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Abstract: Forests are critical to mitigating global climate change and regulating climate through their
role in the global carbon and water cycles. Accurate monitoring of forest cover is, therefore, essential.
Image segmentation networks based on convolutional neural networks have shown significant
advantages in remote sensing image analysis with the development of deep learning. However, deep
learning networks typically require a large amount of manual ground truth labels for training, and
existing widely used image segmentation networks struggle to extract details from large-scale high
resolution satellite imagery. Improving the accuracy of forest image segmentation remains a challenge.
To reduce the cost of manual labelling, this paper proposed a data augmentation method that expands
the training data by modifying the spatial distribution of forest remote sensing images. In addition, to
improve the ability of the network to extract multi-scale detailed features and the feature information
from the NIR band of satellite images, we proposed a high-resolution forest remote sensing image
segmentation network by fusing multi-scale features based on double input. The experimental results
using the Sanjiangyuan plateau forest dataset show that our method achieves an IoU of 90.19%, which
outperforms prevalent image segmentation networks. These results demonstrate that the proposed
approaches can extract forests from remote sensing images more effectively and accurately.

Keywords: deep learning; remote sensing; image segmentation; data augmentation; multi-scale
features extraction

1. Introduction

As a significant component of terrestrial ecosystems, forest ecosystems are the largest,
most widespread, and most complex in composition and richest in resources on land.
The climate is influenced and regulated by the interactions between forest ecosystems
and the atmosphere through the exchange of energy, water, carbon dioxide, and other
compounds. Forest plays an essential role in the global carbon cycle, the global water
cycle, the mitigation of global climate change, climate regulation, soil conservation, and
environmental improvement [1–3]. In addition to providing a wide range of ecological
services, forest ecosystems also provide various socio-economic benefits, including the
provision of forest products and nature-based recreation [4]. Forest monitoring provides
a better understanding of the impacts of climate change at local, regional, and global
levels [5]. Therefore, in the current climate and biodiversity crisis, it is critical to monitor
forests closely [6].

Historically, forest monitoring has been conducted through field surveys. These
surveys are costly, unable to be completed in a short period of time, and impossible in some
areas due to spatial constraints [6,7]. With the development of satellite sensors, remote
sensing has provided unprecedented capabilities for large-scale forest monitoring [8].

Among the methods based on spectral vegetation indices, the normalized difference
vegetation index (NDVI) has been widely applied [9]. Shimu et al. [10] proposed a change
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detection technique using NDVI to quantify temporary changes in Landsat RS images of
mangroves in the Sundarbans from 2011 to 2019. This approach resulted in the creation
of a Floras index, which represents the amount of highly vegetated area and indicates
whether vegetation growth is possible. Pesaresi et al. [11] presented a methodology to
detect and characterize forest plant communities using remotely sensed NDVI time-series
data. This methodology supports the recognition and characterization of forest plant
communities identified in the field by the phytosociological approach by using NDVI time-
series data to encode phenological behaviors. Spruce et al. [12] demonstrated the potential
of mapping percent tree mortality in forests exposed to regional bark beetle outbreaks and
severe drought using MODIS NDVI data. Pesaresi et al. [13] proposed a methodological
framework for applying functional principal component analysis to remotely sensed NDVI
time-series data from Landsat-8 to map Mediterranean forest plant communities and
habitats. Piragnolo et al. [14] used the Sentinel-2A remote sensing data to automatically
calculate several vegetation indices, such as NDVI, via the web-GIS platform. The authors
then evaluated the effectiveness of different indices in quantifying forest damage caused
by windthrow in an Alpine region using cross-validation with ground-truth data. By
comparing the results, the study identified the most suitable vegetation index for detecting
and quantifying forest damage in remote sensing applications.

