process. The platform’s
hardware, on which the training model is carried out in this paper, contains an Intel Xeon
Gold 6244 CPU, 128 G RAM, and an Nvidia GeForce RTX 3090 series 24 G graphics card.

3.4. Evaluation Indicators

In this paper, the Simple Average method is employed as the baseline of the dataset,
and Cubic Spline Interpolation and Kriging interpolation (Gaussian kernel function) meth-
ods are used on the dataset to verify the accuracy of various scale conversion methods,
respectively. The results are compared with the results of the ResTransformer model. The
mean relative error (MRE) between the DN value of the sample area and the mean DN
value of the sample area UAV images obtained by each scale transformation method is
calculated by Equation (4), where DNpred is the DN value of the sample area UAV grayscale
images obtained by the scale transformation method, DNtrue is the mean DN value of the
sample area UAV grayscale images in the SCD dataset, and the root mean square error
(RMSE) using Equation (5) is calculated to evaluate the accuracy of individual samples
in the SCD dataset. The overall accuracy of each scale conversion method is evaluated
by calculating the correlation coefficient ρ by Equation (6), where Cov(DNpred, DNtrue) is
the covariance between the scale conversion result and the actual value in the data set,
and σDNpred and σDNtrue are the variances between the scale conversion result and the
actual value, respectively. In summary, we verify the accuracy of various scale conversion
methods using the above three methods.

MRE =
N

∑
i=0

∣∣∣DNpred(i)− DNtrue(i)
∣∣∣

DNtrue(i)
∗ 100% (16)

RMSE =

√√√√ 1
N

N

∑
i=1

(DNpred(i)− DNtrue(i))
2 (17)

ρ =
Cov(DNpred, DNtrue)

σDNpredσDNtrue
(18)

4. Results and Discussion
4.1. Accuracy Verification of Various Scale Conversion Methods

In this paper, the simple arithmetic averaging method, Cubic Spline Interpolation
method, Ordinary Kriging square and ResTransformer deep learning model are used to
validate the validation set of the SCD dataset, respectively. The results of the simple
arithmetic averaging method are used as the baseline. Figure 9 shows the validation
results, in which the scatter plot is plotted with the scale transformation results of each
scale transformation model as the horizontal axis, the actual values of the SCD dataset
as the vertical axis and the distribution are linearly fitted using the least squares method.
The proper function of the conversion results for each scale shows that the slope of the fit
function of the scale conversion result of the ResTransformer model is close to 1, and its
scale conversion accuracy is the best; the slope of the fit function of the Ordinary Kriging
method and that of the Simple Average method are both 0.72. The difference is less than
0.6%. Therefore, the results of the Ordinary Kriging method and the Simple Average
method achieve similar accuracy on most of the data sets. The results of the Cubic Spline
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Interpolation method are more different from the actual values, and the distribution of the
results is very discrete, so the method is less effective.
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The MRE and RMSE of the scale conversion results of various scale conversion meth-
ods and the actual values of the SCD dataset were calculated separately to measure the
accuracy of various scale conversion methods. Figure 10 shows the results, and the hori-
zontal and vertical coordinates in the figure are the MRE and RMSE of the scale conversion
results of various methods, respectively. The results show that the conversion accuracy
of the Ordinary Kriging method is similar to that of the Simple Average method in most
scenarios. The MRE and RMSE of most samples are concentrated in the ranges of 0.3–20%
and 0.4–20%, respectively. The results of the Cubic Spline Interpolation method are much
less accurate than the baseline of the Simple Average method in both MRE and RMSE
metrics, and the distributions of MRE and RMSE metrics are more discrete. The ResTrans-
former deep learning model outperforms the traditional surface reflectance scale conversion
method in MRE and RMSE, where the MRE results are less than 4%, and most of the RMSE
results are less than 4. Therefore, the scale conversion accuracy of the ResTransformer
model is better than the baseline of the Simple Average method.
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Figure 10. Accuracy of scale conversion results of multiple scale conversion methods (a) Simple
Average method, (b) Cubic Spline Interpolation method, (c) Ordinary Kriging method, (d) ResTrans-
former model.

