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Abstract: Remote sensing image change detection (RS-CD) has made impressive progress with the
help of deep learning techniques. Small object change detection (SoCD) still faces many challenges.
On the one hand, when the scale of changing objects varies greatly, deep learning models with
overall accuracy as the optimization goal tend to focus on large object changes and ignore small
object changes to some extent. On the other hand, the RS-CD model based on deep convolutional
networks needs to perform multiple spatial pooling operations on the feature map to obtain deep
semantic features, which leads to the loss of small object feature-level information in the local space.
Therefore, we propose a Siamese transformer change detection network with a multiscale window via
an adaptive fusion strategy (SWaF-Trans). To solve the problem of ignoring small object changes, we
compute self-attention in windows of different scales to model changing objects at the corresponding
scales and establish semantic information links through a moving window mechanism to capture
more comprehensive small object features in small-scale windows, thereby enhancing the feature
representation of multiscale objects. To fuse multiscale features and alleviate the problem of small
object feature information loss, we propose a channel-related fusion mechanism to model the global
correlation between channels for display and adaptively adjust the fusion weights of channels to
enable the network to capture more discriminative features of interest and reduce small object feature
information loss. Experiments on the CDD and WHU-CD datasets show that SWaF-Trans exceeds
eight advanced baseline methods, with absolute F1 scores as high as 97.10% and 93.90%, achieving
maximum increases of 2% and 5.6%, respectively, compared to the baseline methods.

Keywords: change detection (CD); remote sensing (RS); small object; scale differences; transformer

1. Introduction

Change detection (CD) is a fundamental task in the field of remote sensing, with the
aim of extracting “semantic change regions” between multiple remote sensing images of
the same area acquired at different times and generating binary maps of “changes” and “no
changes” [1,2]. Small object change detection (SoCD) is an important topic that refers to the
detection of changes occurring in small objects in a scene under certain external interference.
Remote sensing image change detection (RS-CD) can be interfered with by many factors;
determining the means by which to circumvent various interfering factors to accurately
register small object changes has been a challenge of SoCD. As a fundamental image un-
derstanding approach, RS-CD plays an irreplaceable role in environmental and ecosystem
monitoring [3,4], resource and land management [5], natural disaster assessment [6], and
town planning [7].

With the rapid development of remote sensing imaging technologies such as satellites
and sensors, submeter high-resolution remote sensing imagery (HRRS) has become an easily
accessible data resource that can provide rich spatial and surface detail information, and
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it can support the study of small object changes that were previously difficult to perceive
based on low-resolution remote sensing imagery. However, increased resolution does not
necessarily lead to better RS-CD results for the following reasons: (1) The high resolution
and rich spectral features of HRRS images result in greater intraclass changes and smaller
interclass changes in feature entities, which lead to less separability of similar features,
especially for small objects with low pixel volume [8]. (2) HRRS images have a high pixel
density and complex scenes, and features with small objects are often difficult to accurately
understand. (3) In terms of technical difficulty, serious problems are encountered with
respect to spectral information variability, limited spectral information, missing spatial and
temporal information, and spatial shifts in HRRS images [9]. Therefore, HRRS is associated
with serious challenges for SoCD; however, traditional CD methods are unreliable in the
face of these problems due to their inherent defects. Therefore, determination of means by
which to efficiently and accurately detect changes in HRRS has become an urgent issue.