Among the machine learning algorithms, the application of Random Forest (RF) and
Support Vector Machines (SVM) in remote sensing image classification has drawn much
attention [15]. Mansaray et al. [16] utilized SVM and RF to improve rice mapping accuracy
by single and different combinations of the data of Sentinel-1A, Landsat-8, and Sentinel-2A.
Zagajewski et al. [17] used open data from Sentinel-2 and Landsat 8 to classify the dominant
tree species (birch, beech, larch, and spruce) in the UNESCO Karkonosze Transboundary
Biosphere Reserve, utilizing three machine learning algorithms, RF, SVM, and Artificial
Neural Network (ANN), where the best results were obtained by the SVM-RBF classifier.
Noi et al. [18] conducted a study on land use/cover classification using Sentinel-2 image
data in the Red River Delta of Vietnam. The study compared the performance of RF,
k-Nearest Neighbor (kNN), and SVM classifiers, with SVM having the highest overall
accuracy among them. Zafari et al. [19] proposed a new method to classify crops using
time-series data of WorldView-2 multispectral imagery acquired over Mali in 2014. The
study compared the performance of SVM and RF classifiers and introduced a random
forest kernel (RFK) in an SVM classifier. The RFK-SVM approach demonstrated superior
performance in crop classification compared to using either classifier alone.

With the development of deep learning techniques, the Convolutional Neural Net-
work (CNN) in particular, remarkable results have been achieved in the field of image
segmentation. Long et al. [20] proposed the Full Convolutional Network (FCN), which
replaces the traditional fully connected layer with convolutional layers trained from end-
to-end, to achieve pixel-level image classification for the first time. Ronneberger et al. [21]
proposed the U-Net for medical image segmentation, which achieves better segmentation
by merging the feature information extracted from the encoder layer with the correspond-
ing decoder layer through skip connections. Zhao et al. [22] proposed PSPNet, which
fuses four different scales of global contextual information through the proposed pyramid
pooling module for segmentation. The prevalent image segmentation networks such as
SegNet [23], DeepLab V3+ [24], and DANet [25] have been widely used in various fields. In
recent years, deep learning algorithms have shown significant potential in remote sensing
image analysis [26]. In particular, in the field of remote sensing image segmentation, as the
traditional spectral vegetation index-based methods are not robust for segmentation and
machine learning methods are better at dealing with small samples [27], CNN-based image
segmentation networks have been widely used [28]. Wei et al. [29] demonstrated that the
CNN-based image segmentation network achieved much better results than the spectral
vegetation index-based method and the machine-learning-based method in the task of
mapping the large plateau forest of Sanjiangyuan. Among the prevalent deep learning
image segmentation networks, U-Net, which is designed based on the encoder–decoder
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structure, is the most commonly used deep learning architecture to perform remote sensing
image segmentation [30]. In the field of forest remote sensing image segmentation, Freuden-
berg et al. [31] developed a novel method for detecting oil palm plantations using very
high-resolution satellite imagery, based on the U-Net architecture. The method was tested
on large monoculture oil palm plantations in Jambi, Indonesia, and coconut palms located
in the Bangalore Metropolitan Region of India. Wagner et al. [32] used U-Net to accurately
segment natural forests and eucalyptus plantations in the Brazilian Atlantic rainforest using
very high-resolution images (0.3 m) from the WorldView-3 satellite. Wagner et al. [33]
used U-Net to identify, segment, and regionally map all canopy palm individuals in over
~3000 km2 of the Brazilian Amazon Forest using very high resolution (0.5 m) multispectral
imagery from the GeoEye satellite. Flood et al. [34] used U-Net to map the presence of trees
and large shrubs across large landscapes in Queensland, Australia, using high-resolution
satellite imagery. Cao et al. [35] proposed Res-Unet by combining U-Net and the feature
extraction network ResNet for tree classification using high-resolution remote sensing
imagery.