Since there are a few samples with abnormally high MRE and RMSE metrics in the
results of various scale conversion methods, there are some shortcomings in evaluating
the accuracy of the corresponding scale conversion methods by using the mean values of
MRE and RMSE of the scale conversion results on the SCD dataset, and Figure 11 shows
the distribution of the accuracy of different scale conversion results. In order to evaluate
the accuracy of various scale conversion methods as a whole, the accuracy of each scale
conversion method was evaluated by calculating the median, the overall mean, and the
mean value within the range of non-abnormal values (Equation (17), where Qi is the
i × 25th percentile of the data), and the correlation coefficient between the scale conversion
results and the actual values in the SCD dataset, respectively, of the MRE and RMSE metrics
of the results of various scale conversion methods.

Upper = Q3 + 1.5(Q3 − Q1)
Lower = Q1 − 1.5(Q3 − Q1)

(19)
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The results of the evaluation metrics calculated for each scale conversion method are
shown in Table 3. The results show that among these four methods, the Simple Average and
Ordinary Kriging methods have relatively high average MRE and average RMSE values
of 8.56704 and 9.8842, and 8.60315 and 9.9272, respectively. This indicates that the mean
error and root mean square error of these two methods are more considerable, i.e., they
have lower prediction accuracy. However, both methods’ median MRE and median RMSE
values are relatively low, indicating that they can yield relatively accurate predictions in
some cases. The Cubic Spline Interpolation method is one of the worst performing methods
with mean MRE and mean RMSE values of 49.77202 and 61.78559, respectively, which
means that it has a very high mean error and root mean square error and is therefore not
suitable for accurate prediction.

Table 3. Average accuracy of various scale conversion methods on the SCD dataset.

Method Name Avg MRE
(%) Avg RMSE Avg IQR

MRE (%)
Avg IQR

RMSE
Median

MRE (%)
Median
RMSE R

Simple Average 8.56704 9.8842 6.16947 7.43261 4.58799 5.67452 0.85693
Cubic Spline Interpolation 49.77202 61.78559 31.22144 39.93744 28.46038 31.0651 0.40127

Ordinary Kriging 8.60315 9.9272 6.20061 7.49048 4.62784 5.71912 0.85527
ResTransformer 0.6440 0.7460 0.52335 0.62297 0.6440 0.5490 0.99911

Moreover, it also has high IQR MRE and RMSE values, indicating that its predictions
are less stable. In addition, its median MRE and median RMSE values are also high,
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indicating that the method generates significant prediction errors in some cases. In contrast,
the mean MRE and RMSE values of the ResTransformer method are 0.6440 and 0.7460,
respectively, which means that it has a low mean and mean square root error. At the same
time, the ResTransformer model on Avg MRE, Avg IQR MRE, Avg RMSE, and Avg IQR
RMSE all decreased by more than 90% compared to the baseline. The median decrease in
MRE and RMSE was more significant than 85%, and the correlation coefficient improved by
16.59% compared to the baseline. The ResTransformer model had the best performance in
all parameters relative to the baseline method. In addition, the ResTransformer method has
the smallest IQR MRE and IQR RMSE values, indicating that the stability of its prediction
result accuracy is also good. Overall, ResTransformer is the best method. Simple Average
and Ordinary Kriging can provide better prediction results in some cases, while the Cubic
Spline Interpolation method performs the worst.

4.2. Effect of the Number of Sampling Points and Sample Area on the Accuracy of Scale Conversion
Results

In surface reflectance measurement, the accuracy of surface reflectance at the image
scale will be changed when different sampling methods are used for the same size sample
area and the same sampling methods are used for different size sample areas. The average
MREs of the traditional medium- and high-resolution satellite image size samples were
calculated under different standard sampling methods, including 30 m, 20 m, 10 m, 8 m,
4 m and 2 m, corresponding to Landsat, Spot, Sentinel and GF series satellites. The standard
sampling methods include one-point, two-point, four-point, five-point, nine-point, and
sixteen-point sampling methods.