In recent years, convolutional neural networks (CNNs) [10] have spawned a num-
ber of excellent RS-CD algorithms [11-16]. The CNN-based RS-CD method encodes a
dual-temporal image as a multilevel feature map. The change map can be obtained by
fusing dual-temporal features in different ways and then decoding them. However, deep
convolutional networks have to perform spatial pooling operations on the feature maps,
which leads to the loss of a large amount of feature-level information for small objects; the
deeper feature maps are, the less accessible small object information is. Moreover, when the
scales of change samples vary greatly, the change samples of small objects are much smaller
than those of large objects, and a neural network with overall accuracy as the optimization
goal focuses too much on large object changes and ignores small object changes, so the
scale imbalance in the change samples and the loss of small object features jointly increase
the difficulty of SoCD. In addition, most small-scale objects have an aggregation effect,
so neighboring small objects are reflected in the feature map as indistinguishable “point
clusters” after multiple downsamplings. All the abovementioned problems hinder models
from accurately obtaining contextual information about small objects, while there are many
works that use atrous convolution [17], dual attention mechanisms [11,18,19] and multi-
level feature layers [11,17,20] to increase the receiving field of the models to better access
the spatiotemporal context of interesting changes. However, theses approaches cannot
address the hazards of scale differences in changes for feature extraction, and repeated use
of spatial pooling operations also causes the loss of small object features, which hinders
the identification of interesting changes to some extent. Some researchers have attempted
to obtain multiscale features of changing objects through image pyramid [21] and feature
pyramid structures [12,22,23], whereby the network captures localization information of
small objects in shallow feature maps and large objects in deep feature maps; however,
the semanticity of shallow features is low and contains considerable pepper noise, which
contributes some interference to the recognition of small object changes after feature fusion.
Some other researchers established tight information transmission between the encoder
and decoder and between the decoder and decoder to capture more information about the
deep localization of the neural network [24], thereby enhancing the network’s ability to
determine small object changes and edge pixels; however, they did not consider another
difficult aspect of SoCD, namely the scale imbalance in the change samples. In summary,
SoCD still faces a serious problem.

In order to solve the abovementioned problems, the design of convolutional networks
must be deep and complex; however, their long-range spatiotemporal information cor-
relation capability is still insufficient. Therefore, research [25-27] has been proposed to
design variant networks of transformers to model long-range contextual and spatiotem-
poral relationships and enhance the semantic concepts related to changes. Inspired by
the use of a Swin transformer [28-30] for image classification tasks, window design not
only reduces computational effort; we also intuit that strong global information correlation
capability and reasonable window design can facilitate the refinement of small object fea-
ture information. Therefore, we propose a Siamese transformer change detection network
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with a multiscale window via an adaptive fusion strategy (SWaF-Trans) for optimization of
SoCD, the basic strategy of which involves computing self-attention [31] inside a multiscale
window to model changing objects at different scales, using a small-scale window to cap-
ture more comprehensive and detailed features, avoiding the loss of small object features.
In addition, to fuse features of interest and retain more information about small objects,
we use a channel-related fusion mechanism to adaptively fuse representative multiscale
features on different channels, allowing the network to learn a more comprehensive form
of changes representation.

The main contributions of this paper are as follows. (1) We propose a Siamese trans-
former change detection network with a multiscale window via an adaptive fusion strategy.
The network computes self-attention inside multiscale shifted windows to model the
spatiotemporal context of multiscale changes, allowing the network to capture a more
comprehensive view of small object changes and changes of interest. (2) We propose
a channel-related fusion mechanism that explicitly models the global dependencies be-
tween channels, adaptively fuses interesting multiscale features, and suppresses various
sources of pepper noise. The method adaptively adjusts the fusion weights to obtain more
discriminative detail information in order to improve the network’s ability to learn and
characterize small object changes. (3) SWaF-Trans achieved a SOTA effect on both the
CDD [32] and WHU-CD [33] datasets, with absolute F1 scores as high as 97.10% and 93.90%
and maximum increases of 2% and 5.6%, respectively, compared to the baseline method.

2. Materials and Methods
2.1. Related Works
2.1.1. RS-CD Method Based on a Deep Convolutional Network

Deep learning techniques have become a mainstream approach for RS-CD tasks, with
surprising results due to their powerful characterization capabilities. Among them, the
fully convolutional neural network (FCN) [34] is undoubtedly one of the most successful
DL networks, and a large number of CD networks [14,16,35,36] with FCN structures have
been proposed successively. For example, Daudt et al. [16] designed a fully convolutional
early fusion network (FC-EF), a fully convolutional Siam concatenation network (FC-Siam-
conc), and a fully convolutional Siamese difference network (FC-Siam-diff) to discuss the
effects of image input methods, as well as two-branch connection methods to evaluate
the performance of CD networks. Zhan et al. [37] were the first to introduce the use of
Siamese convolutional networks (DSCNs) in CD tasks. DSCNs are effective for CD tasks
due to their convenience in comparing the similarity of two samples and the advantage
of shared weights. Liu et al. [38] designed a symmetric deep convolutional network
(SCCN) to solve the problem of heterogeneous image change detection between optical
and radar images, which transforms different classes of images into the same feature space
by convolutional and coupling layers and generates a change map via a thresholding
algorithm. Guo et al. [35] proposed an FCN-based change metric network to measure
changes by learning the implicit distance between image features. Wang et al. [14] proposed
an FCN-based Siamese network, which encourages a reduction in intraclass variance an
increase in interclass variance so that change maps can be obtained by simple threshold
partitioning.

