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Abstract: Due to the substantial electromagnetic interference, radar interruptions, and other factors,
the SAR system may fail to receive valid data in some azimuth areas. This phenomenon is known
as Azimuth Missing Data (AMD). If classical SAR imaging algorithms are performed directly using
AMD echo, the imaging results may be defocused or even display false targets, which seriously affects
the accuracy of the image. Thus, we proposed a Sub-echo Segmentation and Reconstruction Azimuth
Missing Data SAR Imaging Algorithm (SSR-AMDIA) to solve the problem of incomplete echo SAR
imaging in this article. Instead of using the motion compensation step of the Polar Format algorithm
(PFA) to recover the full echo from the AMD echo, the proposed SSR-AMDIA eliminates the effect of
the planar approximation in PFA and expands the maximum depth of focus (DOF). The raw AMD
echo was first subjected to range compression and Range Cell Migration Correction (RCMC), after
which the AMD-RCMC echo was divided along the range direction. Then, we constructed a series
of phase compensation functions based on the sub-segment AMD-RCMC echoes to guarantee the
perfect recovery of the full RCMC echoes corresponding to the sub-scenes. Finally, we combined them
to obtain the complete RCMC echo, and an excellent focused imaging result was then obtained via
azimuth compression. Simulation and experimental data verified the effectiveness of the proposed
algorithm. Furthermore, we derived the mathematical expressions for the two-dimensional maximum
DOFs of the proposed algorithm. In contrast to the State-Of-the-Art (SOA) AMDIA, the SSR-AMDIA
can obtain a superior imaging performance in a larger imaging scope under the conditions of most
AMD cases.

Keywords: azimuth missing data; maximum depth of focus; SAR imaging scene size; segmentation
SAR imaging

1. Introduction

Unavoidable interference between SAR systems and imaging scenes, interruptions
in SAR systems for different purposes, or new SAR mission requirements will result in
the azimuth missing data (AMD) [1,2]. If the conventional SAR imaging algorithm is used
directly in the AMD echo case, false targets or severe defocus will be produced in the final
imaging results [3].

In order to overcome the AMD-SAR imaging challenge, an auto-regressive linear
prediction approach used initially in the discontinuous aperture SAR imaging [4]. However,
it only improves image quality if the Azimuth Missing Ratio (AMR) is below 30%. The
equal-gap AMD-SAR imaging problem was solved by P. Stoica and J. Li. They proposed
the Gapped-data APES (GAPES) algorithm based on the Amplitude and Phase EStimation
(APES) algorithm [5–7]. In order to enhance AMD-SAR imaging performance in random
AMD conditions, they took advantage of the Expectation-Maximization algorithm and then
further presented the Missing-data APES (MAPES) algorithm [8]. However, its reliability
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decreases rapidly when the AMR increases, and the computational complexity is relatively
expensive. To address this problem under the high AMR conditions, a random Missing-data
Iterative Adaptive algorithm (MIAA) was proposed in [9]. The maximum AMR threshold
can achieve nearly 80%. Compared with the MAPES, the MIAA’s recovery performance
is greatly improved when the AMR is higher than 60%. However, due to the fact that
the MIAA involves numerous matrix inversions and iterations, its computing cost will be
insurmountable for large-scene AMD-SAR imaging.

The partial data SAR imaging problem has been addressed from a new perspective
since the Compressed Sensing (CS) technology was proposed [10,11]. Various CS-based
sparse SAR imaging algorithms and methods have been proposed and improved in recent
years [12–14]. A segmented reconstruction algorithm for the large-scene sparse SAR imag-
ing was proposed in [15]. The whole scene is split into a set of small sub-scenes. With the
appropriate increase in the segment number, the reconstruction time and running memory
can be greatly reduced. Additionally, ref. [16] proposed an improved method to speed up
the sparse SAR imaging and reduce the memory requirement using the Non-Uniform Fast
Fourier Transform (NUFFT).It applies interpolation coefficients instead of multiplication
of observation matrices and vectors, leading to a smaller computational complexity and
memory usage. Furthermore, since the strong scattering points are rebuilt directly, the
imaging accuracy will be severely degraded under low echo signal-to-noise ratio (SNR).

For this problem, an Azimuth Missing Data Imaging Algorithm (AMDIA) was pro-
posed in 2018 [17]. It estimates and recovers the full echo of sparse targets from the AMD
echo. The CS methods cannot reconstruct the complete SAR echo in the time domain
because it is not sparse. Hence, influenced by PFA’s motion compensation approach [18,19],
Literature [17] discovered that multiplying the dense SAR echo with a Phase Compen-
sation Function (PCF) in the range-frequency domain can yield a sparser signal in the
Doppler domain. Next, a phase-compensated complete echo can be recovered from the
phase-compensated AMD echo using the CS method. Then, by multiplying the phase-
compensated complete echo with the conjugate of the previous PCF, the complete echo
can be estimated. Lastly, using the traditional SAR imaging algorithms, the final image
can be focused via the estimated full echo. Compared with the sparse SAR imaging al-
gorithms, the AMDIA can obtain an excellent-focused image even at low SNR due to the
two-dimensional Matched Filtering process [3]. Its improved algorithms have developed
rapidly in these years. K. Liu improved the imaging capabilities of the AMDIA by extend-
ing it into the spaceborne FMCW SAR system [20,21]. J. Wu suggested a sparsity adaptive
StOMP algorithm for AMD-SAR imaging [22]. It exhibits excellent recovery performance
when the prior sparsity is unknown. In 2022, we proposed a Moving Target AMD-SAR
Imaging (MTIm-AMD) method based on the AMDIA [23]. Since the motion parameters are
considered, the PCF is modified to be more efficient, and hence the moving target can be
well-focused in the AMD case. Moreover, we proposed an Enhancement AMDIA (EnAM-
DIA) to improve the AMD-SAR imaging performance in [24]. The EnAMDIA recovers the
RCMC echo instead of the time domain echo. Therefore, it demonstrates a more accurate
recovery and a more moderate computational burden.

