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Abstract: The specific characteristics of remote sensing images, such as large directional variations,
large target sizes, and dense target distributions, make target detection a challenging task. To improve
the detection performance of models while ensuring real-time detection, this paper proposes a
lightweight object detection algorithm based on an attention mechanism and YOLOv5s. Firstly,
a depthwise-decoupled head (DD-head) module and spatial pyramid pooling cross-stage partial
GSConv (SPPCSPG) module were constructed to replace the coupled head and the spatial pyramid
pooling-fast (SPPF) module of YOLOv5s. A shuffle attention (SA) mechanism was introduced in
the head structure to enhance spatial attention and reconstruct channel attention. A content-aware
reassembly of features (CARAFE) module was introduced in the up-sampling operation to reassemble
feature points with similar semantic information. In the neck structure, a GSConv module was
introduced to maintain detection accuracy while reducing the number of parameters. Experimental
results on remote sensing datasets, RSOD and DIOR, showed an improvement of 1.4% and 1.2% in
mean average precision accuracy compared with the original YOLOv5s algorithm. Moreover, the
algorithm was also tested on conventional object detection datasets, PASCAL VOC and MS COCO,
which showed an improvement of 1.4% and 3.1% in mean average precision accuracy. Therefore, the
experiments showed that the constructed algorithm not only outperformed the original network on
remote sensing images but also performed better than the original network on conventional object
detection images.

Keywords: object detection; remote sensing; YOLOv5s; DD-head; SPPCSPG; content-aware reassembly
of features; GSConv

1. Introduction

In the era of big data, due to the development and progress of machine learning
technology represented by deep learning, artificial intelligence can better cope with complex
environments and tasks through continuous learning and adaptation. By processing
and analyzing large-scale and high-dimensional data [1], it can reveal the patterns and
patterns behind the data, supporting more accurate predictions and decisions [2–4]. By
exploring potential patterns in data, new knowledge and innovation can be discovered,
supporting the development of various sciences and technologies. Therefore, in recent
years, artificial intelligence has been gradually applied to speech recognition, natural
language processing, computer vision, and other fields. In the field of artificial intelligence,
computer vision technology has found widespread application in diverse fields such as
intelligent security [5], autonomous driving [6], remote sensing monitoring [7,8], medical
and pharmaceuticals [9,10], agriculture [11], intelligent transportation [12], and information
security [13]. Computer vision tasks can be categorized into image classification [14],
object detection [15], and image segmentation [16]. The core task of object detection is
to determine the categories and positions of multiple objects in the image and to give
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corresponding detection boxes and object categories for each object. Remote sensing
images contain a wealth of detailed information, which can intuitively reflect the shape,
color, and texture of ground targets. Remote sensing target detection, as a fundamental
technique, is widely applied in various fields, such as urban planning [17], land use [18],
traffic guidance [19], and military surveillance [20]. With the development of ground
observation technology, the scale of high-resolution remote sensing image data has been
continuously increasing. High-resolution remote sensing images provide higher image
quality and more abundant, detailed information, which presents greater opportunities
for the development of target detection in the field of remote sensing. Target detection
can be divided into two main categories: traditional object detection algorithms and
deep learning-based object detection algorithms. Traditional object detection algorithms
mainly rely on traditional feature extractors [21] and use sliding windows to generate
object candidate regions. Representative algorithms include the Viola–Jones detector (VJ-
Det) [22], the Histogram of Oriented Gradient (HOG) detector [23], and the deformable
part model detector (DPM) [24]. With the development of deep learning, convolutional
neural networks (CNNs) have gradually been applied to object detection tasks. Based on
deep learning, object detection technology can use multi-structured network models and
powerful training algorithms to adaptively learn high-level semantic information from
images. Image features are extracted and fed into a classification network to complete the
tasks of object classification and localization, thereby effectively improving the accuracy
and efficiency of object detection tasks.

According to the detection principle, target detection algorithms based on deep learn-
ing can be divided into two categories: (1) Two-stage target detection algorithms based on
candidate regions. Representative algorithms include R-CNN [25], Fast R-CNN [26], and
Faster R-CNN [27]. This algorithm first generates sample candidate boxes [28–30], then
encodes the extracted feature vectors using deep convolutional neural networks [31–33],
and finally performs regression on the class and location of the target object within the
candidate box [34]. By employing a two-stage operation, the target detection algorithm
achieves high detection accuracy at the expense of slower speed and non-real-time de-
tection. (2) One-stage object detection algorithms based on direct regression, represented
by algorithms such as SSD [35] and the YOLO series [36–38]. This algorithm abandons
the stage of generating candidate bounding boxes and directly outputs the position and
category of the target through regression, which improves the detection speed.

The YOLO series is currently a classical one-stage object detection algorithm. Red-
mon et al. [39] proposed the YOLO algorithm, which represented a significant breakthrough
in real-time object detection. However, the training of each component in YOLO needs to
be conducted separately, leading to a slow inference speed. A strategy of jointly training
the components was proposed, which not only improved the inference speed but also
reduced the complexity of network training while enhancing the detection performance of
YOLO. The YOLOv3 algorithm [37] utilizes Darknet-53 as the backbone network and fuses
up-sampled feature maps with shallow feature maps to retain the semantic information
of small objects and enhance the detection performance of such objects. The YOLOv4
algorithm [38] adopts CSPDarknet53 [40] as the backbone network and introduces Spatial
Pyramid Pooling (SPP) [41] to optimize the receptive field of deep feature maps, thereby
further improving detection accuracy. Ultralytics released the YOLOv5 algorithm, which
incorporates CSPNet as its backbone network. The neck component employs a feature
pyramid network (FPN) [42] to enable top-down semantic information transmission, lever-
aging both low-level features with high resolution and high-level features with semantic
information. In addition, the algorithm utilizes a path aggregation network (PAN) [43] for
bottom-up localization transmission, which facilitates the propagation of low-level infor-
mation to the top level. The YOLOv5 model proposes five types—YOLOv5n, YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x—based on the differences in network structure depth
and width. While the parameters and performance of the models increase sequentially,
the detection speed gradually decreases. The YOLOv5n/s models have a small backbone
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feature extraction network and are lightweight, but their target bounding box regression is
not sufficiently accurate for practical applications. The YOLOv5m/l/x models have better
detection and recognition performance with increasing network depth and width, but they
struggle to meet real-time detection requirements on hardware-limited embedded devices.
To address this problem, this paper proposes a lightweight object detection algorithm
based on the YOLOv5s network, which combines the shuffle attention (SA) module, the
depthwise-decoupled head (DD-head) module, the content-aware reassembly of features
(CARAFE) module, the GSConv module, and the spatial pyramid pooling cross-stage
partial GSConv (SPPCSPG) module to improve the detection accuracy of the model while
meeting real-time requirements. The main contributions and innovations of the constructed
model can be summarized as follows:

(1) In this paper, depthwise convolution is used to replace the standard convolution in
the decoupled head module to construct a new detection head, the DD-head, which
can improve the negative impact of classification and regression task conflicts while
reducing the parameter volume of the decoupled head.

(2) Based on the SPPCSPC module, this paper utilizes the design principle of the GS
bottleneck and replaces the CBS module in the SPPCSPC module with the GSConv
module to design a lightweight SPPCSPG module, which is introduced into the
backbone structure to optimize the YOLOv5s network model.

(3) The effect of embedding the SA module in the network backbone, neck, and head
regions is studied, and the SA module is ultimately embedded in the head region
to enhance the spatial attention and channel attention of the feature map, thereby
improving the accuracy of multi-scale object detection.

(4) The CARAFE module is used to replace the nearest neighbor interpolation up-
sampling module to reassemble feature points with similar semantic information
in a content-aware manner and aggregate features in a larger receptive field, achiev-
ing the up-sampling operation.

(5) In this study, the Conv module in the variety of view-GS cross-stage partial (VoV-
GSCSP) module is replaced by the GSConv module to reconstruct a new VoV-GSCSP
module to further reduce the model’s parameters. The GSConv module and the
improved VoV-GSCSP module are embedded in the neck structure to maintain the
model’s detection accuracy while reducing the parameter volume.

Experimental results show that the proposed algorithm outperforms the original YOLOv5s
algorithm in multi-scale object detection performance while meeting real-time requirements.