Due to the complexity of scenes in remote sensing imagery, modeling global con-
textual relationships is crucial for identifying changes of interest [25,29]; however, deep
convolutional networks are limited by the range of perceptual fields to link long-range
semantic concepts in space time. CNN-based CD networks have introduced improvements
in two main areas to enhance the global modeling capability of the network: optimizing
the network structure and adding attention mechanisms [39]. In terms of optimizing the
network structure, many networks are designed with multiscale structures to increase the
receptive field of the network. For example, Jiang et al. [22] used multiple attention to
fuse low-level and coattention-level features to establish long-range semantic information
connections. Chen et al. [11] introduced a self-attention mechanism within each subre-
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gion to adapt to multiscale changes by obtaining multiscale spatiotemporal dependencies.
Liu et al. [12] proposed a local-global pyramid network whereby local feature pyramids
and global spatial pyramids work in parallel or in a complementary manner to obtain
information about changes in buildings at multiple scales. In terms of adding attention
mechanisms [40,41], Chen et al. [18] introduced spatial attention and channel attention
mechanisms to model long-range semantic information correlation, allowing the model
to obtain more reliable discriminative information and thereby become resistant to the
interference of pseudo changes. Shi et al. [42] designed a deep supervised module using
a dual-attention mechanism to better exploit the interdependence between spatial and
channel information to obtain more discriminative change features. Wang et al. [13] pro-
posed a deep supervised network based on an attention mechanism to extract multilevel
features of dual-temporal images in the coding stage and combined spatial and channel
adaptive attention mechanisms to enhance the feature representation of multiscale changes;
the change maps were reconstructed by fusing different levels of feature maps into the
prediction results of different branches of the deeply supervised network according to the
weight magnitude in the decoding stage.

Although the abovementioned approaches have improved the performance of the net-
work, few works have focused on SoCD. Although DASNet [18], FCL [14], and STANet [11]
apply weighted double-margin contrastive loss, focal contrastive loss, and batch-balanced
contrastive loss in an attempt to solve the problem of sample imbalance, they only address
the problem of imbalance between changed and unchanged samples and do not consider
the imbalance caused by scale differences in the changed samples. In addition, SNUNet-
CD [24] focuses on the problem of small object feature loss with the targeted design of tight
information transmission in an attempt to reduce the loss of deep localization informa-
tion, but it similarly fails to pay attention to the negative impact of large object changes
overwhelming the network.

2.1.2. Transformer-Based RS-CD Method

Recently, transformers have shown great potential in the fields of semantic segmenta-
tion [43,44], object detection [45,46], scene classification [47,48], and image generation [49].
Moreover, a large body of work has explored the in-depth performance of transformers
in RS-CD. These works fall into two main categories: networks based on a combination
of transformers and CNNs and networks based on pure transformers. The former is as-
sociated with a large amount of representative work, such as that by Hao et al. [25], who
first introduced a transformer into CD networks to enhance the feature representation of
ConvNet by modeling spatiotemporal contextual information through compact semantic
tokens, which helps the network to identify changes of interest and exclude irrelevant
changes. Li et al. [20] first combined the advantages of transformers and U-Net in RS-CD
and designed a hybrid network to learn local-global features, which solved the problems
of information redundancy and difficulties in exchanging information in multilevel feature
layers. Wang et al. [50] designed a scene change detection network based on ViT, which
makes the network more robust to noise and pseudo changes by virtue of the transformer’s
powerful global context modeling capability.