Figure 12 shows the scale conversion results’ accuracy with different sampling points
and sample areas. The figure shows that the scale conversion results of the Simple Average
method and ResTransformer model, in the same size of a sample area, the MRE gradually
decreases as the number of sampling points increases. When the sampling method is fixed,
the MRE does not strictly increase with the increase of sample area, and the MRE is in a
fluctuating rising state. We found that the error of the same scale conversion method in
the 4 m sample area is much higher than that in the 20 m sample area under the sampling
method with a smaller number of sampling points. Therefore, the number of sampling
points is the main factor affecting the accuracy of the scale conversion results in the actual
sampling process.
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Tables 4 and 5 quantify the influence of the number of sampling points and sample area
size on the accuracy of the scale conversion results by calculating the correlation coefficients
between the number of sampling points and the MRE of the scale conversion results under
the same size sample area and the correlation coefficients between the sample area size and
the MRE of the scale conversion results under the same number of sampling points. The
results revealed that the MRE of the scale conversion results showed an apparent negative
correlation with the number of sampling points. In contrast, the correlation with the sample
area was not significant, especially when the fixed number of sampling points was 2 and 4,
and there was no linear correlation between the MRE of the scale conversion results and
the sample area size. Therefore, in the actual sampling process, the number of sampling
points was the main factor affecting the accuracy of the scale conversion results.

Table 4. Correlation between the number of sampling points and the scale conversion result MRE
under the same size sample area.

Scale Conversion
Method

Sample Area Edge
Length (m) R Scale Conversion

Method
Sample Area Edge

Length (m) R

Simple Average

2 −0.8618

ResTransformer

2 −0.7048
4 −0.8431 4 −0.7299
8 −0.8455 8 −0.7987

10 −0.8211 10 −0.7461
20 −0.8626 20 −0.7371
30 −0.8526 30 −0.7627

Table 5. The correlation between sample area size and scale conversion results MRE under the same
number of sampling points.

Scale Conversion
Method

Number of
Sampling Points R Scale Conversion

Method
Number of

Sampling Points R

Simple Average

1 −0.4412

ResTransformer

1 −0.6118
2 −0.0008 2 0.0346
4 −0.1703 4 0.0061
5 −0.1515 5 0.5472
9 0.3204 9 0.5243

16 0.5300 16 0.5608

In the field image-scale geo-spectral acquisition activities, if we need to carry out
star–earth synchronous matching calibration of various satellite sensors through the
measured image scale geo-spectra, then we need to increase the time cost, reduce the
efficiency, and increase the number of sampling points as much as possible to obtain
the image scale geo-spectral data with higher accuracy. Field image-scale geo-spectral
acquisition also includes automatic instrument acquisition, which usually involves
installing automatic geo-spectral acquisition devices at fixed locations. Since it is
costly to add automatic acquisition instruments, the number of instruments is fixed.
The accuracy of image scale geo-spectral can only be improved by improving scale
conversion methods.

During routine field spectral acquisition, too many sampling points will lead to an
increase in the chance of the sample area being destroyed by human factors and an increase
in the uncertainty caused by human factors. This means that the accuracy of the scale
conversion results cannot be improved by increasing the number of sampling points, so
it is necessary to achieve the least number of sampling methods while ensuring a certain
accuracy. As can be seen from Figure 12, when the number of sampling points is increased
from 1 to 4, the ResTransformer scale conversion method results in an average decrease of
35.3% in MRE and a 4-fold increase in workload, and when the number is increased from 1
to 16, the scale conversion results in an average decrease of 45.3% in MRE, but a 16-fold
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increase in sampling workload. Similarly, when the number of sampling points is increased
from 1 to 4, the MRE of the Simple Average scale conversion method results in an average
decrease of 33%, and when the number is increased from 1 to 16, the MRE of the scale
conversion results in an average decrease of 74.3%. As the number of samples increases,
the rate of MRE decreases, slows down, and the sampling efficiency decreases. Therefore,
when the accuracy of four-point sampling meets the required conditions, increasing the
number of additional sampling points becomes unnecessary.

4.3. Effect of Different Sub-Bedding Surfaces on the Accuracy of Scale Conversion Results

In the process of surface reflectance field collection, the accuracy of the scale con-
version results will change due to the different heterogeneity of different feature types.
To investigate the influence of different feature types on the scale conversion accuracy,
the Simple Average and ResTransformer methods were used to scale convert 34 different
feature types in the SCD dataset, and the average MRE values of the scale conversion
results of different feature types were calculated.