2. Related Work
2.1. Object Detection Algorithms for Remote Sensing Images

Traditional remote sensing image object detection algorithms are based on handcrafted
feature design. The detection process typically includes candidate region extraction [44],
feature extraction [45], classifier design [46], and post-processing. First, potential target
regions are extracted from the input image using candidate region extraction. For each
region, features are extracted; then, the extracted features are classified. Finally, post-
processing, such as filtering and merging, is applied to all candidate boxes to obtain the
final detection results. Candidate region extraction requires the setting of a large number
of sliding windows, which results in a high time complexity and a significant amount
of redundant computation. Handcrafted features are mainly extracted based on target
visual information (such as color [47], texture [48], edges [49], context [50], etc.), giving
them strong interpretability. However, handcrafted features have weak feature expression
capability, poor robustness, limited adaptability, and are difficult to apply in complex and
changing environments.

With the development of deep learning, the deep features extracted by neural networks
have stronger semantic representation and discriminative ability. However, due to the
characteristics of remote sensing images, such as large image size, significant directional
changes, large-scale small targets, dense target distribution, significant scale variations,
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target blurring, and complex backgrounds, existing detection algorithms cannot achieve
satisfactory performance on remote sensing images. To address the problem of large
image size, R2-CNN [51] was designed using a lightweight backbone network, Tiny-Net,
for feature extraction and used the approach of judging first and then locating to filter
out sub-image blocks without targets, thereby reducing the computational burden of
subsequent detection and recognition. For the problem of significant directional changes,
the approaches of data augmentation [52] or adding rotation-invariant sub-modules [53] are
typically used to solve this problem. Cheng et al. [54] explicitly increased rotation-invariant
regularizers on CNN features by optimizing a new objective function to force the feature
representation of training samples before and after rotation to be closely mapped to achieve
rotational invariance. For the small target problem, Yang et al. [55] increased the number
and scale of shallow feature pyramids to improve the detection accuracy of small targets
and used a dense connection structure to enhance the feature expression ability of small
targets. Zhang et al. [56] improved small target detection by up-sampling and enlarging
the feature map size of each candidate region in the first stage of the two-stage Faster
R-CNN. To address the problem of dense target distribution, DAPNet [57] used an adaptive
region generation strategy based on the density of targets in the image. For the problem of
significant scale variations, Guo et al. [58] and Zhang et al. [59] directly used a multi-scale
candidate region network and a multi-scale detector to detect targets of different scales.
For the problem of target blurring, Li et al. [60] proposed a dual-channel feature fusion
network that can learn local and contextual attributes along two independent paths and fuse
features to enhance discriminative power. Finally, for the problem of complex backgrounds,
Li et al. [61] extracted multi-scale features and used an attention mechanism to enhance
each feature map individually, thereby eliminating the influence of background noise.

2.2. Attention Mechanism

To extract effective information from massive and complex data, researchers have
proposed attention mechanisms to obtain the importance differences of each feature map.
In the visual system, attention mechanisms are considered as dynamic selection processes
that adaptively weigh the features based on their importance differences in the input [62].
Currently, attention mechanisms have achieved good performance in tasks such as im-
age classification [63], object detection [64], semantic segmentation [65], medical image
processing [66], super-resolution [67], and multimodal tasks [68]. Attention mechanisms
can be classified into the following six categories. (1) Channel attention: In deep neural
networks, different channels in various feature maps typically represent different objects.
Channel attention adaptively adjusts the weight of each channel to increase the importance
of focused objects. Hu et al. [69] were the first to propose the concept of channel attention
and to introduce SENet. The SENet module collects global information [70] using squeeze
and excitation modules, captures channel relationships, and improves the representation
power of the network. (2) Spatial attention: Spatial attention is an adaptive mechanism
for selecting spatial regions. The representative algorithms of spatial attention include
RAM [71], based on the RNN method; STN, which uses subnetworks to explicitly predict
relevant regions [72]; GENet [73], which uses subnetworks implicitly to predict soft masks
for selecting important regions; and GCNet [74], which uses a self-attention mechanism [75].
(3) Temporal attention: Temporal attention can be regarded as a dynamic temporal selec-
tion mechanism for determining when to focus attention, typically achieved by capturing
short-term and long-term cross-frame feature dependencies [76,77]. Li et al. [76] proposed
a global–local temporal representation (GLTR) to utilize multi-scale temporal information
in video sequences. GLTR consists of a dilated temporal pyramid (DTP) for local temporal
context learning and a temporal self-attention module for capturing global temporal interac-
tion. (4) Branch attention: Branch attention can be regarded as a dynamic branch selection
mechanism; it is often used in conjunction with multi-branch structures. Representative
networks include highway networks [78], Selective Kernel (SK) convolution [79], CondCov
operator [80], and dynamic convolution [81]. (5) Channel and spatial attention: Channel
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and spatial attention combines the advantages of channel and spatial attention and can
adaptively select important objects and regions [82]. Based on the ResNet network [83], the
Residual Attention Network [84] pioneers the research of channel and spatial attention by
combining attention mechanism and residual connection, emphasizing the importance of
information features in spatial and channel dimensions. Woo et al. [63] proposed the con-
volutional block attention module (CBAM) by concatenating channel and spatial attention;
it decouples channel and spatial attention to improve computational efficiency. (6) Spatial
and temporal attention: Combining the advantages of spatial and temporal attention, it
can adaptively select important regions and key frames. Song et al. [85] proposed a joint
spatial and temporal attention network based on LSTM [86], which enables the adaptive
discovery of discriminative features and key frames.

2.3. Multi-Scale Feature Fusion

In object detection tasks, feature maps at different levels represent varying information
about the detection targets. High-level feature maps encode semantic information about the
objects which can be used for classification, while low-level feature maps encode positional
information about the objects which can be used for regression [87]. The YOLO algorithms
fuse multiple features obtained from neural networks to extract more information about
small targets to improve detection accuracy. The Feature Pyramid Network (FPN) [42]
enhances semantic feature representation through a top-down pathway and fuses features
with more precise location information. However, FPN fails to propagate accurate local-
ization information from lower-level feature maps to higher-level semantic feature maps,
and the feature transfer between non-adjacent layers is limited. In addition, for masks
generated for large targets, the redundant and lengthy spatial transfer path hinders the
effective integration of high-level and low-level information, leading to information loss.
Liu et al. [43] proposed the PANet network, which incorporates a bottom-up pathway
enhancement structure and integrates shallow network features with FPN features. To
improve upon the suboptimal fusion performance of manually designed feature pyramids,
Ghiasi et al. [88] introduced the neural architecture search-feature pyramid network (NAS-
FPN), which utilizes neural network architecture search methods to automatically design
the feature network. The bidirectional feature pyramid network (BiFPN) [89] improves
upon the PANet by introducing contextual [90] and weight information to balance features
of different scales, resulting in a larger receptive field and richer semantic information. To
address the issue of inconsistent feature scales in pyramid-based methods, Liu et al. [91]
proposed a data-driven pyramid feature fusion strategy called adaptive spatial feature
fusion (ASFF), which enables the network to learn how to directly filter out features from
other levels in space to preserve useful information for combination. Subsequent research
has shown the effectiveness of BiFPN [92–94] and ASPP [95–97] in improving the detection
performance of YOLO algorithms.

3. YOLOv5 Algorithm

Among the existing object detection algorithms, the YOLOv5 algorithm has gained
wide popularity in various applications due to its fast detection speed, high accuracy, and
good flexibility. Based on differences in network depth and width, the proposed YOLOv5
model can be categorized into five types: YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x. These models demonstrate a progressive increase in number of parameters and
level of performance, but with a corresponding decrease in detection speed. Considering
both detection performance and speed, this research selected the YOLOv5s model. This
model comprises four main components: input, backbone, neck, and head. Figure 1
illustrates the network structure diagram.

3.1. Input

YOLOv5 performs adaptive image scaling and Mosaic data augmentation, as well as
optimized anchor box calculations at the input end for image data [38].
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Mosaic is a data augmentation method based on Cutmix [98]. By combining four
training images into one image and scaling the resulting image to the standard size before
training, Mosaic can effectively improve object detection beyond normal backgrounds. Dur-
ing training, each batch of data contains a large number of images, and data augmentation
increases the number of images in each batch fourfold, which reduces the requirement
for large quantities when estimating mean and variance. Adaptive image scaling is only
performed during the model inference stage. First, the scaling ratio is calculated based
on the original image and the input network image size. Then, the scaled image size is
determined by multiplying the original image size by the scaling ratio. Finally, the image
is scaled to fit the input size of the network. In the YOLOv2–4 algorithms [36–38], prior
box dimensions need to be extracted using K-means clustering [99]. To train on different
datasets, a separate program is required to obtain the initial anchor boxes to meet specific
size requirements. YOLOv5 embeds adaptive anchor box calculation into its code, which
automatically calculates the optimal anchor boxes during each training session based on
the dataset.