However, Bandara et al. [27] found that reliance on ConvNet for the CD task is
not essential and that transformer networks with lightweight multilayer perceptions can
perform RS-CD equally well. As a result, a large number of pure transformer-based CD
networks have been proposed successively. For example, Zhang et al. [29] designed a
double-U-type RS-CD network based on the Swin transformer block, which both reduces
the computational complexity of the model and improves the CD performance. To obtain
regular change boundaries and complete change regions, Yan et al. [51] used pyramidal
structures to fuse multiscale features obtained by transformer blocks in an attempt to
capture interesting changes with higher confidence. Ailimujiang et al. [52] proposed a
multiscale differential enhancement network based on a pure transformer that solves the
problems of semantic object information loss and incomplete change regions.
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Most of the methods referenced above enhance feature representation in the spa-
tiotemporal context through the use of various structures and by exploiting the superior
modeling capability of the transformer. However, they do not demonstrate whether en-
hancing the feature representation information is beneficial for SOCD because the feature
information of small object changes is not easily captured due to the negative impact of
large object changes.

2.2. Model Overview

The overall framework of SWaF-Trans is based on a Siamese network [53], which
can process dual-temporal images in parallel and encode and decode the feature vectors
in the same spatial dimension, which helps to maintain the similarity of dual-temporal
images [54]. As shown in Figure 1, the overall framework adopts an end-to-end architecture
that consists of four main components: a CNN backbone, a window-based transformer, a
channel-related fusion mechanism, and a decoder.

The input to SWaF-Trans is the dual-temporal images (T1 and T2), and the output
is a change map. The network starts with a set of consecutive convolutional layers, the
purpose of which is to map the original image to a high-level feature space to facilitate
the subsequent generation of embedded semantic tokens. The model then goes through a
window-based transformer structure, the head of which uses patch partitioning and linear
embedding [31] to convert the dual-temporal features into rich semantic tokens, which
are subsequently fed into a continuous transformer block for feature encoding. Then, the
encoded features go through transposition and reshaping to obtain dual-temporal features
at different scales. At this point, all the same-scale bitemporal features are sent to the
channel-related fusion module after differential mapping to obtain more representative
change information and generate the final feature map. Finally, the network only uses a
light FCN to decode the feature map to obtain the pixel-level change map.

CNN Backbonei Encoder Fusion and Decoder

/—iﬁ

. \ﬂ?“&‘r:k ces . hxwxc
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Linear Embedding
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\J : ‘
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Figure 1. Overview of the SWaF-Trans network: CNN backbone for feature projection, transformer

1

Map
‘W-Trans Block

SW-Trans Block

Transpose l Reshape

encoder for encoding of contextual information, channel-related fusion mechanism for integration of
interesting features, and decoder for generation of pixel-level change predictions.

2.3. Window-Based Transformer
2.3.1. Patch Embedding

Similar to the standard ViT [31] approach, the window-based transformer is set with a
patch partition module and a linear embedding module before the transformer block. As
shown in Figure 2, the former is responsible for converting bitemporal images into several
image tokens (x = [x1,xp, -+ , x| € R*MXMx3) 1f the CNN backbone is chosen to acquire

the original image features, it converts the feature mapping (X’ = CNN(X) € RH'>W'xC’y
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into rich semantic tokens. The latter is responsible for mapping image tokens from 3D
data to specific 1D data to obtain x’ = [x},x},--- , x| € R"™D which is then fed into the
transformer block to generate context-rich semantic tokens and reduced to change feature
maps by transposition and reshaping. M x M is the size of the patch, n = H x W/M? is the
number of patches, H' x W’ x C’ denotes the dimensions of the feature map, D represents
the specific dimensions, and 3 represents the three channels of the optical image.

In the experiment, if the image size is 512 x 512, the total number of patches is 32 x 32;
for example, the resolution of each patch is 16 x 16, and the number of channels is 3.
According to the above description, the initial dimension size of patches is 16 x 16 x 3,
the 3D data are flattened to obtain one-dimensional data comprising 768 samples, and
finally, the linear embedding module is mapped to a specific dimension (D). At this time,
the feature of each spatial point in the graph can be called a token with dimensions of
(H/32) x (W/32) x D.

Transpose

X'(HxWxC")

X(H =W x3)

.
N
X,

Figure 2. Illustration of the patch embedding. The CNN backbone is optional. If it is not selected,
the dual-time image is taken directly as input and transformed into semantic tokens by the flatten
operation and the transpose operation. Then, a learnable position embedding is added to the semantic
tokens to retain positional information.