However, the PCFs of all the above-mentioned AMD-SAR imaging algorithms are
designed based on one reference point, which is generally regarded as the scene centroid.
Therefore, the phase compensation error for the non-centered targets will increase signif-
icantly with the expansion of the imaging scene. Once the imaging scene is larger than
the limit of the focusable region, the PCF of the State-Of-the-Art (SOA) AMDIA will result
in unsatisfactory sparsity of the phase-compensated signal. Therefore, the estimation ac-
curacy of the complete echo will decrease. It indicates that the imaging performance of
SOA-AMDIA is unsatisfactory when the imaging scene is relatively large.

Therefore, to enlarge the maximum focusable region under the AMD conditions, an
improved Sub-echo Segmentation and Reconstruction AMDIA (SSR-AMDIA) is proposed
in this paper. We consider enhancing the phase-compensated signal’s sparsity and then
enlarging the imaging scene limits in azimuth and range direction, respectively. First, we
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apply RCMC processing on the raw AMD echo and then design a new PCF for AMD-
RCMC echo. Since the range migration is removed, a sparser signal can be obtained along
the azimuth direction. Subsequently, the AMD-RCMC echo is split into a series of AMD-
RCMC sub-echoes along the range direction. Each sub-scene’s centroid is regarded as the
reference point for phase compensation. Instead of designing a PCF for the whole scene,
many PCFs are redesigned for each sub-scene. Therefore, each phase-compensated RCMC
(PC-RCMC) sub-echo is sparser, which implies that the complete RCMC sub-echoes can
be estimated more precisely. Finally, by combining the reconstructed RCMC sub-echoes, a
reliable complete RCMC echo is obtained. A superior imaging result of the edge targets
can be obtained via azimuth compression.

The main innovations of the article consist in:

1. We first rebuilt the full RCMC echo rather than the full raw echo. The SOA-AMDIA
only focuses on reconstructing the full raw echo before range compression and RCMC
processing, resulting in an inaccurate reconstruction of azimuth far-field targets. Thus,
the proposed algorithm first eliminates the negative effect of range migration on
echo recovery. It significantly reduces the azimuth far-field target’s residual phase
error, and expands the azimuth maximum Depth of Focus (DOF) of the sparse domain
signal. Additionally, the computational cost can also be reduced if the range direction’s
targets are adequately sparse.

2. We first exploited range segmentation to improve the SOA-AMDIA. Instead of us-
ing one PCF for the whole imaging scene, we redesigned a series of PCFs for each
sub-scene. It ensures the significant reduction of the range far-field target’s resid-
ual phase error, and the imaging range limits can be eliminated with a reasonable
segmentation strategy.

3. We also carried out the mathematical derivation for the two-dimensional maximum
DOFs of the proposed algorithm. The advantage of the proposed SSR-AMDIA over
SOA-AMDIA for the imaging scene scope is theoretically verified.

The rest of this article is organized as follows. In Section 2, the SAR echo models are
introduced. In Section 3, the proposed SSR-AMDIA is derived in detail. In Section 4, the
azimuth maximum DOF, range segmentation strategy and the computational complexity
of the proposed algorithm are analyzed and mathematically derived. The findings of
the simulation and measured experiment are shown and discussed in Section 5. Finally,
Section 6 serves as our conclusion.

2. SAR Signal Models

Typically, the linear frequency modulation signal is used as the transmitted signal st(t)
in SAR systems to obtain a uniform signal bandwidth [25]. Due to the linear modulation of
frequency, its phase is a quadratic function with respect to fast time t. The complex form of
st(t) can be expressed as

st(t) = βtwr(t) exp(j2π fct) exp
(

jπKrt2
)

(1)

Kr is chirp rate, and fc is the center frequency. βt is the chirp signal’s amplitude, while
wr(t) is the range windowing function.

2.1. Complete SAR Echo Model

The de-carried echo of a stationary point scatterer P(x, y, 0) is presented in

sr(t, η) = βrwr

(
t− 2RP(η)

c

)
wa(η) exp

{
−j4π fcRP(η)

c

}
× exp

{
jπKr

(
t− 2RP(η)

c

)2
}
+ n

(2)
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where η, βr, c, n, and wa(η) are the slow time dimension during the imaging interval,
back-scattered coefficient, light speed, random noise, and azimuth windowing function,
respectively. RP(η) is the instantaneous distance between the stationary target P(x, y, 0)
and the platform position (xi, yi, h), which can be demonstrated as

RP(η) =

√
(xi − x)2 + (yi − y)2 + h2 (3)

Assuming that the SAR system moves at a constant velocity va, thus the azimuth
position yi = ya + vaη, where ya denotes radar initial azimuth position.

2.2. SAR Echo Model with Azimuth Missing Data

The AMD echo types include periodic and random AMD echo. The FMCW SAR
system or the anti-jamming SAR system is the primary cause of the periodic AMD echo.
In contrast, the occlusion or inevitable interference are the primary causes of the ran-
dom AMD echo [17,21]. Figure 1 compares the complete, periodic missing, and random
missing signals.

Figure 1. The comparison between the complete, periodical missing, and random missing signal.

White squares represent missing samples, while black squares represent valid samples.
Suppose that the azimuth and range sample numbers are denoted by NA and NR,

respectively, and that the total echo size is NA × NR. Then, assume that NM (NM < NA)
is the total number of missing azimuth samples, and Gm is their corresponding location
set. In order to determine the AMD echo model, we define an azimuth missing matrix Λm,
that is

Λm = diag
[
λN1 , · · · , λNi , · · · , λNA

]
(4)

where {
λNi = 0, when Ni ∈ Gm
λNi = 1, else

(5)

Hence, the time domain AMD echo sm is obtained by

sm = Λmsr (6)

If all zero row vectors of sm are removed, a small size echo sy is acquired as

sy = Ĩysm (7)

where Ĩy represents the deformed identity matrix, and it can be denoted as

Ĩy ⇐⇒ I(Ni, :)|Ni∈Gm
= ∅ (8)



Remote Sens. 2023, 15, 2428 5 of 20

where I and ∅ represent the identity matrix and empty set, respectively.