Deep-learning-based image segmentation algorithms have shown good application
prospects in remote sensing. However, the algorithms of image segmentation networks
widely applied are not specifically designed for remote sensing images. Remote sensing
images have wide coverage, large data scale, different scene types, relatively dense targets,
and cover a large number of complex and diverse geographical landscape types. Images
taken by mobile phones or cameras contain only red, green, and blue (RGB) bands, while
remote sensing images taken by satellites, such as the ZY-3 satellite, also include NIR bands
in addition to RGB bands. In addition, compared to images taken by mobile phones or
cameras and medical images, the coverage of remote sensing images is more extensive and
contains more semantic information at the same pixel size. Despite achieving relatively
satisfactory results in remote sensing image segmentation tasks, existing widely used image
segmentation algorithms face challenges in balancing the processing of image integrity and
details due to the large scale and coverage of remote sensing images. Specifically, their
ability to extract detailed feature information from large-scale images is insufficient, and
they lack the ability to extract and integrate multi-scale feature information. This eventually
leads to the loss of some details in segmented images. For example, Wei et al. [29] used
few-shot learning to map a large area of plateau forest in the Sanjiangyuan region, but
there was much room for improvement in the achieved results due to insufficient extraction
of detailed feature information. Furthermore, training deep learning models typically
requires large amounts of manually labelled ground truth data [36,37]. The lack of available
training data is the main obstacle to applying deep learning to a wide range of practical
monitoring applications [26]. For large-scale forest remote sensing image segmentation
tasks, the manual labelling of ground truth labels requires a significant amount of time.

In this paper, faced with the problem of lack of a large number of manually labelled
ground truth labels for training, we proposed a novel data augmentation method that
was specifically designed for the forest remote sensing image segmentation task. This
method expanded the training set by random permutation of subtiles within the remote
sensing images. In this method, the original image was equally sliced into 8 × 8 sizes
and then randomly arranged and combined into a new image while maintaining the same
size. The size of the training set has been expanded from 800 samples to 1600 samples and
enhanced the diversity and variability of the training samples by modifying various spatial
distribution of forest trees within the remote sensing images. In addition, to improve the
ability of the network to extract multi-scale detailed features of large-scale forest remote
sensing images and feature information from the NIR band of satellite imagery, and to
further improve the accuracy of high-resolution forest remote sensing image segmentation,
we designed a deep learning segmentation network by fusing multi-scale features based
on double input. The first input was the RGB bands and the second was the NIR band
within the satellite data. The remote sensing image was split into two inputs to improve
the extraction of feature information from the NIR band in remote sensing images. In
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order to extract detailed information of multiple spatial scales from forest remote sensing
images, the proposed network was designed based on the encoder–decoder structure and
combined the proposed convolution block, multi-scale feature fusion module, and feature
amplification module.

2. Materials and Methods
2.1. Study Area and Data

Our study area is located in the Sanjiangyuan National Nature Reserve (89◦45′–
102◦23′E, 31◦39′–36◦12′N) in Qinghai Province, China. As shown in Figure 1, the av-
erage elevation of the Sanjiangyuan area is about 4500 m, and the total area is about
395,000 km2, of which the forest area is about 30,000 km2. The forest vegetation is diverse
and widespread, mainly cold temperate coniferous forests with plateau zonation. The
region’s climate type is plateau continental, with extensive wetlands and dense marshes,
and has abundant water resources. Sanjiangyuan is called the “Chinese Water Tower” and
is the birthplace of the Yangtze River, the Yellow River, and the Lancang River, which is
an important source of fresh water in China [38–40]. Therefore, monitoring changes in the
plateau forest cover of this region is important for water conservation, the global carbon
cycle, climate change analysis, and combating global warming.
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imagery samples were from Yushu County and Guoluo County, as shown in Figure 1. 
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Figure 1. Sanjiangyuan National Nature Reserve (89◦45′–102◦23′E, 31◦39′–36◦12′N) in Qinghai
Province, China. Two black diamond marks A and B represent the location of the dataset: mark A in
the middle of Sanjiangyuan is located in Yushu County, Qinghai Province; mark B in the eastern part
of Sanjiangyuan is located in Guoluo County, Qinghai Province.