3.2. Backbone

The backbone network primarily extracts feature information from input images.
The C3 module and SPPF module are mainly used in the YOLOv5 network. The C3
module reduces model computation and improves inference speed, while the SPPF module
extracts multi-scale information from feature maps, which is beneficial for improving
model accuracy.

The C3 module consists of three standard convolutional layers and multiple bottle-
neck modules, the number of which is determined by the parameters specified in the
configuration file. The C3 module is the main module for learning residual features. Its
structure consists of two branches: one branch uses the specified multiple bottleneck mod-
ules stacked and standard convolutional layers, while the other branch only passes through
standard convolutional layers. Finally, the two branches are concatenated and passed
through standard convolutional layers to output the final feature map.

SPP [41] can fuse feature maps of different scales and sizes by performing fixed-size
pooling on feature maps of any scale to obtain a fixed number of features. Then, each
pooled feature is concatenated to obtain a fixed-length feature map. The principle of the
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SPPF module is similar to SPP, with a slightly different structure. In YOLOv5, SPP uses
three scales of features [5,9,13] to fuse with the input feature. The results further improve
the scale invariance of input images with different scales and aspect ratios. On the other
hand, SPPF only uses a 5 × 5 pooling kernel. After the input image passes through a
standard convolutional layer, it goes through three stacked 5 × 5 pooling kernels. Each
scale feature after pooling is fused with the scale feature after passing through the standard
convolutional layer to obtain the final feature map. Compared with the SPP module, the
computational complexity of the SPPF module is greatly reduced, and the model speed
is improved.

3.3. Neck

The neck network of YOLOv5 consists of a feature pyramid network (FPN) [42] and a
path aggregation network (PAN) [43]. FPN always uses the semantic information of high-
level features and high-resolution location information of low-level features simultaneously
by using a top-down approach to propagate semantic information. On the other hand, PAN
uses a bottom-up approach to facilitate the propagation of low-level information to the top
level for better localization. The three sizes of feature maps output by the backbone network
are aggregated by the neck network to enhance semantic information and localization
features, which helps to improve the ability to detect objects of different sizes.

3.4. Head

As the detection component of the object detection model, the head predicts objects of
different sizes by processing multi-scale feature maps. The anchor box mechanism at the
head extracts prior box scales through clustering and constrains the predicted box positions.

The model outputs three scale tensors, with the first scale having an eight-fold down-
sampling compared to the input image, resulting in a smaller receptive field that preserves
high-resolution features from the bottom layers and is beneficial for detecting small ob-
jects. The second scale has a 16-fold down-sampling, resulting in a moderately sized
receptive field that is beneficial for detecting medium-sized objects. The third scale has a
32-fold down-sampling, resulting in a larger receptive field that is beneficial for detecting
large objects.

3.5. Loss Function

The loss function (Ltotal) of YOLOv5 consists of three components defined as Equation (1),
which covers several necessary loss function modules in object detection such as confidence loss
function, class prediction loss function, and bounding box prediction loss function [100].

Ltotal = Lobj + Lclass + Lbbox (1)

where Lobj represents the target confidence loss of the model, Lclass represents the target
class prediction loss of the model, and Lbbox represents the bounding box loss of the model.

Lobj = λobj
S2

∑
i=0

B
∑

j=0
Iobj
ij

[
−Ĉj

i ln
(

Cj
i

)
−
(

1− Ĉj
i

)
ln
(

1− Cj
i

)]
+λnobj

S2

∑
i=0

B
∑

j=0
Inobj
ij

[
−Ĉj

i ln
(

Cj
i

)
−
(

1− Ĉj
i

)
ln
(

1− Cj
i

)] (2)

Lclass =
S2

∑
i=0

B

∑
j=0

∑
c⊂classes

[− p̂i(c) ln(pi(c))− (1− p̂i(c)) ln(1− pi(c))] (3)

where S represents the grid size, B represents the number of predicted boxes per grid, and
Iobj
ij represents whether the ith predicted box in the jth grid contains an object. If the overlap

between the predicted box and the ground truth box exceeds the threshold, Iobj
ij is set to 1,

indicating the presence of an object to be predicted, and it is included in the calculation of
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the loss function; otherwise, Iobj
ij is set to 0. Inobj

ij represents whether the ith predicted box
in the jth grid contains a background object. If the overlap between the predicted box and
the ground truth box is less than the threshold, Inobj

ij is set to 1; otherwise, Inobj
ij it is set to 0.

λobj and λnobj are balance coefficients used to adjust the balance between the confidence

loss in the presence and absence of objects. Cj
i represents the confidence of the predicted

box, Ĉj
i represents the confidence of the ground truth box, pi(c) represents the predicted

probability of the c class when the ith network detects an object, and p̂i(c) represents the
true probability of the c class when the ith network detects an object.

The YOLOv5 bounding box prediction loss function utilizes the CIOU loss function
(LCIOU) [101], and its definition is as follows:

LCIOU =
S2

∑
i=0

B

∑
j=0

1− IOU +
ρ2(b, bgt)

c2 + αv (4)

IOU ==

∣∣B ∩ Bgt
∣∣

|B ∪ Bgt|
(5)

where ρ2(b, bgt) represents the Euclidean distance between the centers of the predicted box
and the ground-truth box; c represents the diagonal distance of the minimum enclosing
region that can simultaneously contain the predicted and ground-truth boxes; B,Bgt, and α
respectively denote the predicted box, the ground-truth box, and the weight coefficient; v is
used to measure the similarity of aspect ratios; and the formulas for α and v are given by
Equations (6) and (7), respectively:

α =
v

(1− IOU) + v
(6)

v =
4

π2

(
arctan

wgt

hgt − arctan
wp

hp

)2

(7)

where wgt and hgt respectively represent the width and height of the ground-truth box; and
wp and hp respectively represent the width and height of the predicted box.

4. Improved YOLOv5s Algorithm
4.1. Shuffle Attention Module

As the hierarchical depth of the network increases, the information extracted from the
head of the YOLOv5s network becomes increasingly abstract which will lead to missed
or false detection of small objects in the image. In this study, an attention mechanism was
incorporated into the YOLOv5s network to address this issue.

The attention mechanism can be mainly divided into spatial attention and channel
attention, which are used to capture pixel relationships in space and dependencies between
channels, respectively. The combination of these two attention mechanisms, such as in
CBAM, can achieve better results but inevitably increases the computational complexity of
the model. The SGE attention mechanism module [102] is a classic attention module. Its
core idea is to group feature maps, with each group of feature maps representing a semantic
feature. By utilizing the similarity between local and global features, the attention mask is
generated to guide the spatial distribution of enhanced semantic features. Based on the
design concept of the SGE attention mechanism, the shuffle attention (SA) mechanism [103]
introduces the channel shuffle operation, which uses both spatial and channel attention
mechanisms in parallel, efficiently combining the two. As shown in Figure 2, the SA module
first groups the c × h × w feature map obtained by convolution, and the grouped feature
map serves as the SA unit. Each SA unit is divided into two parts, with the upper part using
the channel attention mechanism and the lower part using the spatial attention mechanism.
The processed two parts are stacked by channel numbers to achieve information fusion
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within the SA unit. Finally, the channel shuffle operation is applied to all SA units to realize
information communication between different sub-features and obtain the final output
feature map.
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The SA module has the convenient feature of being plug-and-play and has been
applied in some networks. However, there is currently no absolute theoretical basis for de-
termining which part of the YOLOv5s network is best in terms of integration. The YOLOv5s
network can be divided into four modules: input, backbone, neck, and head. The input
module mainly performs preprocessing operations on images; it does not perform feature
extraction processing on images. Therefore, in this study, fusion network models that
incorporate the SA module into the backbone, neck, and head modules of YOLOv5s were
designed and named YOLOv5s-SA-A, YOLOv5s-SA-B, and YOLOv5s-SA-C, respectively.