3. Sub-Echo Segmentation and Reconstruction Azimuth Missing Data SAR
Imaging Algorithm

The detailed steps of the proposed SSR-AMDIA are demonstrated in Figure 2. First
of all, the raw AMD echo is range compressed, and the range cells migration is corrected.
Then, the entire AMD-RCMC echo is split into a series of AMD-RCMC sub-echoes along the
range direction. Next, as the critical step, a set of PCFs are redesigned based on the RCMC
sub-echoes. By multiplying each RCMC sub-echo with its corresponding PCF in the range-
frequency domain, each complete PC-RCMC sub-echo can obtain a sparse representation in
the Doppler domain. Subsequently, the accurate estimations of the complete PC-RCMC sub-
echoes are recovered from the AMD-PC-RCMC sub-echoes using the CS method. In this
article, we employ the Generalized Orthogonal Matching Pursuit (GOMP) algorithm [26] to
reconstruct the full PC-RCMC sub-echoes in order to remove any potential error impacts of
various CS techniques, as in the SOA-AMDIA [3,17,20,27]. Then, the accuracy estimations
of the complete RCMC sub-echoes can be obtained by multiplying the complete PC-RCMC
sub-echoes with the conjugation of the previously mentioned PCFs. Finally, by combining
each reconstructed RCMC sub-echo, the reconstructed RCMC echo of the entire imaging
scene can be acquired, and then after azimuth compression, a satisfied imaging result can
be obtained.

Figure 2. Flowchart of the proposed SSR-AMDIA.

Next, we describe the specific derivation steps of the proposed SSR-AMDIA in detail.

3.1. Range Compression and Range Cell Migration Correction

First, sm(t, η) should accomplish the range Fourier transform to obtain the range-
frequency domain signal Sm( fr, η), which can be expressed as

Sm( fr, η) = wr( fr)wa(η) exp
(
−jπ f 2

r
Kr

)
exp

{
−j4π( fc + fr)RP(η)

c

}
(9)

where fr denotes the range frequency.
Then, the range compressed signal smrc(t, η) can be obtained after range compression,

and the range Doppler domain signal Smrc(t, fη) can be presented as

Smrc
(
t, fη

)
= pr

(
t−

2Rrd
(

fη

)
c

)
wa
(

fη

)
exp

(
−j4π fcRrd

(
fη

)
c

)
(10)
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where pr stands for the sinc function and fη is the azimuth frequency. The Doppler
instantaneous distance Rrd

(
fη

)
can be written as

Rrd
(

fη

)
≈ R0 +

v2
a

2R0

(
fη

Ka

)2
(11)

where R0 is shortest distance between the platform and the target. Ka is Doppler chirp rate.
The second term of (11) is the range cells migration term.

After RCMC and the azimuth Inverse Fourier Transform (AIFT), the AMD-RCMC
signal smrcmc(t, η) is demonstrated as

smrcmc(t, η) = pr

(
t− 2R0

c

)
wa(η) exp

(
−j4π fcRP(η)

c

)
(12)

3.2. Reconstructing the Sub-Echoes

To reduce the residual phase error of the range far-field targets, the AMD-RCMC
echo is split into K sub-patches along the range direction. Since target range locations are
determined after RCMC, the range segmentation will not distort the adjacent sub-scenes.
To redesign the more effective PCFs, k-th AMD-RCMC sub-echo skth

mrcmc(t, η) transforms to
range-frequency domain, which is described as

Skth
mrcmc( fr, η) = wr( fr)wa(η) exp

(
−j4π frR0

c

)
exp

(
−j4π fcRP(η)

c

)
(13)

Thus, k-th redesigned PCF θ
kth
ref ( fr, η) is defined as

θ
kth
ref ( fr, η) = exp

(
j4π frRkth

ref0
c

)
exp

(
j4π fcRkth

ref(η)

c

)
(14)

where Rkth
ref0 is the shortest slant range of k-th reference point Pkth

ref (xkth
ref , ykth

ref , 0). The Rkth
ref

represents the slant range between Pkth
ref (xkth

ref , ykth
ref , 0) and the moving platform (xi, yi, h). It

can be expressed as

Rkth
ref(η) =

√
(xi − xkth

ref)
2 +

(
yi − ykth

ref

)2
+ h2 (15)

Next, the azimuth missing redesigned PCF θ
kth
mref is acquired based on (6), that is

θ
kth
mref = Λmθ

kth
ref (16)

The PCF designation is the key step of the proposed SSR-AMDIA. A sparse PC-RCMC
sub-echo Skth

pc (t, fη) that is likewise the waiting-recovering signal may be generated in the

Doppler domain by multiplying Skth
rcmc( fr, η) by θ

kth
ref ( fr, η), which is represented by

Skth
pc (t, fη) = FFTa

[
IFFTr

[
Skth

rcmc( fr, η)θ
kth
ref ( fr, η)

]]
(17)

where FFTa[·] and IFFTr[·] are azimuth Fast Fourier Transform and range Inverse Fast
Fourier Transform, respectively.

Since the main purpose of the proposed SSR-AMDIA is to reconstruct Spc(t, fη), its
sparsity is vital for the signal reconstruction.