The large-scale plateau forest dataset in Sanjiangyuan was proposed by Wei et al. [29]
and contains 38,708 remote sensing imagery samples and 1187 accurate manual ground
truth forest segmentation labels of 128× 128 pixels at a 2 m spatial resolution from the ZY-3
satellite. Table 1 shows the detailed information from the ZY-3 satellite data. These imagery
samples were from Yushu County and Guoluo County, as shown in Figure 1. Table 2 shows
the detailed information of the dataset. The dataset contained a rich variety of plateau
forest types at different densities, surrounded by a variety of land cover environments. The
visualization of some remote sensing image samples and their ground truth label data are
shown in Figure 2. As shown in Figure 2, it is clear that the distribution of forests varies
considerably among samples. This variation can be observed in various aspects, such as the
extent of forest cover, forest density within each sample, and the surrounding environment.
The complexity of this dataset is well represented. Such variations in the forest distribution
can pose a significant challenge to the accurate segmentation of remote sensing images. It
is, therefore, essential to develop effective image analysis techniques that can handle such
diversity and variability in the data to achieve reliable and consistent results.
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Table 1. Detailed information of the ZY-3 satellite data.

Parameter Type Details

temporal resolution 5 days
spatial resolution 2 m

spectral range 0.45–0.89 µm
orbital altitude 505.984 km

Table 2. Detailed information for the large-scale plateau forest dataset in Sanjiangyuan.

Parameter Type Details

data sources ZY-3 satellite imagery
number of samples 38,708

number of manual ground truth labels 1187
sample size 128 × 128 pixels

number of spectral bands 4
manual ground truth size 128 × 128 pixels
resolution for each pixel 2 m
time period of the data January 2017–December 2017

period of the manual ground truth May 2017–June 2017
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2.2. Proposed Network
2.2.1. Overview of Proposed Network

Han et al. [41] compared the performance of widely used deep learning image seg-
mentation algorithms (including FCN-8s, SegNet, and U-Net) of the remote sensing image
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classification using Gaofen-2 (GF2) satellite imagery in Xinxiang city in the Henan province
in central China. The authors compared the performance of using the RGB + NIR bands
with four channels as input and only RGB bands with three channels as input of high-
spatial-resolution remote sensing imagery, respectively, and the inputs from the RGB + NIR
bands performed better. Inspired by this, we realized that remote sensing image segmenta-
tion was different from traditional RGB image segmentation and that it was also important
to extract feature information from the NIR band in satellite imagery to improve segmenta-
tion performance. Meanwhile, U-Net [21] was based on the encoder–decoder structure and
was proposed to handle medical image segmentation tasks. It is the most widely used deep
learning architecture for remote sensing image segmentation and has achieved satisfactory
results [30]. In order to better extract the feature information of NIR band of satellite
imagery, inspired by U-Net, we proposed a high-resolution forest remote sensing image
segmentation network by fusing multi-scale features based on double input. The first input
consisted of RGB bands with three channels, while the other input was the NIR band with
one channel, and the double input put the feature information extraction of RGB bands and
NIR band on the same level of importance. Compared with the combination of RGB + NIR
bands with four channels as a single input, the strategy of double input greatly enhanced
the feature information extraction of NIR band. In addition, the network was designed by
encoder–decoder structure and incorporated the convolution block, the multi-scale feature
fusion module, and the feature amplification extraction module proposed in this paper to
map the segmentation results by fusing multi-scale features. The main architecture of the
proposed network is shown in Figure 3.
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Figure 3. The main architecture of the proposed network. The upper part is the encoder, and the
lower part is the decoder. The rectangles labelled with h × w × c (where h, w, and c indicate the
image height, image width, and the feature channel number, respectively) are the feature map, and
two adjacent rectangles represent the concatenation operation at the feature channel dimension.
The symbol “+” indicates the summation of two features by an add operation, and the red and
green arrows indicate a max pooling and up sampling layer of size 2 × 2, respectively. In addition,
“Conv_block” represents the proposed convolution block; “FAE” represents the proposed feature
amplification extraction module; “MFF” represents the proposed multi-scale feature fusion module;
“1 × 1 Conv” represents a convolution layer with a kernel size of 1 × 1.
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As shown in Figure 3, we split the input of a 4-band (RGB + NIR) forest remote sensing
image (128 × 128 × 4) from the ZY-3 satellite into RGB inputs (128 × 128 × 3) and NIR
inputs (128 × 128 × 1) as double input. The feature information of two different inputs
was extracted, respectively, from different spatial scales by repeated application of the
convolution block, each followed by a 2 × 2 max pooling operation for downsampling,
and two features were summed up together as input of the feature amplification extraction
module after each convolution block in the encoder. We doubled the number of feature
channels in the convolution block and halved the feature size by downsampling. Then, we
summed up the two features encoded by the encoder through the add operation and used
it as input of the multi-scale feature fusion module to extract global contextual semantic
information by fusing multiple scales. Meanwhile, the feature amplification extraction
module extracted detailed semantic information from different spatial scales. In the decoder,
we extracted semantic information from different spatial scales by repeating the application
of convolution blocks, each followed by a 2 × 2 transpose convolution operation for
upsampling, and the input of each convolution block was from the concatenation of the
same size feature from the feature amplification extraction module and upsampling. We
halved the number of feature channels in the convolution block and doubled the feature
size by upsampling. Finally, a 1 × 1 convolution layer with a sigmoid activation function
was used to map the features to output in 128 × 128 pixels as the segmentation result.