The SA module was embedded into the backbone structure to form the YOLOv5s-
SA-A network. The backbone extracts the feature information from images through a
relatively deep convolutional network. As the network layers deepen, the resolution of
the feature map decreases. The SA module can be used for spatial attention enhancement
and channel attention reconstruction of feature maps at different locations. The C3 module
aggregates features at different levels. In this study, the SA module was placed after the
C3 module. The network structure is shown in Figure 3A. The SA module was embedded
into the neck structure to form the YOLOv5s-SA-B network. The FPN and PAN structures
in the neck module can transmit semantic information from top to bottom and positional
information from bottom to top, thereby enhancing the aggregation of semantic information
and positioning features. This module uses four Concat operations to fuse deep and
shallow information. Therefore, the SA module was placed after the Concat operation to
enhance the spatial attention and channel reconstruction of the fused feature map. The
network structure is shown in Figure 3B. The SA module was embedded into the head
structure to form the YOLOv5s-SA-C network. The YOLOv5s network predicts targets
using three feature maps of different scales. Large targets are predicted on small feature
maps, while small targets are predicted on large feature maps. In this study, the SA module
was embedded before the prediction head to enhance the spatial attention and channel
reconstruction of each feature map. The network structure is shown in Figure 3C.

4.2. DD-Head Module

Traditional YOLO algorithms use the coupled head, which utilizes the same con-
volutional layer for both classification and regression tasks at the head of the network.
However, classification and regression tasks have different focuses. Classification is more
concerned with the texture of each sample, while regression is more focused on the edge
features of object images. Studies [104,105] have pointed out that there is a conflict between
classification and regression tasks in object detection, and using a coupled head for both
tasks may lower the model’s performance.
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The YOLOX algorithm [106] is the first algorithm to apply the decoupled head module,
achieving more significant results than the coupled head. The network structure of the
decoupled head is shown in Figure 4. For the input feature map, the decoupled head
first uses a 1 × 1 convolution to reduce its dimensionality, mapping the feature maps
of P3, P4, and P5 with different dimensions of the feature fusion network output into
feature maps with a unified number of channels. Then, two parallel channels are used
to perform object regression and target box coordinate regression tasks. To reduce the
complexity of the decoupled head and improve model convergence speed, each channel
uses two 3 × 3 convolutions. Cls., Reg., and Obj. output values can be obtained through
processing, where Cls. represents the category of the target box, Reg. represents the position
information of the target box, and Obj. represents whether each feature point contains
an object. The final prediction information is obtained by fusing the three output values.
In summary, the decoupled head improves model performance by separately addressing
classification and regression tasks.
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Although introducing a decoupled head can effectively improve the detection perfor-
mance of a network, it undoubtedly increases the model’s parameter count and decreases
the detection speed. In this study, the 3 × 3 convolution in each branch of the decoupled
head network was replaced with a 3× 3 depthwise convolution [107], reducing the parame-
ter count. The network architecture is shown in Figure 5, which is named the DD-head. The
original coupled head in the YOLOv5s model was replaced with the DD-head to mitigate
the negative impact of the classification and regression task conflict.
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4.3. Content-Aware Reassembly of the Features Module

The YOLOv5s model utilizes the FPN module to achieve top-down semantic infor-
mation transfer and multi-scale object detection through feature fusion. The multi-scale
feature fusion is achieved by nearest-neighbor interpolation up-sampling to unify the
feature map size. However, this up-sampling operation presents two limitations: (1) the
interpolation up-sampling operation only considers the spatial information of the feature
map and ignores its semantic information, resulting in simultaneous up-sampling of target
and noise positions; (2) the receptive field of the interpolation up-sampling operation is
usually small, leading to insufficient use of global feature information. Another adaptive
up-sampling operation is the deconvolution operation; however, it also has two limitations:
(1) the deconvolution operator uses the same convolution kernel across the entire feature
map, regardless of the underlying information, which limits its ability to respond to local
changes; (2) the parameter volume of the deconvolution operation is large, which reduces
the detection speed of the network. To address the problem of low semantic correlation in
up-sampling in object detection models, this study adopts the Content-Aware Reassembly
of Features (CARAFE) module [108] to replace the nearest-neighbor interpolation up-
sampling module. The CARAFE module recombines feature points with similar semantic
information in a content-aware manner and aggregates features in a larger receptive field
to achieve the up-sampling operation.

The up-sampling process of the CARAFE module mainly consists of two steps: up-
sampling kernel prediction and content-aware reassembly. Firstly, channel compression is
performed by the up-sampling kernel prediction module to reduce the number of input
feature channels. Then, the compressed feature map is encoded with content and the
reassembly kernel is predicted according to the content of each target location. Finally,
the content-aware reassembly module performs a dot product between the reassembly
kernel and the corresponding region of the original feature map to complete the up-
sampling process.

4.4. GSConv Module

Although the introduction of the decoupled head and SPPCSPC modules can improve
the detection performance of the YOLOv5s network model, these modules increase the
parameter count of the model, which is unfavorable for creating lightweight networks. To
design lightweight networks, deep separable convolution (DSC) modules are typically used
instead of conventional convolutional modules. The advantage of DSC modules is their
efficient computational capability, as their parameter count and computational workload are
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approximately one-third of those of traditional convolutional modules. However, during
the feature extraction process, the channel information of the input image is separated in
the calculation process, which can result in lower feature extraction and fusion capabilities
compared to standard convolutional modules. To effectively utilize the computational
capability of DSC and ensure that its detection accuracy reaches the level of standard
convolution (SC), the GSconv [109] module is proposed based on SC, DSC, and shuffle
modules. The network structure is shown in Figure 6. Firstly, the feature map with C1
channels is split into two parts, where half of the feature map is used for deep separable
convolution and the remaining part is used for standard convolution. Then, the two-
channel feature maps are combined for feature concatenation. Shuffle is a channel mixing
technique that allows information from the SC module to completely mix with the DSC
output by transmitting its feature information across various channels, thus achieving
channel information interaction.
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During the convolution process, the spatial information of the feature map gradually
shifts to channels, where the number of channels increases when the width and height
of the feature map decrease, resulting in stronger semantic information. However, each
spatial compression and channel expansion of the feature map can lead to partial loss of
semantic information, which affects the accuracy of object detection. The SC module largely
preserves the hidden connections between each channel, which can reduce information loss
to some extent, but with high time complexity. In contrast, the DSC module cuts off these
hidden connections, resulting in the complete separation of channel information during
the calculation process. The GSconv module retains as many connections as possible while
maintaining lower time complexity, thereby reducing information loss and achieving faster
operations and thus unifying SC and DSC.

Based on the GSConv module, the network structure of the GS bottleneck and VoV-
GSCSP module is shown in Figure 7. Compared with the bottleneck module in the original
YOLOv5s network, the GS bottleneck replaces the two 1 × 1 convolutions in the bottleneck
module with the GSConv module and adds new skip connections. Therefore, the two
branches of the GS bottleneck perform separate convolutions without weight sharing,
propagating channel information through different network paths by dividing the number
of channels. As a result, the information propagated by the GS bottleneck shows greater
correlation and diversity, resulting in more accurate information and reduced computa-
tional workload. The VoV-GSCSP module is designed by using the GS bottleneck instead
of the bottleneck in the C3 module. In the VoV-GSCSP module, the input feature map is
also divided into two parts based on channel numbers. The first part is processed by a
convolutional module and features are extracted by stacking the GS bottleneck, while the
other part serves as the residual connection and is convolved by a convolutional module.
The two feature maps are then concatenated based on channel numbers and passed through
a convolutional module for output. The VoV-GSCSP module inherits the advantages of
both the GSConv module and the GS bottleneck. With the new skip connection branch,
the VoV-GSCSP module has a stronger nonlinear representation, effectively addressing
the problem of gradient vanishing. At the same time, the split-channel method of VoV-
GSCSP achieves rich gradient combinations, solving the problem of redundant gradient
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information and improving learning ability [109]. Experimental results have shown that the
VoV-GSCSP module not only reduces computational workload but also improves model
accuracy [110,111]. In this study, the Conv module in the VoV-GSCSP module was replaced
with the GSConv module to further reduce model parameters. The GSConv module and
the improved VoV-GSCSP module were embedded into the neck structure of the model, so
as to maintain detection accuracy while reducing parameter count.
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4.5. SPPCSPG Module

The SPPCSPC module [112] is built on the basis of the SPP module and the CSP
structure, as shown in Figure 8. The module first divides the features extracted by the C3
module of the backbone into two parts: the SPP and conventional convolution operations.
The SPP structure consists of four branches, corresponding to max-pooling operations with
pool kernel sizes of 1, 5, 9, and 13. These four different pool kernels allow the SPPCSPC
structure to handle objects with four different receptive fields, better distinguishing small
and large targets. Finally, the SPP operation and conventional convolution operation are
merged together by Concat to achieve faster speed and higher accuracy.
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Although the SPPCSPC module can improve the detection performance of the model
to a certain extent, it also increases the model’s parameter count. Therefore, in this study,
a lightweight SPPCSPG module was proposed based on the design principles of the
GS bottleneck and the GSConv module. The SPPCSPG module was integrated into the
backbone structure to optimize the YOLOv5s network model.