To evaluate the focusing performance of the redesigned PCFs, Spc(t, fη) results ob-
tained by different methods are shown in Figure 3. There are nine targets in the imaging
scene, and the SOA-AMDIA’s Spc(t, fη) is shown in Figure 3a. Obviously, only the center
point is well-focused. The significant defocus can be easily found on the edge targets.
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Therefore, the effectiveness of SOA-AMDIA’s PCF for larger scenarios is limited. Moreover,
Figure 3b is imaged using the proposed SSR-AMDIA before the sub-echo segmentation.
Compared with the Figure 3a, the azimuth far-field targets at the center range are well-
focused. However, it still cannot remove the residual phase error caused by the range
differences. The range edge targets are still defocused. When a series of segmented
θ

kth
ref ( fr, η) are used, the most sparse Spc(t, fη) can be obtained by observing Figure 3c. The

two-dimensional residual phase errors of the borderline targets are significantly reduced.
The focusing performance of the redesigned PCFs is validated.

Figure 3. Spc(t, fη) results obtained by (a) the SOA-AMDIA; (b) the proposed SSR-AMDIA without
range segmentation; (c) the proposed SSR-AMDIA.

Next, the detailed reconstruction steps of the proposed SSR-AMDIA are introduced as
follows. Firstly, the small size phase-compensated signal skth

ypc can be demonstrated as the
same as (7)

skth
ypc = Ĩyskth

mpc (18)

skth
ypc(t, η) must be segmented into several one-dimensional range signals in order to

accommodate the one-dimensional signal recovery processing. The q-th (1 ≤ q ≤ NR)
range signal can be expressed as skth

ypc(tq, η), where NR denotes the number of entire range

gates. In the proposed SSR-AMDIA, the q-th estimated range signal Skth
pc (tq, fη) is regarded

as the signal x in CS method, while Skth
ypc(tq, η) is considered as the compressed signal vector

y. Accordingly, since Skth
pc (tq, fη) is direct sparse, ΦyAIFT is understood as being the sensing

matrix A.First, the complete AIFT matrix ΦAIFT is illustrated as

ΦAIFT =
1

NA


exp

(
j 2πη1η1

ηNA

)
· · · exp

(
j

2πη1ηNA
ηNA

)
...

. . .
...

exp
(

j
2πηNA η1

ηNA

)
· · · exp

(
j

2πηNA ηNA
ηNA

)
 (19)
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Similar to the Equations (6) and (16), the partial missing AIFT matrix ΦmAIFT is
obtained by

ΦmAIFT = ΛmΦAIFT (20)

Similar to (7), the small size AIFT matrix ΦyAIFT is gained by

ΦyAIFT = ĨyΦmAIFT (21)

Its size is equal to (NA − NM)× NA. Consequently, the sub-echoes reconstructing process
can be formulated as

min
S

kth
pc (tq , fη)

||Skth
pc (tq, fη)||1,

s.t. ||ΦyAIFTSkth
pc (tq, fη)− skth

ypc(tq, η)||2 ≤ ε

(22)

where ε denotes the threshold value.
To eliminate the possible error effects of different recovery methods, the estimated

Ŝkth
pc (tq, fη) is reconstructed using the GOMP algorithm in this article. Table 1 or [26] contains

the specific steps for the GOMP algorithm.

Table 1. The specific steps for the GOMP algorithm based on skth
ypc(tq, η).

Step 1 Input the indices number of each selection P, the maximum number of itera-
tions Imax, the threshold parameter ε and ΦyAIFT;

Step 2 Initialize the iteration parameter It=1, let the residue signal r0 = skth
ypc(tq, η),

and set a new sensing matrix B0 = ∅;
Step 3 Let It = It + 1;
Step 4 Calculate the largest P values in

∣∣〈r It−1, ΦyAIFT
〉∣∣ from the largest to smallest

and then the corresponding φmaxp
are selected;

Step 5 Update matrix BIt = BIt−1 ∪
[
φmax1

, · · · , φmaxP

]
and calculate the estimated

value of complete signal vector by α̂ =
((

BIt)H
BIt
)−1(

BIt)H
skth

ypc(tq, η),
where H represents the conjugate transpose operation;

Step 6 Update residue signal r It = skth
ypc(tq, η)− BItα̂;

Step 7 If It = Imax or ||r It||2 ≤ ε, let Ŝ
kth
pc (tq, fa) = α̂. Else go to Step 3.

Once the reconstructed one-dimensional signals Ŝkth
pc (tq, fη) are combined, the k-th

segment sub-echo Ŝkth
pc (t, fη) can be acquired. It follows that the conjugation of θ

kth
ref ( fr, η)

must be compensated in order to obtain the k-th segment ŝkth
rcmc(t, η), which is represented by

Ŝkth
rcmc( fr, η) = Ŝkth

pc ( fr, η)conj
(

θ
kth
ref ( fr, η)

)
(23)

3.3. Combining the Sub-Echoes and Entire Scene Imaging

To obtain the reconstructed complete RCMC echo ŝrcmc of entire imaging scene, a
series of ŝkth

rcmc are combined in sequence, that is

ŝrcmc =
⌊

ŝ1st
rcmc, · · · , ŝkth

rcmc, · · · , ŝKth
rcmc

⌋
(24)

where b·c denotes the combination operation.
The normalized recovery error results between srcmc(t, η) and ŝrcmc(t, η) are illustrated

in Figure 4. Figure 4a is obtained using the SOA-AMDIA and Figure 4b is obtained using the
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proposed SSR-AMDIA. In order to quantitatively evaluate the reconstruction performance,
the average normalized recovery error Ea is defined as

Ea = mean

(
t∈QR

∑
NA−1

∑
η=0

(∣∣∣∣ srcmc(t, η)

max(srcmc(t, η))

∣∣∣∣− ∣∣∣∣ ŝrcmc(t, η)

max(ŝrcmc(t, η))

∣∣∣∣)
)

(25)

where QR represents the range cells set corresponding to the presence of targets after
RCMC, and mean(·) denotes the average function. According to Figure 4, Ea of Figure 4a is
equal to 0.087, which is almost half to that of Figure 4b, which is equal to 0.179. Therefore,
the proposed SSR-AMDIA obviously has a better reconstruction performance.