2.2.2. Convolution Block

Image segmentation algorithms based on encoder–decoder structures typically used
two layers of convolution with a kernel size of 3× 3 to extract feature information. However,
remote sensing images have wide coverage and large data scale, and remote sensing
images of the same size contain more semantic information compared to images in other
fields. Therefore, a relatively small-scale convolution for the extraction of detailed feature
information is required for the segmentation of remote sensing images. In order to improve
the ability of the model to extract details from the remote sensing images, this paper
proposed a convolution block that first used one-layer convolution with a kernel size of
1 × 1 to extract small-scale detail feature information. We then used two-layer convolution
with a kernel size of 3 × 3 to further extract feature information and, finally, used one-layer
convolution with a kernel size of 1 × 1 to extract small-scale detail feature information
again. The structure is shown in Figure 4.
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As shown in Figure 4, we used one layer with a kernel size of 1 × 1, two layers with a
kernel size of 3 × 3, and one layer with a kernel size of 1 × 1. Convolution with Rectified
Linear Unit (ReLU) activation function [42] was used for successive extraction of feature
information, and the first convolution with a kernel size of 1 × 1 was used to change
the number of feature channels. To accelerate the network convergence, we used batch
normalization [43] in the last layer.

2.2.3. Multi-Scale Feature Fusion Module

Since atrous convolution can control the receptive field of the convolution layer by
changing the dilation rate, image features of different resolutions were collected to obtain
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multi-scale global contextual semantic information for processing both global and detailed
feature information, which, in turn, improved image segmentation performance. Inspired
by the atrous spatial pyramid pooling (ASPP) of DeepLab V3+ [24], we proposed a multi-
scale feature fusion module that was deployed at the bottom of the encoder and decoder.
The structure is shown in Figure 5.
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As shown in Figure 5, the multi-scale feature fusion module was a parallel structure
consisting of several multiple branches, including one-layer convolution with a kernel
size of 1 × 1, three-layer convolution with a kernel size of 3 × 3 with different dilation
rates (1, 2, 4), and global average pooling. All convolution layers used the ReLU activation
function. The 1 × 1 kernel size convolution and the 3 × 3 kernel size convolution with
smaller dilation rate were used to extract local detail, and the 3 × 3 kernel size convolution
with larger dilation rate and global average pooling was used to aggregate global contextual
feature information. In the global average pooling, bilinear interpolation was applied to
restore the size of the feature map to the same size as other branches. The feature maps
from all branches were then concatenated, and convolution with a kernel size of 1 × 1 was
used to make the output consistent with the size of the original input feature map.