Incorporating the improvements to the YOLOv5s backbone, this study replaced the
SPPF module with the SPPCSPG module to enhance detection accuracy. In the neck
structure, all Conv modules were replaced with GSConv modules and the improved
VoV-GSCSP module was introduced to reduce the parameters and computation brought
about by feature pyramid structure upgrades. To address the issue of limited semantic
information and receptive fields caused by nearest-neighbor interpolation up-sampling
operations in the original network model, this study adopted the CARAFE module to
replace the nearest-neighbor interpolation up-sampling module, which reorganizes feature
points with similar semantic information in a content-aware way and aggregates features
in a larger receptive field to perform up-sampling operations. To address the problem of
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inaccurate target localization and weak feature expression capability in the original network
model, this study introduced the SA attention module in the head module. Finally, to
improve the performance metrics of the model, the DD-head was used in the detection layer
of the YOLOv5s model to accomplish classification and regression tasks. The improved
network model structure is shown in Figure 9.
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5. Experimental Results and Analysis
5.1. Experimental Platform and Dataset

The dataset used in the experiment includes two remote sensing datasets, the RSOD
dataset [113,114] and DIOR dataset [115], as well as two general target detection datasets,
the PASCAL VOC dataset [116,117] and MS-COCO dataset [118].

The RSOD dataset includes four types of detection object categories, aircraft, oil tank,
playground, and overpass, with a total of 976 images. The aircraft category includes
446 images, with a total of 4993 targets. The oil tank category includes 165 images, with
a total of 1586 targets. The playground category includes 189 images, with a total of
191 targets. The overpass category contains 176 images and a total of 180 targets. The
partition ratio between the training set to the test set is 4 to 1.

The DIOR dataset is a large-scale benchmark dataset for object detection in remote
sensing images. The dataset includes 23,463 images of different seasons and weather
patterns, with a total of 190,288 targets. The unified image size is 800 × 800, with a
resolution of 0.5 m to 30 m. DIOR datasets include 20 categories: airplane (AL), airport
(AT), baseball field (BF), basketball court (BC), bridge (B), chimney (C), dam (D), expressway
service area (ESA), expressway toll station (ETS), golf course (GC), ground track field (GTF),
harbor (HB), overpass (O), ship (S), stadium (SD), storage tank (ST), tennis court (TC), train
station (TS), vehicle (V), and windmill (W). According to the original settings in the DIOR
dataset, the number of images in the training, validation, and testing sets is 5863, 5862,
and 11,738, respectively. This study combines the training set and validation set as the
training set.
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The PASCAL VOC dataset includes the PASCAL VOC 2007 and 2012 datasets, which
can be used for tasks such as image classification, object detection, semantic segmentation,
and motion detection. The PASCAL VOC dataset includes a total of 20 common objects
in daily life. In this study, the training and validation sets of the PASCAL VOC 2007 and
VOC 2012 datasets were used as the model’s training set, while the testing set of VOC 2007
was used as the model’s testing set. The MS-COO dataset is currently the most challenging
target detection dataset which includes a total of 80 types of detection objects. The MS-COO
dataset includes more small objects (with an area smaller than 1% of the image) and more
dense localization objects than the PASCAL VOC dataset.

The experiments were conducted on a system with Ubuntu 18.04, CUDA 11.1, and
a GeForce RTX A5000 graphics card. The network development framework used was
Pytorch 1.9, and the integrated development environment was Pycharm. The training was
uniformly set to 300 epochs, with a batch size of 64.

5.2. Evaluation Metrics

In this study, precision, mean average precision (mAP), and detection frames per
second (FPS) were used as performance evaluation metrics for the object detection method.
Precision (P) and recall (R) were calculated using Equations (8) and (9), respectively:

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

where TP represents the number of positive samples that are correctly identified as positive,
FP represents the number of negative samples that are incorrectly identified as positive, and
FN represents the number of positive samples that are incorrectly identified as negative. By
selecting different precision and recall values, the precision-recall (PR) curve can be drawn,
and the area under the PR curve is defined as the AP. The mean AP (mAP) is calculated by
taking the mean of the AP for all detection categories. The calculation of the performance
evaluation metrics AP and mAP is shown in Equations (10) and (11), respectively:

AP =
∫ 1

0
p(r)dr (10)

mAP =
1
n

n

∑
i=1

APi (11)

where p(r) represents the precision value at a certain recall value r, and n represents the
number of detection categories.

5.3. Experimental Results and Analysis

The experimental results are divided into seven sections based on two different
datasets: the comparison experiment of SA module embedding, the effect experiment
of the DD-head module, the effect experiment of the SPPCSPG module, the RSOD dataset
experiment, the DIOR dataset experiment, the PASCAL VOC dataset experiment, and the
MS COCO dataset experiment.

5.3.1. Performance Evaluation of the SA Module Embedded Model

To explore the best SA module embedding model and investigate the detection
performance changes brought by embedding the SA module in different structures of
the YOLOv5s network, three proposed models (YOLOv5s-SA-A, YOLOv5s-SA-B, and
YOLOv5s-SA-C) were evaluated using the RSOD dataset to achieve better optimization
design of the network. The detection performance of the original YOLOv5s and improved
models were compared, and the experimental results are shown in Table 1.
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Table 1. Performance evaluation of shuffle attention module embedded model.

Method Data Size Param. GFLOPs Precision (%) Recall (%) mAP@0.5 (%) FPS

YOLOv5s 640 × 640 7.02 M 15.8 0.942 0.932 0.950 119.0
YOLOv5s-SA-A 640 × 640 7.02 M 15.8 0.930 0.920 0.948 105.8
YOLOv5s-SA-B 640 × 640 7.02 M 15.8 0.937 0.935 0.948 112.3
YOLOv5s-SA-C 640 × 640 7.02 M 15.8 0.939 0.930 0.952 113.9

From Table 1, it can be seen that not all networks with integrated SA modules can
improve detection performance. YOLOv5s-SA-A had significantly decreased precision,
recall, mAP, and FPS compared to the original YOLOv5s network. YOLOv5s-SA-B showed
improved recall, but the other three indicators were decreased compared to the original
network. YOLOv5s-SA-C had increased mAP, but the other three indicators were decreased
compared to the original network. The reason for the different experimental results when
embedding attention mechanisms at different positions in the network is that the feature
maps extracted by the backbone have rich semantic features, while the feature maps
extracted by the neck and head have larger receptive fields, which play a crucial role in
improving object detection performance. In the backbone module, the feature maps retain
the shallow texture and contour information of the targets, with poor semantic information;
thus, embedding attention mechanisms cannot effectively learn semantic information. The
YOLOv5s-SA-C algorithm is superior to the YOLOv5s-SA-B algorithm in both detection
accuracy and speed. Therefore, considering the principle of balancing accuracy and speed,
the YOLOv5s-SA-C algorithm was finally chosen as the model for embedding SA modules.

5.3.2. Effect Experiment of the DD-Head Module

Experiments were conducted on the proposed DD-head module, decoupled head
module, and coupled head module in the RSOD dataset to investigate the impact of the
constructed DD-head module on the detection accuracy and speed of the model.

Table 2 shows that both the decoupled head and the proposed DD-head modules can
improve the mean average precision accuracy of the model, with an increase of 0.6% and
0.5%, respectively. Although the DD-head module has a 0.1% lower mean average precision
accuracy compared to the decoupled head module, it has a 7.05 M lower parameter count
and an 11.9 increase in FPS value compared to that of the decoupled head module.

Table 2. Performance evaluation of depthwise-decoupled head module embedded model.

Method Data Size Param. GFLOPs Precision (%) Recall (%) mAP@0.5 (%) FPS

YOLOv5s 640 × 640 7.02 M 15.8 0.942 0.932 0.950 119.0
YOLOv5s + Decoupled head 640 × 640 14.33 M 56.2 0.937 0.969 0.956 94.9

YOLOv5s + DD-head 640 × 640 7.28 M 16.7 0.960 0.929 0.955 106.8

5.3.3. Effect Experiment of the SPPCSPG Module

Experiments were conducted on the proposed SPPCSPG module, SPPCSPC module,
and SPPF module in the RSOD dataset to study the impact of the constructed SPPCSPG
module on the detection accuracy and speed of the model.