Figure 13 shows the average accuracy of the scale conversion results for different
subsurface samples. The figure shows that the Simple Average method and the ResTrans-
former model have similar trends in the accuracy of the scale conversion results for different
feature types. Meanwhile, the figure shows that the accuracy of the scale conversion re-
sults obtained by different scale conversion methods is higher for the feature types with
homogeneous ground surfaces and low ground-cover height. The typical features of this
type include non-vegetated ground surfaces such as water bodies, asphalt, concrete, bare
soil and sand, and intensive vegetation covers such as grass and straw. For the type of
surface cover with higher vegetation and dense vegetation, rarely seen bare soil between the
monopoly, the accuracy of the scale conversion results of different scale conversion methods
is higher compared with the types of sand and water bodies. However, the number of
sampling points can be increased to improve sure accuracy, and the typical features of this
type include dense vegetation cover such as cotton, sweet potato, okra, peanut and soybean.
For monopoly row vegetation, higher crops and sparse, non-uniformly distributed ground
types, the accuracy of the scale conversion results is lower. Typical ground types include
corn, weeds and vegetation such as red-fruited canary.

To quantitatively describe the influence of spatial heterogeneity on the accuracy of
scale conversion results of various scale conversion methods, the coefficients of variation
of different samples were calculated by Equation (18), where stdDN and meanDN are the
standard deviation and mean of DN values of UAV grayscale images in the sample area,
respectively. The correlation between the coefficients of variation and the accuracy of scale
conversion results was checked to quantitatively describe the influence of spatial hetero-
geneity on the accuracy of scale conversion results of various scale conversion methods.

cv =
stdDN

meanDN
∗ 100% (20)
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The red, green, and blue bars in the figure represent the types of surface coverage with high, medium,
and low accuracy for surface reflectance scale conversion, respectively.

Figure 14 shows the correlation between the surface heterogeneity and the accuracy
of the scale transformation. The results in the figure show that the linear relationship
between the MRE of the Simple Average method and the ResTransformer model results
and the coefficient of variation of the sample area is more significant, and the R2 of the
linear fit is 0.75, indicating that the accuracy of the scale transformation method results
decreases gradually with the increase of the surface heterogeneity. The R2 of the linear fit is
0.75, indicating that the accuracy of the scale conversion method decreases as the surface
heterogeneity increases. Meanwhile, the MRE of the Simple Average method changes
rapidly with the increase in coefficient of variation of the sample area, and the slope of
the fitted straight line is 0.21. The MRE of the ResTransformer model changes slowly with
the increase in coefficient of variation of the sample area, proving that the ResTransformer
model has higher robustness and accuracy than the Simple Average method. It is proved
that the ResTransformer model has higher robustness and universality compared with
the Simple Average method and can adapt to scale transformation tasks in more complex
sub-bedding scenarios.
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5. Conclusions

In this paper, we convert the scale conversion problem of surface reflectance to the scale
conversion problem of grayscale values of sampling points in UAV images by imputation
and prove the correctness of imputation. This is achieved by establishing a functional
relationship between the two, and employing the ResTransformer deep learning model to
extract and fuse features. The ResTransformer deep learning model is also established to
extract, fuse, and adaptively learn the features within the UAV image of the target sample
area and the UAV image of the sample points within the sample area, and determine the
high-dimensional nonlinear spatial relationship between the sample points and the sample
area within the target sample area. This enables realization of the scale conversion of the
surface reflectance at the image element scale with high accuracy under the scenarios of
arbitrary size, heterogeneous sample area and sampling mode. To verify the accuracy
and robustness of ResTransformer, a scale-transformed dataset including 500k samples is
built in this paper. Moreover, after being validated through various traditional methods
with ResTransformer, the results show that the ResTransformer deep learning model scales
the transformation results on the SCD dataset with much better accuracy than the Cubic
Spline Interpolation and Ordinary Kriging methods, while compared to the Simple Average
method, the baseline is greatly improved. The mean MRE, mean MRSE, and correlation
coefficient R with the actual value for ResTransformer on the SCD dataset were 0.6440%,
0.7460, and 0.99911, respectively.

In comparison, the accuracy of the baseline on the SCD dataset was 8.5670%, 9.8842,
and 0.8569, respectively. The improvements of ResTransformer accuracy compared to
the baseline were 92.48%, 92.45% and 16.59%, respectively. Compared with the baseline
method, ResTransformer offers high robustness and is suitable for different sampling
methods and sample areas of different sizes. In contrast, the accuracy of the baseline
method changes significantly with a decrease in the number of sampling points and an
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increase in the sample area. Hence, the method is only suitable in certain applications. In
future research, we plan to iteratively update the model by designing and building a large
model as well as creating a large sample dataset with big data. Further, we plan to extend
the imputation method, as well as the model, from surface reflectance to other surface
quantitative remote sensing parameters, such as surface temperature and LAI.
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