2.2.4. Feature Amplification Extraction Module

In U-Net, the low-level feature map of the decoder concatenated the high-level feature
map from the corresponding stage of the encoder during upsampling to propagate con-
textual information to higher layers. Much of the literature has addressed and improved
this part. Oktay et al. [44] proposed Attention U-Net and replaced this part as proposed
Attention Gates. Ibtehaz et al. [45] proposed MultiResUNet and replaced this part as pro-
posed Res Path. However, for segmentation tasks dealing with remote sensing images of
forests, these improved networks were not as effective due to the lack of extraction of image
detail information. In order to improve the processing ability of deep learning networks for
forest remote sensing image detail features, a feature amplification extraction module was
proposed in this paper. It was used in the connection part of the equivalent stage between
encoder and decoder to extract the image detail feature information by amplification from
different spatial scales. Its structure is shown in Figure 6.
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Figure 6. The structure of the feature amplification extraction module. The rectangles labelled
with H ×W × C are the feature maps of different sizes, and three adjacent rectangles indicate the
concatenation operation at the feature channel dimension. “Conv_block” represents the proposed
convolution block; “1 × 1 Conv” represents a convolution layer with a kernel size of 1 × 1; “3 × 3
Conv” represents a convolution layer with a kernel size of 3 × 3; “2 × 2 UpSampling” and “4 × 4
UpSampling” represent up sampling layer of size 2 × 2 and 4 × 4, respectively; “2 × 2 Maxpooling”
and “4 × 4 Maxpooling” represent max pooling layer of size 2 × 2 and 4 × 4, respectively.

As shown in Figure 6, the input feature map was operated by bilinear interpolation
of sizes 2 × 2 and 4 × 4 for upsampling. The size of the input feature map was expanded
to 2 and 4 times of the original input feature map, respectively. Then, the detailed feature
information was extracted by the convolution block for each of the two different scales of
amplified features, and then their size was restored by Maxpooling of sizes 2 × 2 and 4 × 4,
respectively, followed by one-layer convolution with a kernel size of 1 × 1 with ReLU
activation function to map the two features with the same size as the original input feature
map. After that, we concatenated the two amplified features and the original input feature
map, followed by one-layer convolution with a kernel size of 3 × 3 with ReLU activation
function. Some semantic information from the encoder was retained during the extraction
of detailed information from the amplified features. Finally, a convolution block was used
to map the output feature map to the same size as the original input feature map.

2.3. Proposed Data Augmentation

In deep learning, data augmentation has often been utilized to increase the size of a
training dataset when the available data were limited. By artificially increasing the amount
of data in the train set, this technique could effectively improve the robustness of the model
during training. The existing data augmentation methods were mainly based on simple
transformations of images. For example, geometric transformations, including flipping,
scaling, translating, rotating and random cropping, and intensity transformations, includ-
ing grayscale and color transformation [46]. These methods were relatively straightforward
for data processing and could only increase the quantity of the dataset, without necessarily
guaranteeing an improvement in data quality. For instance, flipping and rotating opera-
tions did not alter the forest distribution in the remote sensing image, and the resulting
augmented image may not be significantly different from the original. Similarly, while
grayscale and color transformations could enhance the diversity and variability of the
training samples, they could also introduce noise and inconsistencies into the data, which
could lead to overfitting or poor generalization performance of the deep learning algorithm.
Effective data augmentation methods not only expanded the amount of data in the dataset
but also took into account that the quality of the expanded data has a positive impact on
the training of the model.

The images in the Sanjiangyuan plateau forest dataset were only forest and non-
forest binary classification images, and there were many types of forests and complex
geographical landscape distributions. In order to reduce the cost of manual labeling
and solve the problem of the lack of a large number of manually labelled ground truth
labels, and to further improve the robustness of remote sensing forest image segmentation
networks, we proposed a novel data augmentation method that expanded the training
data by modifying the spatial distribution of the forest in remote sensing images based on
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the characteristics of the forest and non-forest binary classification segmentation task. The
operation was as follows: the original image of 128 × 128 pixels was cut into 64 blocks of
equal size by 8 × 8 equally, and these blocks were rearranged and randomly combined
to form a new image of the same size as the original image of 128 × 128 pixels. The
visualization effect is shown in Figure 7.
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After the proposed data augmentation operation, the spatial distribution of forest trees
in the expanded training images was more random, sacrificing some of the image wholeness
and thus greatly increasing the data complexity. The data augmentation proposed in
this paper expanded the training data from 800 to 1600 and improved the ability of the
network to perceive image details and increased the robustness of forest remote sensing
image segmentation networks. The experiments in Section 3 showed that the proposed
data augmentation method can effectively improve the accuracy of image segmentation
networks.