Table 3 indicates that both the SPPCSPC module and the proposed SPPCSPG module
can improve the mean average precision accuracy of the model, with an increase of 0.3%
and 0.5%, respectively. Moreover, the SPPCSPG module has a 0.2% higher mean average
precision accuracy than the SPPCSPC module and has 3.5 M fewer parameters. Therefore,
based on the evaluation of parameter count and detection accuracy, the proposed SPPCSPG
module outperforms the SPPCSPC module.
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Table 3. Performance evaluation of spatial pyramid pooling cross-stage partial with GSConv module
embedded model.

Method Data Size Param. GFLOPs Precision (%) Recall (%) mAP@0.5 (%) FPS

YOLOv5s 640 × 640 7.02 M 15.8 0.942 0.932 0.950 119.0
YOLOv5s + SPPCSPC 640 × 640 13.45 M 20.9 0.947 0.931 0.953 117.0
YOLOv5s + SPPCSPG 640 × 640 9.95 M 18.1 0.942 0.954 0.955 113.1

5.3.4. Performance Comparison in the RSOD Dataset

The detection performance of the original YOLOv5s model and the constructed model
was compared on the RSOD dataset to verify the effectiveness of the constructed model.
The results were shown in Table 4. The mean average precision accuracy and FPS of the
model constructed in this article with the original YOLOv5s model were compared on
the RSOD dataset, and the detection accuracy of each category was compared. It can be
seen that the mean average precision accuracy of the model constructed in this article is
96.4%, which is an improvement of 1.4% compared to the original model, and the mean
average precision accuracy on categories oil tank and playground were improved by 0.1%
and 5.4%, respectively.

Table 4. RSOD test detection results.

Method Param. GFLOPs mAP@0.5 (%) Aircraft Oil Tank Playground Overpass FPS

YOLOv5s 7.02 M 15.8 0.950 0.983 0.986 0.839 0.994 119.0
Ours 9.67 M 18.4 0.964 0.981 0.987 0.893 0.992 88.8

In order to further visually demonstrate the effectiveness of the constructed models,
the detection results of each model were shown in Figure 10.
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As shown in Figure 10, from rows 1 to 4, it could be seen that the detection boxes of the
model constructed in this article were closer to the actual detection boxes of targets, with
a higher recall rate. From row 4, it can be seen that the model constructed in this article
had a lower false alarm rate on the overpass. Therefore, the effectiveness of the model
constructed in this article is superior to the original model.

5.3.5. Performance Comparison in the DIOR Dataset

In order to further validate and evaluate the effectiveness of the improved YOLOv5s in
improving the detection accuracy of the model, experimental comparisons were conducted
on the DIOR dataset with other methods specified in the literature. The experimental
results are shown in Table 5, with bold values indicating the optimal results in each column.

Table 5. DIOR test detection results.

Method mAP AL AT BF BC B C D ESA ETS GC

HawkNet [119] 72.0 65.7 84.2 76.1 87.4 45.3 79.0 64.5 82.8 72.4 82.5
CANet [120] 74.3 70.3 82.4 72.0 87.8 55.7 79.9 67.7 83.5 77.2 77.3

Yao et al. [121] 75.8 91.0 74.5 93.3 83.2 47.4 91.9 63.3 68.0 61.4 80.0
MFPNet [122] 71.2 76.6 83.4 80.6 82.1 44.3 75.6 68.5 85.9 63.9 77.3

FSoD-Net [123] 71.8 88.9 66.9 86.8 90.2 45.5 79.6 48.2 86.9 75.5 67.0
ASDN [124] 66.9 63.9 73.8 71.8 81 46.3 73.4 56.3 73.4 66.2 74.7

MSFC-Net [125] 70.1 85.8 76.2 74.4 90.1 44.2 78.1 55.5 60.9 59.5 76.9
Xue et al. [126] 80.5 95.2 84.2 94.8 85.2 54.0 90.5 71.0 75.3 70.7 82.0

DFPN-YOLO [127] 69.33 80.2 76.8 72.7 89.1 43.4 76.9 72.3 59.8 56.4 74.3
AC-YOLO [128] 77.1 93.1 80.9 79.9 84.4 76.0 81.7 77.1 67.6 70.0 66.7
SCRDet++ [129] 75.1 71.9 85.0 79.5 88.9 52.3 79.1 77.6 89.5 77.8 84.2

MSSDet [130] 76.9 70.7 88.6 81.8 90.4 56.5 82.5 73.0 90.1 78.6 86.6
Gao et al. [131] 72.5 78.1 83.9 73.0 89.0 48.2 79.4 65.6 63.9 61.9 80.6

MDCT [132] 80.5 92.5 85.0 93.5 84.7 53.7 90.2 74.3 79.9 68.2 68.6
YOLOv5s 80.4 87.2 86.9 86.2 92.3 55.5 83.0 72.6 91.1 83.0 81.6

Ours 81.6 87.9 91.1 84.9 91.7 55.8 80.7 78.9 92.8 82.6 86.6

Method mAP GTF HB O S SD ST TC TS V W

HawkNet [119] 72.0 74.7 50.2 59.6 89.7 66.0 70.8 87.2 61.4 52.8 88.2
CANet [120] 74.3 83.6 56.0 63.6 81.0 79.8 70.8 88.2 67.6 51.2 89.6

Yao et al. [121] 75.8 82.8 57.4 65.8 80.0 92.5 81.1 88.7 63.0 73.0 78.1
MFPNet [122] 71.2 77.2 62.1 58.8 77.2 76.8 60.3 86.4 64.5 41.5 80.2

FSoD-Net [123] 71.8 77.3 53.6 59.7 78.3 69.9 75.0 91.4 52.3 52.0 90.6
ASDN [124] 66.9 75.2 51.1 58.4 76.2 67.4 60.2 81.4 58.7 45.8 83.1

MSFC-Net [125] 70.1 73.7 49.6 57.2 89.6 69.2 76.5 86.7 51.8 55.2 84.3
Xue et al. [126] 80.5 82.1 70.6 67.3 95.0 94.3 83.8 91.6 61.2 79.8 81.8

DFPN-YOLO [127] 69.33 71.6 63.1 58.7 81.5 40.1 74.2 85.8 73.6 49.7 86.5
AC-YOLO [128] 77.1 75.7 75.5 76.7 87.0 65.8 70.1 88.7 63.5 81.2 80.5
SCRDet++ [129] 75.1 83.1 64.2 65.6 71.3 76.5 64.5 88.0 70.9 47.1 85.1

MSSDet [130] 76.9 85.6 63.5 66.5 82.5 82.0 63.3 88.7 71.7 46.7 89.2
Gao et al. [131] 72.5 76.6 63.5 61.6 89.6 68.7 76.4 87.0 66.4 57.0 78.7

MDCT [132] 80.5 92.9 68.4 83.8 92.9 77.4 83.0 92.8 64.7 77.4 83.0
YOLOv5s 80.4 86.4 66.5 67.3 91.8 81.0 80.4 93.2 69.7 60.3 92.2

Ours 81.6 86.4 68.7 67.3 91.7 81.5 80.3 93.0 77.1 60.9 91.4

Note: In the table, 20 categories are divided into 2 rows, with 10 detection results for each row. The boldface
values represent the maximum value in the column.

From the experimental results in Table 6, it can be seen that compared with HawkNet [119],
CANet [120], MFPNet [122], FSoD-Net [123], ASDN [124], MSFC-Net [125], DFPN-YOLO [127],
AC-YOLO [128], SCRNet++ [129], MSSNet [130], MDCT [132], and YOLOv5s, the improved
algorithm proposed in this paper based on YOLOv5s significantly improves detection
accuracy. On the DIOR dataset, the mean average precision accuracy of the improved
YOLOv5s network is 1.2% higher than that of the original YOLOv5s network, indicating
that the network constructed in this article not only outperforms the original YOLOv5s
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network on the RSOD dataset but also achieves better performance than the original
network on the more complex large-scale remote sensing dataset, DIOR.

Table 6. Object detection results on PASCAL VOC2007 test dataset.