Finally, since a satisfied complete RCMC echo of the entire scene is estimated, an
excellent-focused image can be obtained via azimuth compression.

Figure 4. The normalized recovery error between srcmc(t, η) and ŝrcmc(t, η) by using (a) the SOA-
AMDIA; (b) the proposed SSR-AMDIA.

4. Parameter Analysis

As mentioned before, we consider extending the maximum DOFs of SOA-AMDIA in
azimuth and range directions, respectively. Thus, the range segmentation is applied in the
proposed SSR-AMDIA. However, the identical segmentation idea cannot be exploited to
enlarge the azimuth imaging scope. Azimuth segmentation may result in too few azimuth
samples available in some sub-apertures, especially in the case of random missing. Sub-
apertures with a high AMR will be detrimental to complete sub-aperture reconstruction [3].
Hence, although the proposed SSR-AMDIA extends the azimuth maximum DOF, it has a
limitation. Moreover, there is no limit to the maximum range imaging scope of the proposed
SSR-AMDIA under a proper segmentation. We next analyze the azimuth maximum DOF
and range segmentation strategy of the proposed algorithm. The computational complexity
advantage is also investigated.

4.1. Azimuth Maximum Depth of Focus

In 2005, B. Rigling analyzed the imaging scene size limits for the PFA in the monostatic
SAR system situation [28]. When the absolution value of residual Quadratic Phase Error
after the PFA (PFA-QPE) |ΦQPE| < π/4 , the PFA’s maximum well-focused radius rmax can
be expressed as

rmax < ρa

√
2Rref0

λ
(26)

where ρa and λ denote the azimuth resolution and wavelength, respectively. The prerequi-
site for applying (26) is that there are no unknown motion measurement errors during the
flight. Otherwise, the phase errors will lead to an irreparable defocus to the image long
before the far-field approximation (26) breaks down.
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In 2016, L. Gorham and B. Riging further derived the imaging scene size limits for the
PFA in the linear flight case [18]. The residual PFA-QPE ΦQPE can be written as

ΦQPE = − L2
aπ

2λ

(
1

RP0
− 2

Rref0
− y2

R3
P0

+
RP0

R2
ref0

)
(27)

where La is the length of synthetic aperture and RP0 can be calculated as

RP0 = RP|yi=0 =

√
(xi − x)2 + (0− y)2 + h2 (28)

The value of ΦQPE is related to the position of targets. Assume fc = 1 GHz,
Rref0 = 3300 m, ΦQPE result in different positions is shown in Figure 5a. The maximum
focus area is limited to a circle of which radius equals 148.3 m after the PFA imaging.
However, since the SOA-AMDIA only utilizes the phase compensation process of PFA, the
maximum DOF of Spc(t, fη) decreases rapidly [29,30].

Figure 5. (a) Residual Quadratic Phase Error ΦQPE after PFA. The inner white contour line represents
an error of π/4, while the outer white contour line represents an error of π/2. The black contour
circle denotes the maximum well-focused radius rmax deduced in [28], where the rmax = 148.3 m.
(b) Simulated image of Spc(t, fη) obtained by the SOA-AMDIA. The meaning of the red contour circle
is the same as the black contour circle in (a).

To illustrate this phenomenon more clearly, we form Spc(t, fη) using the SOA-AMDIA
with a regular grid in actual coordinates in Figure 5b. Due to the impact of the range cells
migration and the residual phase error, the azimuth edge targets of Figure 5b are distorted
and defocused severely while only the centroid is excellent-focused. Although it is clearly
sparser than the dense time domain signal, the maximum DOF of Spc(t, fη) is only 25 m,
much less than 148.3 m. The aforementioned conclusion has been verified in simulation.
The low-quality Spc(t, fη) will impair full echo reconstruction. The applicable imaging
scope of the SOA-AMDIA will be significantly reduced.

In response to this problem, the range cells migration effect of the raw echo is removed
by the proposed SSR-AMDIA. Then, a new PCF is redesigned to enhance the sparsity of
Spc(t, fη) and to extend the maximum azimuth DOF.

First, the residual phase error ΦE between the scattering point and the reference point
can be represented as

ΦE = −4π∆R(η)
λ

(29)

where ∆R = RP − Rref is the differential slant range, and the expressions of RP and Rref
can be found in (3) and (15), respectively. The second-order Taylor series approximation of
∆R is performed as
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∆R(η) ≈ ∆R|η=0 +
∂∆R
∂η

∣∣∣∣
η=0

η +
∂2∆R
∂2η

∣∣∣∣
η=0

η2

2

≈ (RP0 − Rref0) +

(
∂RP
∂η

∣∣∣∣
η=0
− ∂Rref

∂η

∣∣∣∣
η=0

)
η +

(
∂2RP

∂η2

∣∣∣∣
η=0
− ∂2Rref

∂η2

∣∣∣∣
η=0

)
η2

2

(30)

Let the monostatic SAR system moves at a constant speed in the azimuth direction
(+y direction), the first and second derivatives of RP and Rref can be calculated as

∂RP
∂η

= − (y− yi)

RP

∂yi
∂η

∂Rref
∂η

=
yi

Rref

∂yi
∂η

∂2RP

∂η2 = − 1
RP

(
(y− yi)

∂2yi
∂η2 −

(
∂yi
∂η

)2
+

(
∂RP
∂η

)2
)

∂2Rref

∂η2 =
1

Rref

(
yi

∂2yi
∂η2 +

(
∂yi
∂η

)2
−
(

∂Rref
∂η

)2
)

(31)

where ∂yi/∂η = La/2 and ∂2yi/∂η2 = 0.
The residual QPE after RCMC and phase compensation (PC-RCMC-QPE) Φ̃QPE is

thus computed as

Φ̃QPE = −2π

λ

(
∂2RP

∂η2

∣∣∣∣
η=0
− ∂2Rref

∂η2

∣∣∣∣
η=0

)

=
L2

aπ
(
y2Rref0 + R3

P0 − R2
P0Rref0

)
2λR3

P0Rref0

. (32)

Suppose fc = 1 GHz, Rref0 = 3300 m, PC-RCMC-QPE Φ̃QPE result in different posi-
tions is shown in Figure 6a and we form the calculated Spc(t, fη) by (17) when K = 1 with
a regular grid in actual coordinates in Figure 6b.