2.4. Comparison with Existing Methods

To verify the effectiveness of the proposed network, we compared a number of preva-
lent image segmentation algorithms that were widely utilized in the field of remote sens-
ing image segmentation, including FCN [20], DeepLab [24], PSPNet [22], DANet [25],
SegNet [23], U-Net [21], and the improved networks MultiResUNet [45] and Attention
U-Net [44] based on U-Net. FCN had three architectures, including FCN-8s, FCN-16s,
and FCN-32s, and this paper used FCN-8s, which has been shown to perform best in the
semantic segmentation task after many contrast experiments [47]. In the DeepLab series,
this paper used the latest version DeepLab V3+.

2.5. Network Training

The experimental environment in this paper comprised Ubuntu 20.04 with an Intel
Xeon Gold 5218R CPU and a Nvidia GeForce RTX 3090 24G GPU. All image segmentation
networks in this paper were implemented using the Keras [48] framework and a Tensor-
Flow [49] backend with CUDA11.7 and CUDNN8.2.4, and the development language was
Python 3.8. To ensure the fairness of the comparative experiments, the proposed model
was trained under the same conditions as the comparative prevalent image segmentation
network. For all CNN models, we set the batch size as 16 and trained for 50 epochs and
using the Adam optimizer [50] with a learning rate of 0.0001 to improve the convergence
speed and effectiveness of networks. We used the binary cross-entropy function [51] as the
loss function to be calculated and utilized as a training guide, which was commonly used
for image segmentation tasks, and the loss function was expressed as follows:

loss = −∑n
i=1 ŷi log yi + (1− ŷi) log(1− ŷi) (1)
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In this function, ŷi represents the output of current model, and yi represents the output
of expectation.

In the large-scale plateau forest dataset in Sanjiangyuan, there were 1187 forest remote
sensing image samples with accurate manual ground truth labels, of which 800 were used
for the train set and 387 for the test set. In the data augmentation comparison experiment,
the train set data were expanded from 800 to 1600 by the data augmentation proposed in
this paper, and the test set data remained unchanged at 387. It is worth noting that the
dataset consisted of 1187 images from Yushu and Guoluo counties. We randomly shuffled
the distribution of remote sensing images to ensure that different types of forest images
were evenly represented in the dataset. This approach was adopted to ensure the scientific
validity of the experiment by ensuring that both the train set and test set contained different
types of forest remote sensing data. In addition, all compared methods used a combination
of RGB + NIR with four channels as a single input to the network. To maintain experimental
consistency and fairness, none of the methods used pre-built models, and all were trained
end-to-end, tested by using test set with 387 samples.

2.6. Accuracy Evaluation Metrics

There are various accuracy evaluation metrics for image segmentation. In this paper,
precision, recall, F1 score, and Intersection over Union (IoU) [52] were used to quantita-
tively evaluate the result of forest remote sensing image segmentation in different image
segmentation algorithms. They were formulated as in the below equations:

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1 =
2× precision× recall

precision + recall
=

2TP
2TP + FN + FP

(4)

IoU =
TP

TP + FP + FN
(5)

where TP is true positive and represents the number of correctly classified forest pixels. FP
is false positive and represents the number of non-forest pixels classified as forest. FN is
false negative and represents the number of forest pixels classified as non-forest. TN is not
used but is true negative and represents the number of correctly classified non-forest pixels.

Precision is the proportion of predicted forest pixels that are true forests, while recall
is the proportion of true forest pixels that are correctly detected. F1 score is the combination
of precision and recall. IoU is the most common metric for semantic segmentation, which
is sensitive to some pixel errors in the result mapping and, therefore, served as the main
reference evaluation metric in this paper.