Method Backbone mAP@0.5 (%) FPS GPU

Faster R-CNN [27] VGGNet 73.2 7 Titan X
SSD 300 [35] VGGNet 74.1 46 Titan X

ASSD 300 [133] VGGNet 79.1 39.6 GTX 1080Ti
MFFAMM 300 [134] VGG16 80.7 26 -
Zhe et al. 300 [135] VGG16 80.1 42.2 RTX 2080Ti

FESSD 300 [136] ResNet-50 82.2 41.3 RTX 3090
YOLOv3 320 [37] Darknet53 74.5 45.5 Titan X

GC-YOLOv3 320 [137] Darknet53 81.3 39 GTX 1080Ti
DSP-YOLO 416 [138] Darknet53 82.2 56 Titan Xp
Zhang et al. 416 [139] MobileNetv2 81.67 44.18 RTX 2080Ti

He et al. 416 [140] ECA-CSPNet 78.6 94 RTX 2080Ti
SSD 512 [35] VGGNet 76.8 19.0 Titan X

ASSD 512 [133] VGGNet 81.0 20.8 GTX 1080Ti
PDS-Net 512 [141] CSPDarknet-53 84.9 32.2 RTX 2070

SLMS-SSD 512 [142] VGG16 81.2 17.4 RTX 2080Ti
YOLOv3 544 [37] Darknet53 78.6 40 Titan X

GC-YOLOv3 544 [137] Darknet53 83.7 31 GTX 1080Ti
RON384++ [143] VGG16 77.6 - Titan X
STDN 513 [144] DenseNet169 80.9 28.6 Titan Xp

Zhong et al. [145] BottleneckCSP 84.3 85.2 RTX 2080Ti
YOLO-T 640 [146] CSPDarknet-53 85.2 65.7 RTX 3090
BFBG-YOLO [147] CSPDarknet-53 80.3 99.0 RTX 3090

SL-YOLO [148] ShuffleNet v2 81.2 17.8 Tesla P40
YOLOv5s 640 CSPDarknet-53 83.7 143 RTX A5000

Ours 640 CSPDarknet-53 85.1 90.2 RTX A5000
The boldface values represent the maximum value in the column.

In order to further visually demonstrate the effectiveness of the constructed models,
the detection results of each model were shown in Figure 11.

As shown in Figure 11, from rows 1, 2, 5 and 6, it could be seen that the detection
boxes of the model constructed in this article were closer to the actual detection boxes of
targets, with a higher recall rate. From rows 1, 3, 4, and 6, it can be seen that the model
constructed in this article had a lower false alarm rate. Therefore, the effectiveness of the
model constructed in this article is superior to the original model.

5.3.6. Performance Comparison in the PASCAL VOC Dataset

To further validate and evaluate the effectiveness of the proposed algorithm to
YOLOv5s in improving detection accuracy, the proposed algorithm was compared with
several advanced object detection algorithms that have emerged in recent years. The train-
ing set and test set used in the experiments were consistent with those used in the study.
The experimental results are shown in Table 6, where the bold values indicate the best
results in each column.

From Table 6, it can be seen that the algorithm proposed in this article meets the real-
time requirements, with a mean average precision accuracy of 85.1%, which is 1.4% higher
than the original YOLOv5s algorithm. Compared to one-stage target detection algorithms,
such as the SSD series algorithm and its improved algorithm, it has advantages in terms of
precision and detection speed. Compared to two-stage target detection algorithms, such as
the Fast R-CNN algorithm, it has a much higher detection accuracy and detection rate.
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To further verify whether the algorithm can effectively improve the accuracy of small
target detection, Table 7 compares the accuracy of the improved YOLOv5s and other
advanced target detection algorithms in the 20 categories in the PASCAL VOC2007 test
set. The results show that compared to the original YOLOv5s algorithm, the improved
YOLOv5s algorithm improves the detection accuracy of the model in almost every category,
especially for small target categories such as birds.
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Table 7. PASCAL VOC2007 test detection results.

Method mAP Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow

Faster R-CNN [27] 73.2 76.5 79 70.9 65.5 52.1 83.1 84.7 86.4 52 81.9
SSD 300 [35] 74.1 74.6 80.2 72.2 66.2 47.1 82.9 83.4 86.1 54.4 78.5

ASSD 300 [133] 79.1 85.4 84.1 78.7 71.8 54.0 86.2 85.3 89.5 60.4 87.4
FESSD 300 [136] 82.2 89.4 86.2 84.3 78.2 57.8 91.6 91.5 91.7 62.2 90.4

Zhe et al. 300 [135] 80.1 84.6 87.6 80.1 73.0 50.4 89.3 88.3 90.9 60.2 87.8
He et al. 416 [140] 78.6 86.1 86.2 76.5 66.5 66.4 86.6 91.3 80.7 64.3 84.4

Zhang et al. 416 [139] 81.6 88.5 87.5 83.1 75.2 67.1 85.3 90.2 88.9 60.9 89.7
DSP-YOLO 416 [138] 82.2 88.5 89.5 79.1 74.0 68.7 89.7 90.6 89.9 66.7 84.4

SSD 512 [35] 76.8 82.4 84.7 78.4 73.8 53.2 86.2 87.5 86.0 57.8 83.1
ASSD 512 [133] 81.0 86.8 85.2 84.1 75.2 60.5 88.3 88.4 89.3 63.5 87.6

PDS-Net 512 [141] 84.2 93.3 98.0 80.2 73.8 70.2 90.9 96.3 87.1 65.0 87.3
SLMS-SSD 512 [142] 81.2 88.5 87.1 83.2 76.4 59.2 88.3 88.4 89.0 66.6 86.9

STDN513 [144] 80.9 86.1 89.3 79.5 74.3 61.9 88.5 88.3 89.4 67.4 86.5
DSP-YOLO 608 [138] 83.1 91.0 90.7 81.8 75.6 73.8 91.3 92.7 91.2 66.9 86.9

RON384++ [143] 77.6 86. 0 82.5 76.9 69.1 59.2 86.2 85.5 87.2 59.9 81.4
SFGNet [149] 81.2 82.2 83.9 80.3 71.5 78.2 89.6 86.9 90.0 65.7 87.9

SL-YOLO [148] 81.2 86.4 85.7 77.9 75.5 72.5 85.4 87.8 86.2 85.9 72.1
YOLOv5s 640 83.7 91.6 91.9 81.1 75.0 78.5 91.2 92.9 87.3 67.4 88.0

Ours 640 85.1 92.2 92.0 82.9 74.4 78.1 92.6 93.7 91.1 68.8 89.3

Method mAP Table Dog Horse Mbike Person Plant Sheep Sofa Train Tv

Faster R-CNN [27] 73.2 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83 72.6
SSD 300 [35] 74.1 73.9 84.4 84.5 82.4 76.1 48.6 74.3 75.0 84.3 74.0

ASSD 300 [133] 79.1 77.1 87.4 86.8 84.8 79.5 57.8 81.5 80.1 87.4 76.9
FESSD 300 [136] 82.2 74.4 89.4 90.5 87.7 83.7 52.4 88.6 81.6 91.0 81.7

Zhe et al. 300 [135] 80.1 81.4 87.1 89.1 87.9 82.1 54.6 80.4 80.5 89.2 78.1
He et al. 416 [140] 78.6 73.7 77.6 85.3 85.9 86.1 52.4 80.8 75.5 84.5 80.7

Zhang et al. 416 [139] 81.6 78.4 89.5 89.5 84.9 84.8 55.1 86.9 74.3 90.8 82.0
DSP-YOLO 416 [138] 82.2 75.0 89.2 89.3 89.8 85.8 56.6 84.4 81.1 89.1 81.6

SSD 512 [35] 76.8 70.2 84.9 85.2 83.9 79.7 50.3 77.9 73.9 82.5 75.3
ASSD 512 [133] 81.0 76.6 88.2 86.7 85.7 82.8 59.2 83.6 80.5 87.5 80.8

PDS-Net 512 [141] 84.2 74.5 86.5 91.8 91.9 89.7 59.9 92.8 79.3 89.1 84.6
SLMS-SSD 512 [142] 81.2 74.6 87.3 88.6 86.5 82.2 54.8 85.5 80.9 87.9 81.0

STDN513 [144] 80.9 79.5 86.4 89.2 88.5 79.3 53.0 77.9 81.4 86.6 85.5
DSP-YOLO 608 [138] 83.1 75.5 89.0 90.4 88.6 87.3 55.1 87.3 80.0 86.9 80.0

RON384++ [143] 77.6 73.3 85.9 86.8 82.8 79.6 52.4 78.2 76.0 86.2 78.0
SFGNet [149] 81.2 72.4 90.3 89.9 83.5 82.5 67.8 79.0 81.6 86.7 75.7

SL-YOLO [148] 81.2 79.5 78.8 88.2 86.5 81.1 71.2 84.4 79.2 82.7 76.3
YOLOv5s 640 83.7 79.1 86.0 91.4 89.3 89.5 60.5 86.1 76.0 86.8 84.9

Ours 640 85.1 76.7 88.1 92.6 92.2 90.0 61.2 89.4 79.0 90.6 84.7

Note: In the table, 20 categories are divided into 2 rows, with 10 detection results for each row. The boldface
values represent the maximum value in the column.