Figure 6. (a) Residual Quadratic Phase Error Φ̃QPE after the RCMC and phase compensation. The
inner white contour line represents an error of π/4, while the outer white contour line represents an
error of π/2. (b) Simulated image of Spc(t, fη) obtained by (17) when K = 1. The meaning of the red
contour lines is the same as the white contour lines in sub-figure (a).
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Figure 6b is significantly sparser than Figure 5b. The azimuth maximum DOF is
substantially enlarged. Let

∣∣∣Φ̃QPE

∣∣∣ = π/2 and x = 0, the azimuth coordinate yQPE can be
calculated as

yQPE = ±

√√√√( L2
aR3

ref0
L2

a + λRref0

)2/3

− Rref0 (33)

Substitute the above-mentioned simulation parameters into (33), then two farthest points,
Py1(0,−194.05, 0) and Py2(0, 194.05, 0), that can achieve an excellent focus are obtained.
Thus, the azimuth maximum DOF ∆yQPE = 194.05− (−194.05) = 388.10 m, which is much
larger than that in Figure 5b.

A strong sparsity of Spc(t, fη) will facilitate the signal reconstruction. Hence, the
azimuth maximum DOF of Spc(t, fη) given by (33) is conservative compared to that of
the final image. We found that Py(0,±400, 0) in the final image can still be accurately
focused using the proposed algorithm with the above-mentioned simulation parameters.
Conversely, the azimuth maximum DOF using SOA-AMDIA only reaches about ±70 m
under identical simulation conditions.

4.2. Range Segmentation Strategy

Figure 6b exhibits the limited range maximum DOF of Spc(t, fη) as well. Motivated
by [15,19], the range segmentation is applied to expand the imaging scene scope in range
direction. By observing Equation (32), the contour shape of Φ̃QPE = 0 is a circle in the plane
of y = 0, of which radius equals Rref0. Since the imaging scene is limited in the plane of
z = 0, Φ̃QPE = 0 can only be obtained at two points (0, 0, 0) and (2Rref0, 0, 0). Similarly, the
contour shapes of Φ̃QPE = −π/2 and Φ̃QPE = π/2 are two circles in the plane of y = 0

with different radius. It indicates that only four targets can ensure
∣∣∣Φ̃QPE

∣∣∣ = π/2 in the
y = z = 0 case.

Let
∣∣∣Φ̃QPE

∣∣∣ = π/2 and y = 0, the range coordinate xQPE can be calculated as


xQPE = xi ±

√(
L2

aRref0

L2
a − λRref0

)2

− h2, Φ̃QPE = −π

2

xQPE = xi ±

√(
L2

aRref0

L2
a + λRref0

)2

− h2, Φ̃QPE =
π

2

(34)

Hence, Px1(−17.3, 0, 0), Px2(17.1, 0, 0), Px3(6582.9, 0, 0) and Px4(6617.3, 0, 0) are obtained by
substituting the above-applied simulation parameters into (34). Obviously, only Px1(−17.3, 0, 0)
and Px2(17.1, 0, 0) are located in the imaging scene. The range maximum DOF is
∆xQPE = 17.1− (−17.3) = 34.4 m.

Obviously, when there is no target existing in the q-th range profile, the value of
Smpc(tq, fη) is equal to zero. The zero row vectors do not need to be reconstructed. We
assume that the number of the range profiles that exist targets equals NE. Therefore, the
NE range profiles of AMD-RCMC echo should be split into K sub-patches. The size of
each sub-echo equals (NA − NM)× NE/K, where NE/K ≤ ∆xQPE/∆x and ∆x denotes the
interval of adjacent range cells.

Figure 7 demonstrates the simulated images of Skth
pc (t, fη) based on the aforementioned

range segmentation strategy. By adequately segmenting the imaging scene within the
azimuth maximum DOF, all targets corresponding to Skth

pc (t, fη) can be well-focused. The
proposed SSR-AMDIA can guarantee the estimation accuracy of the complete echo in a
larger imaging scene.
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Figure 7. Simulated images of Skth
pc (t, fη) obtained by (17) when K = 12.

Moreover, since the proposed algorithm performs RCMC on the raw data before the
range segmentation, the range position information of the sparse target is determined.
Thus, it will not deteriorate the reconstruction error.

4.3. Computational Complexity

Assume that the number of entire range gates equals NR and NE sparse targets spread
out along the range direction (NE ≤ NR). Since the range position information of the
target is hidden in all range profiles before range compression and RCMC, no matter how
many sparse targets exist, NR times reconstructions are required using the SOA-AMDIA.
Contrarily, the proposed SSR-AMDIA only needs NE times reconstructions to complete
echo reconstruction. Suppose the computational complexity of one-dimensional GOMP
algorithm equals O, then the computational complexity of the SOA-AMDIA is NRO, while
that of the proposed SSR-AMDIA is equal to NEO. It implies that the computational com-
plexity of the proposed SSR-AMDIA is NE/NR times to that of SOA-AMDIA. Obviously,
when fewer range profiles exist sparse targets, the computational complexity advantage of
the proposed SSR-AMDIA is prominent.

5. Simulation and Real-Measured Experiment Validation
5.1. Simulation Verification of the Proposed SSR-AMDIA

An AMD-SAR imaging simulation is performed to evaluate the validation of the
proposed SSR-AMDIA. Simulation parameters are shown in Table 2.