2.3.2. Window-Based Transformer Block

To obtain different scale features, we designed a transformer block based on a multi-
scale moving window [28]. As shown in Figure 3, the transformer block contains a W-Trans
block (I) and a SW-Trans block (II), which are connected to each other to increase the
perceptual field of the network. In both submodules, we replace the standard multihead
self-attention module (MSA) in ViT with a window-based multihead self-attention module
(W-MSA) and a moving window-based multihead self-attention module (SW-MSA), the
details of which are presented below.

SH ‘ Si l
LN LN
¥ v
. D
(1 §’ st ()
LN LN
¥ v
MLP MLP
S’ D RNae! é‘ﬁ

Figure 3. Structure of the transformer block. (I) and (II) are the W-Trans block and the SW-Trans
block, respectively.
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W-Trans block: As shown in Figure 31, the W-Trans block contains W-MSA, the layer
norm (LN), the multilayer perceptron (MLP), and residual connections. To extract
the multiscale features of interesting changes, the module calculates the self-attention
inside the multiscale window, which is calculated in the same way as MSA [31]. In
addition, W-MSA greatly reduces computational consumption because standard MSA
calculates self-attention by computing global self-attention among all image tokens,
which causes secondary computational complexity in the number of tokens [29].
On the contrary, W-MSA computes self-attention inside a local window, and its
computational complexity is linear with respect to the input, so W-MSA is more
suitable for intensive prediction tasks or tasks oriented toward high-resolution remote
sensing images.

SW-Trans block: The lack of information interaction across windows is the most fatal
problem of the W-Trans block because it severely restricts the feature modeling capa-
bility of the model. For this reason, we introduced the moving window mechanism
proposed by Liu et al. [28] to design the SW-Trans block, as shown in Figure 311, the
structure of which is similar to that of the W-Trans block, except that in the W-Trans
block, W-MSA can be replaced by SW-MSA. The SW-Trans block divides the complete
window at the distance (N/2, N/2) from the image vertex and solves the self-attention
calculation problem of multiple nonstandard windows using a cyclic shift mechanism,
where (N, N) represents the window size. In conclusion, the mathematical expression
of the window-based transformer block is:

§=w-msa(LN(s)) + 5!

@

where S and S'*1 represent the output of the W-Trans block and the SW-Trans
block, respectively.

Self-attention in the local window: Both W-MSA and SW-MSA use the same method
as MSA to compute multihead self-attention; the former computes multihead self-
attention inside a local window, and the latter computes multihead self-attention on a
global scale. The mathematical expressions of self-attention is as follows.

szwq
K = S'wk

Attention(Q, K, V) = SoftMax (QKT /Vd+ B) v

where §! ¢ RN*xd represents the self-attention input; W9, Wk and W® ¢ R¥*P
represent the learnable parameters of the three projection matrices, respectively;
Q,K,VeRN ?xd denote the query, key, and value matrices, respectively; N 2 indicates
the number of patches in a window; d indicates the dimension of the query or key;
and B is the bias matrix.

2.3.3. Multiscale Window Design

The design of the multiscale window is inspired by a pyramid structure [55]. However,

the feature pyramid structure obtains multiscale features by continuous downsampling,

which leads to the problem of losing features for small objects [56,57]. In addition, the

network obtains feature information of small objects by virtue of the shallow feature layer
of the pyramid [58], but the semantic complexity of the shallow features is low, with a large
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amount of pepper noise, which can seriously hinder SoCD. For this reason, we considered
designing multiscale windows to obtain multiscale features and propose a transformer
model based on multiscale windows to model feature objects at corresponding scales by
computing self-attention inside different scale windows. As shown in Figure 4, the window
division strategy enables uniform full coverage, so the image size is an integer multiple of
the window size; the window size is an integer multiple of the patch size, generally set to
1/2,1/4,1/8, or 1/16 of the image size as appropriate; and the window moving distance is
generally half of the window size. If the input image is 256 x 256, it can be divided into
16 x 16 patches with 16 x 16 resolution, and the window size can be 8 x 8,4 x 4 and
2 x 2, which means that each window includes 8 x 8,4 x 4, and 2 x 2 patches and that the
moving distances of the corresponding windows are 4, 2, and 1, patches respectively.