5.3.7. Performance Comparison in the MS COCO Dataset

In order to further demonstrate the advantages of this method in detecting small and
dense targets, an experimental comparison between this method and other methods in the
literature was conducted on the MS COCO test dataset. From the experimental results in
Table 8, it can be seen that compared with R-FCN [150], SSD [35], FESSD [136], YOLOv3 [37],
GC-YOLOv3 [137], Mini-YOLOv4-tiny [151], TRC-YOLO [152], Trident-YOLO [153], SLMS-
SSD [142], BANet_S [154], STDN [144], SFGNet [149], YOLO-T [146], SL-YOLO [148], and
YOLOv5s, the improved algorithm proposed in this article based on YOLOv5s significantly
improved detection accuracy. Compared to the original YOLOv5s algorithm, the overall
detection accuracy of the algorithm proposed in this article was improved by 3.1%, and the
detection accuracy of small, medium, and large targets was improved by 0.2%, 1.9%, and
3.9%, respectively. Experimental results show that the proposed algorithm outperforms the
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original YOLOv5s algorithm in small target detection, medium target detection, and large
target detection.

Table 8. MS COCO test-dev detection results.

Method AP AP50 AP75 AP Small AP Medium AP Large

R-FCN [150] 29.2 51.5 - 10.3 32.4 43.3
SSD 300 [35] 25.1 43.1 25.8 6.6 25.9 41.4

FESSD 300 [136] 28.3 - 29.6 - - -
Zhe et al. 300 [135] 29.9 49.9 31.3 10.6 24.5 47.6
YOLOv3 416 [37] 31.0 55.3 32.3 15.2 33.2 42.8

GC-YOLOv3 416 [137] - 55.5 - - -
Mini-YOLOv4-tiny 416 [151] 23.4 42.2 23.4 - - -

TRC-YOLO 416 [152] 18.4 38.4 15.6 6.3 17.6 27.2
Trident-YOLO 416 [153] 18.8 37.0 17.3 20.9 25.1 29.3

He et al. 416 [140] 23.6 43.8 26.8 8.4 27.1 42.3
SSD 512 [35] 28.8 48.5 30.3 10.9 31.8 43.5

SLMS-SSD 512 [142] 30.8 52.4 32.0 16.1 33.7 44.0
BANet_S 640 [154] 40.2 58.6 23.5 44.6 53.2

STDN 513 [144] 31.8 51.0 33.6 14.4 36.1 43.4
YOLOv3 608 [37] 33.0 57.9 34.4 18.3 35.4 41.9

SFGNet [149] 32.3 54.1 - - - -
Zhong et al. [145] 38.4 56.2 42.1 21.6 43.0 52.4
YOLO-T 640 [146] 42.0 58.3 44.1 - - -

SL-YOLO [148] 36.8 51.3 37.3 11.7 37.7 48.4
YOLOv5s 640 37.4 56.8 40.7 21.2 42.3 49.0

Ours 640 40.8 59.9 43.7 21.4 44.2 52.9

The boldface values represent the maximum value in the column.

6. Discussion

In this section, the contribution of the constructed module to the proposed network
was explored through ablation experiments.

Ablation experiments were conducted on the RSOD dataset to study the effects of
CARAFE, SA attention, SPPCSPG, GSConv, and DD-head modules on both model accuracy
and detection speed. These models were trained on the RSOD dataset and tested on an
RTXA5000 GPU. The input size of the test images for the ablation experiment was 640× 640,
and the experimental results are presented in Table 9.

Table 9. Ablation experiment on RSOD dataset.

Model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

CARAFE
√ √ √ √ √

SA
√ √ √ √ √

SPPCSPG
√ √ √ √

GSConv
√ √ √

DD-head
√ √

Params(M) 7.02 M 7.15 M 7.02 M 9.95 M 6.35 M 7.28 M 7.15 M 10.09 M 9.41 M 9.67 M
FLOPs(G) 15.8 16.3 15.8 18.1 14.6 16.7 16.3 18.6 17.5 18.4

mAP@0.5 (%) 0.950 0.952 0.952 0.955 0.953 0.955 0.955 0.958 0.961 0.964
mAP@0.5:0.95 (%) 0.653 0.659 0.652 0.676 0.649 0.674 0.671 0.672 0.669 0.648

FPS 119.0 110.9 113.9 113.1 107.8 106.8 109.9 96.2 91.2 88.8

In Table 9, CARAFE represents the replacement of the nearest-neighbor interpolation
up-sampling module in the original YOLOv5s network with the CARAFE module. SA
represents the embedding of the SA attention module in the head structure of the YOLOv5s
network. SPPCSPG represents the replacement of the SPPF module in the original YOLOv5s
network with the SPPCSPG module. GSConv represents the replacement of the Conv
module in the neck structure of the YOLOv5s network with the GSConv module and the
replacement of the C3 module with the improved VoV-GSCSP module. DD-head represents
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the replacement of the coupled head module in the original YOLOv5s network with the
DD-head module. The presence or absence of a checkmark (

√
) indicates whether the

proposed improvement module was incorporated into the YOLOv5s network.
Model 1 is the original YOLOv5s network, while models 2–10 are the corresponding

improved YOLOv5s networks. Analysis of the results in Table 2 shows that embedding
the CARAFE, SA attention, SPPCSPG, GSConv, and DD-head modules separately into
the original YOLOv5s network can improve the detection accuracy of the network. The
detection performance measured by mAP@0.5 is improved by 0.2%, 0.2%, 0.5%, 0.5%, and
0.3%, respectively, compared with the original YOLOv5s network. Analysis of models
7–10 reveals that the combination of multiple improved modules performs better than
individual improved modules, indicating that each introduced module contributes to the
effective improvement of the model’s detection performance.

In order to verify the improvement effect of the proposed model on the accuracy
of general object detection, ablation experiments were conducted on the PASCAL VOC
dataset, and the experimental results are shown in Table 10.

Table 10. Ablation experiment on PASCAL VOC dataset.

Model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

CARAFE
√ √ √ √ √

SA
√ √ √ √ √

SPPCSPG
√ √ √ √

GSConv
√ √ √

DD-head
√ √

Params(M) 7.06 M 7.20 M 7.06 M 10.00 M 6.39 M 7.32 M 7.20 M 10.13 M 9.46 M 9.71 M
FLOPs(G) 15.9 16.4 15.9 18.3 14.8 16.9 16.4 18.8 17.6 18.6

mAP@0.5 (%) 0.837 0.840 0.839 0.847 0.841 0.842 0.841 0.848 0.850 0.851
mAP@0.5:0.95 (%) 0.585 0.595 0.588 0.606 0.603 0.596 0.595 0.615 0.619 0.619

FPS 143.0 125.4 141.9 122.5 125.2 128.6 120.8 110.8 98.4 90.2

Similarly, analyzing the results of models 2–6 in Table 10, it can be seen that embedding
the CARAFE module, SA attention module, SPPCSPG module, GSConv module, and DD-
head module separately in the original YOLOv5s network can improve the mean average
precision accuracy of the network to levels higher than the detection indicators of the
original YOLOv5s network; mAP@0.5 increased by 0.3%, 0.2%, 1.0%, 0.4%, and 0.5%
respectively. Analyzing models 7–10, it is apparent that the results of multiple improved
module combinations are better than those of a single improved module, indicating that
the introduced improved models have effectively improved the detection performance of
the model.

7. Conclusions

This paper proposes a lightweight target detection algorithm based on YOLOv5s to
improve the detection performance of the model while meeting the real-time detection
requirements. Specifically, this article constructs a DD-head to replace the coupled head of
YOLOv5s based on a decoupled head and depthwise convolution to improve the negative
impact of classification and regression task conflicts. An SPPCSPG module based on the
SPPCSPC module and GSConv module is constructed to replace the SPPF module of
YOLOv5s, which improves the utilization of multi-scale information. An SA attention
mechanism is introduced in the head structure to enhance spatial attention and reconstruct
channel attention. A CARAFE module is introduced in the up-sampling operation to
reassemble feature points with similar semantic information in a content-aware manner
and aggregate features in a larger receptive field to fully fuse semantic information. In
the neck structure, the GSConv module and the reconstructed VoV-GSCSP module are
introduced to maintain detection accuracy while reducing the number of parameters. The
experiments show that the constructed algorithm performs better than the original network
not only for remote sensing images but also for conventional object detection images. The
model built in this research is for target detection in remote sensing datasets, and the
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equipment used is a high-performance GPU. The detection performance of the model built
on resource-constrained edge computing devices has not been tested. The next research
work will focus on how to build a real-time detection model for edge computing devices.
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