After allowing for 64 azimuth missing samples, we estimate that there are 64 available
samples, making the AMR equals 50%. 600 range cells are segmented and reconstructed.
Let the segment number K = 12. Thus the range cell number of each sub-patch equals 50.

Figure 8a depicts a grid of point targets spaced at 20 m intervals extending from
−200 m to +200 m in both range and azimuth directions. The scenario geometry is chosen
to accentuate the defocus effects. The imaging result obtained using the SOA-AMDIA
is demonstrated in Figure 8b. In Figure 8b, only the targets near the center point can be
excellent-focused, while the peripheral targets are defocused. Contrarily, all targets can be
clearly imaged by using the proposed SSR-AMDIA in the AMD echo situation, as shown in
Figure 8c.
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To exhibit the imaging performance of the proposed SSR-AMDIA in more detail, two
far-field targets PA(200, 200, 0) and PB(−200,−200, 0) are selected and marked with yellow
squares in Figure 8b,c. These squares are zoomed for clearer exhibit in Figure 8d–g. In
comparison to the Figure 8d,f, the false targets are eliminated using the proposed SSR-
AMDIA, as shown in Figure 8e,g. While the azimuth resolution is maintained around
1 m, the azimuth Peak Side-lobe Ratio (PSLR) of P′A and P′B can reach −10 dB, which are
much superior to that of PA and PB. It can be observed that the PSLR results of P′A and
P′B are not as good as the ideal PSLR result. This is because the proposed SSR-AMDIA is
an aperture estimation algorithm. Therefore, there are inevitably estimation errors in the
estimated aperture signal, resulting in imperfect focus in the final imaging result. However,
compared to SOA-AMDIA, its focusing performance has been significantly improved.
Thus, the effectiveness of the proposed SSR-AMDIA is verified. The limits of the imaging
scene size have been significantly expanded. The imaging quality of far-field targets has
been improved. Moreover, the running times of the SOA-AMDIA and proposed SSR-
AMDIA are calculated by the average of 50 times Monte Carlo simulations. The simulations
are manipulated with the laptop that was configured with the Intel Core i5-1135G7 CPU,
eight cores, and 16-GB RAM. The running time of the SOA-AMDIA equals 459.52 s while
that of the proposed SSR-AMDIA equals 238.33 s, almost half of the former result. Therefore,
the computational complexity advantage of the proposed SSR-AMDIA has been verified.

Table 2. Key parameters for simulation.

Parameters Value

Central frequency/ fc 1 GHz
Shortest central slant range / Rref0 3300 m
Signal frequency bandwidth / B 100 MHz
Range sampling rate / fs 200 MHz
Pulse repetition frequency / PRF 197 Hz
Range samples / NR 1002
Azimuth samples / NA 2048
Azimuth missing ratio / AMR 50%

Figure 8. (a) Synthetic point targets grid. (b) Simulated image obtained by the SOA-AMDIA. (c) Sim-
ulated image obtained by the proposed SSR-AMDIA. (d) Zoomed PA. (e) Zoomed P′A. (f) Zoomed
PB. (g) Zoomed P′B.
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5.2. Measured Data Verification of the Proposed SSR-AMDIA

In order to further explore the theoretical analyses offered in this study, a real measured
SAR experiment is designed and implemented based on a 77GHz millimeter-wave radar.
As shown in Figure 9a, the radar is placed on an electric track 1.40 m above the ground
and moved in the azimuth direction at a speed of 2.13 cm/s, forming a linear aperture
with a length of 1.57 m. When the millimeter-wave radar stops, the SAR system collects a
two-dimensional SAR echo with a size of 1024× 1960.

First, to determine the azimuth and range maximum DOF, Φ̃QPE is analyzed based
on the measured SAR parameters. Substitute the related experiment parameters into
(33) and (34), the two-dimensional maximum DOF can achieve 2.04 m and 0.32 m, respec-
tively. We place five triangle reflectors in the scene based on the theoretical analysis. Target1
(11.10, −1.10), Target2 (11.10, 1.12), Target4 (9.24, −1.10), and Target5 (9.28, 1.02) are placed
on the a square’s four vertices. Additionally, Target3 (10.12, 0.00) is placed in the center, as
shown in Figure 9b. Figure 9c displays the image result obtained using the Range Doppler
algorithm with the real measured complete echo.

The AMD echo in the first experiment is produced by a periodic gap that occurs every
40 pulses. Hence, the AMR is equal to 50%. Figure 10a,b illustrate the final images focused
by using SOA-AMDIA and the proposed SSR-AMDIA, respectively. Obviously, the SOA-
AMDIA cannot effectively reconstruct a satisfied image. On the other hand, all five point
targets are accurately focused through the proposed SSR-AMDIA, as shown in Figure 10b.
It implies that SSR-AMDIA can significantly improve the imaging performance in a larger
imaging scope. Therefore, the effectiveness of the proposed algorithm is successfully
verified in the real SAR data. Image Entropy (IE) is also presented to assess the imaging
performance of the above-mentioned two imaging algorithms. The lower the IE, the
superior the focus of the imaging algorithm. The IE values corresponding to Figure 10a,b
are 1.533 and 1.352, respectively. Compared with Figure 9c, the imaging result obtained
using the proposed SSR-AMDIA is almost identical. Additionally, the IE result of Figure 10b
reaches the equivalent level of Figure 9c. Thus, the proposed algorithm obviously obtains a
superior focusing performance.