::\\ \\ R X
\\\\'\ _____ <_ - K \
\\\\: S I N I NS R I N
N \
::::: ~ >§‘>_k
N
\:::: k>x<§_____ ,,_\ N
N
\\:\ \\ \ \ Multiscale window
\ A patch

Figure 4. Multiscale window schematic. This figure shows the relationship between the size of the
multiscale window and patch and the way the window is distributed.

2.4. Channel-Related Fusion Mechanism

Linear aggregation usually consists of matrix addition [59,60], multiplication, and
concatenation [61]. Extensive work [62,63] has shown that linear aggregation usually
retains redundant information and irrelevant features, which interfere with the process
of identifying small object changes. Linear aggregation is not applicable to the RS-CD
task because the method does not highlight the features that are of interest to RS-CD.
Conversely, encoding the correlation between channels can significantly improve the
network’s ability to capture features of interest [64], thereby allowing it to obtain more
discriminative information about small object features. To emphasize the more important
and representative channels in the feature layer, discover features of interest, and suppress
noise and irrelevant information, we propose a channel-related fusion mechanism that
adaptively adjusts the fusion weights to focus on features of interest by showing the
superintendency in the modeled channel space, thereby reducing the interference of pepper
noise on small object feature recognition. The specific structure of the module is shown in
Figure 5. The model acquires the two information-rich temporal features (Xi and X3) of the
i-th scale after the encoder module, then calculates the difference mapping between multiple
scale features to obtain the change information of the i-th scale (X; € R"*®*¢). The change
information at different scales is then stitched together in the channel dimension to obtain
X' € R®x3¢_ Then, the feature information is integrated using a 1 x 1 convolutional
block to obtain the change features, which can be expressed as :

XiZf/<X§—X§

),i € {1,2,3} 3)

X" = Conv(Concat(X;)),i € {1,2,3} (4)

On the other hand, each channel of the feature map can be considered a feature
detection point, so the channel dependency is focused on the more “meaningful parts” of
the image [65]. We consider three pooling strategies to obtain the dependency information
(F. € R¥1%¢) of the channel. We calculate the channel dependencies by obtaining the global
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statistics of the feature map. First, we use the average pooling layer and the maximum
pooling layer to calculate the channel statistics of the feature map and input them into the
fully connected layer (FC7). Then, we add the two features to obtain F4p; € RI¥1x¢/2 In
addition, we introduce a SoftPool to calculate the global weights and input them into the
fully connected layer (FCy) to obtain F; € R*1%¢/2, The above process can be expressed
by the following equation.

Fam = 6(FCy (AvgPool(X"))) 4 6(FCy (MaxPool (X"))) (5)

Fs = 6(FCy (SoftPool (X"))) (6)

where J represents the ReLU function, and FC; represents the fully connected layer with a
half-size reduction. Immediately after this process, we perform the element-level multi-
plication of F45; and FCs to optimize the feature description of each channel, followed by
a fully connected layer (FC,) to reduce the channel dimensions to obtain channel-related
information (F, € R*1X¢). Finally, we matrix multiply the feature map (X") and the
channel-related information (F) to obtain the refined feature map (Xfysion € RIxwxey This
process is represented as follows.

F. = ¢(FCy(Fam @ Fs)) @)

Xfusion =X"® Fe 8)

where ¢ represents the sigmoid function, FC; is a fully connected layer with doubled size,
and ® represents matrix multiplication.

% AvgPool ?

—I—V A |
A IET ] MaxPool EA Sigmoid -
X, .—;| Concat ]—» —b[ Cony H ; —— i == —_—
SoftPool = SN
X' bl FC, — FC,
X, Fully Connected layer F.

Figure 5. Structure of the channel-related fusion mechanism. x1, xp, and x3 represent the feature maps
of multiscale windows; F; represents feature fusion weights, and FC represents the fully connected
layer.

2.5. Decoder

Due to the rich semantic features obtained from the transformer structure, we can use
a lightweight FCN decoder to map the high-level features of the semantic information back
to the pixel space, thereby obtaining the change map (Xcp; € R*"W*3). The process can
be expressed in the following form.

Xem = U(g(Xfusion )) )

where g(Xggsion ) € R">x®'%2 denotes the binary change classifier, and o (e) denotes the
sigmoid function. The setup of the binary change classifier contains a 