Figure 9. (a) The 77 GHz millimeter-wave SAR system for the real measured experiment. The electric
track length equals 1.57 m and the radar height equals 1.40 m. (b) The large imaging scene consists
of five triangle reflectors. They are Target1 (11.10, −1.10), Target2 (11.10, 1.12), Target3 (10.12, 0.00),
Target4 (9.24, −1.10), and Target5 (9.28, 1.02). (c) The image result obtained by using the Range
Doppler algorithm with the real measured complete echo.
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Additionally, to comprehensively investigate the applicability of the proposed algo-
rithm, a random AMD echo is set in the second experiment. Suppose that the SAR system
is randomly subjected to 10 strong interferences during the data acquisition, and each
interference causes 5% aperture data loss. In this case, AMR still equals 50% and the data
size of random AMD echo is still 1024× 980. Figure 11 demonstrates the imaging results
comparison, which leads to the identical conclusion to that of Figure 10. The proposed algo-
rithm can still accurately focus all targets while all targets obtained using the SOA-AMDIA
are defocused. Compared with the IE = 1.525 obtained in Figure 11a, the IE can achieve
1.379 using the proposed SSR-AMDIA. Therefore, its effectiveness is fully verified on the
measured SAR data once more.

Moreover, the running times of the SOA-AMDIA and proposed SSR-AMDIA are
calculated by the average of 50 times Monte Carlo simulations. Table 3 shows the running
time results. It can be found that the running time of the proposed SSR-AMDIA is much
smaller than that of the SOA-AMDIA under both 50% periodic missing and 50% random
missing conditions. Specifically, the proposed SSR-AMDIA needs 7.92 s to reconstruct the
complete echo under periodic conditions, which is only about 1/7 of the existing method.
Furthermore, in the random case, the running time of the proposed algorithm can be about
4 times faster than the SOA-AMDIA. A superior imaging result may be acquired more
efficiently with the proposed SSR-AMDIA.

Figure 10. (a) Real measure data image targets obtained by the SOA-AMDIA with 50% periodic AMD
echo. (Note that since the scene center point in this experiment is located at half of the maximum
slant range, which is the (15, 0), all targets cannot be well-focused using the SOA-AMDIA.) (b) Real
measure data image obtained by the proposed SSR-AMDIA with 50% periodic AMD echo.

Figure 11. (a) Real measure data image obtained by the SOA-AMDIA with 50% random AMD echo.
(Note that since the scene center point in this experiment is located at half of the maximum slant range,
which is the (15, 0), all targets cannot be well-focused using the SOA-AMDIA.) (b) Real measure data
image obtained by the proposed SSR-AMDIA with 50% random AMD echo.
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Table 3. Running times of two AMD-SAR imaging algorithms under the real measured SAR
data condition.

SOA-AMDIA SSR-AMDIA

50% Periodic Missing 53.25 7.92
50% Random Missing 29.39 7.04

5.3. Imaging Performance Effects on Different Azimuth Missing Ratios

Moreover, in order to evaluate the imaging performance effects of the proposed SSR-
AMDIA on different AMRs, a series of simulations based on real measured SAR data
are designed and implemented. We assume that the radar system will be subjected to
11–17 strong interferences during the motion, and each substantial interference will result
in 5% azimuth data loss. Therefore, the AMR will gradually increase from 55% to 85%. The
imaging results obtained by the proposed SSR-AMDIA are shown in Figure 12.

Figure 12. Image result obtained by the proposed SSR-AMDIA with the real measured SAR data when
(a) AMR = 55%; (b) AMR = 60%; (c) AMR = 65%; (d) AMR = 70%; (e) AMR = 75%; (f) AMR = 80%;
(g) AMR = 85%.

Obviously, when AMR ≤ 70%, the proposed SSR-AMDIA can obtain satisfactory
imaging results. Targets in the imaging scene are well-focused. When AMR > 70%, the
imaging quality of SSR-AMDIA gradually decreases, and the imaging results have obvious
side-lobes along the azimuth direction. This situation will further deteriorate as AMR rises.
In order to measure the imaging quality of the proposed method in different AMR cases,
we also introduce IE to quantitatively analyze the imaging results, as Figure 13a shows.
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Figure 13. (a) Image Entropy results obtained by the SOA-AMDIA and the proposed SSR-AMDIA
in different AMR cases. (b) Running times of the SOA-AMDIA and the proposed SSR-AMDIA in
different AMR cases.

In all AMR cases, the image focusing performance of the proposed SSR-AMDIA is
superior to that of the SOA-AMDIA. It can be found that the IE has a significant increase,
reaching 1.424, when AMR = 75%. It is identical to the conclusion in Figure 12, indi-
cating that when AMR > 70%, the imaging performance of the proposed SSR-AMDIA
decreases obviously.

Additionally, we calculated and analyzed the running time of the two algorithms
under different AMR conditions through 50 Monte Carlo experiments. The results are
shown in Figure 13b. Same as the previous simulation and experimental results, the running
time of SSR-AMDIA is much smaller than SOA-AMDIA. Concretely, the SSR-AMDIA takes
only a few seconds to reconstruct the complete signal, which is an order of magnitude
less than the SOA-AMDIA. So far, the imaging performance effects on different AMRs
have been comprehensively analyzed. The proposed AMD-SAR imaging algorithm has
obvious advantages.

6. Conclusions

In this paper, we propose SSR-AMDIA to solve the AMD-SAR imaging problem. The
effectiveness of the proposed algorithm has been verified in both simulations and the
measured SAR experiments. Additionally, we derive the two-dimensional maximum DOFs
of the proposed algorithm and perform a rigorous theoretical analysis of the SSR-AMDIA’s
imaging scope. Compared with SOA-AMDIA, the proposed method can eliminate the
limitation of the range maximum focusable scope, while the azimuth maximum focusable
scope can be expanded by about 6 times. Our work found that the SOA-AMDIA has
unacceptable focusable imaging size in the case of small shortest instantaneous distance or
synthetic aperture length. The algorithm proposed in this paper can cope with this problem
well and improve the applicability of AMD-SAR imaging. Furthermore, the imaging
performance effects on different AMRs have been investigated. When AMR ≤ 70%,
the proposed SSR-AMDIA can obtain satisfactory imaging results. It indicates that the
proposed algorithm can handle most AMR cases. Furthermore, with the multi-dimensional
development of radar signals, our next logical step is to deal with the AMD-SAR imaging
problems under various robust waveforms [31,32].
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