3. Results
3.1. Segmentation Accuracy Assessment

To verify the effectiveness of the proposed forest remote sensing segmentation network
and the proposed data augmentation algorithm, we compared the proposed network with
the widely used image segmentation algorithms in train set sizes of 800 and 1600 (con-
taining 800 samples expanded by data augmentation), respectively, and the segmentation
performance of all methods was further investigated by quantitative evaluation.

The training curve of the proposed forest remote sensing image segmentation network
model is shown in Figure 8.
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Figure 8. The training curve of the proposed forest remote sensing image segmentation network
model. The first curve represents the variation in the accuracy of training model and the second
curve represents the variation in the loss of training model.

As can be seen in Figure 8, the two curves show the variation in the accuracy and the
loss of the training model on the train set, respectively. After 50 epochs of training, we can
clearly see that both the accuracy curve and the loss curve have reached a satisfactory state.
In addition, the loss curve increased slightly three times in the first 20 epochs of the start,
and the accuracy curve was accompanied by a slight decrease. Overall, both the accuracy
and loss curves show good trends, reflecting the good convergence of the proposed forest
remote sensing image segmentation network.

To ensure a fair comparison between different models, we tested all trained models,
whether using 800 or 1600 samples for training, on the same test set with 387 samples. The
results of comparing the segmentation performance of different networks trained with 800
and 1600 samples respectively are shown in Table 3.

Table 3. The results of comparing the segmentation performance of different networks trained with
800 and 1600 samples respectively.

Train Samples 800 1600

Evaluation Metrics P R F1 IoU P R F1 IoU

FCN-8s [20] 93.05 89.92 91.06 84.58 93.63 92.39 92.77 87.05
DeepLab V3+ [24] 88.26 87.67 86.92 78.28 91.79 90.42 90.53 83.60

PSPNet [22] 92.74 93.73 92.98 87.44 92.51 95.05 93.48 88.29
DANet [25] 92.87 93.93 93.04 87.65 92.14 94.84 93.18 87.90
SegNet [23] 92.38 93.74 92.76 87.11 92.51 94.17 93.09 87.61
U-Net [21] 93.31 93.84 93.30 87.95 92.60 94.86 93.41 88.20

MultiResUNet [45] 92.45 94.09 93.00 87.57 92.58 94.47 93.35 88.11
Attention U-Net [44] 94.09 93.98 93.72 88.74 93.82 94.70 94.00 89.14

Proposed 94.37 94.80 94.36 89.71 94.59 95.12 94.62 90.19

Note: P: Precision, R: Recall, F1: F1 score, IoU: Intersection over Union, Proposed: proposed network.

It can be observed from Table 3 that DeepLabV3+ performed the most poorly in
forest remote sensing image segmentation among the widely used deep learning image
segmentation networks, and FCN-8s also had below average performance due to their over
large scale of upsampling. Compared with other prevalent networks, U-Net and Attention
U-Net developed on U-Net improvement performed better in terms of segmentation effect,
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but MultiResUNet developed on U-Net improvement did not perform as well as U-Net in
the field of remote sensing image segmentation. Attention U-Net was designed by using
proposed Attention Gates based on encoder–decoder structure and DANet (Dual Attention
Network) was designed by merging proposed Position Attention Module and Channel
Attention Module. Although they both utilized attention mechanisms in their networks,
the Attention U-Net, designed based on the encoder–decoder structure, performed better
in the field of forest remote sensing images segmentation. In addition, algorithms designed
based on the Encoder–Decoder structure performed relatively well in compared prevalent
segmentation networks. Therefore, we proposed a network based on the encoder–decoder
structure. Using IoU as the main reference evaluation criterion, when the segmentation
network was trained on a training set of 800 samples, the proposed network outperformed
the compared widely used segmentation networks with an IoU of 89.71%, which was 1.76%
better than U-Net, the most widely used in remote sensing, and, compared to Attention
U-Net, the best performer in the compared prevalent image segmentation networks, IoU
improved by 0.97%. Furthermore, the proposed network also achieved the optimal level
of precision, recall, and F1 score when compared to the prevalent image segmentation
networks.

With the proposed data augmentation algorithms, the size of the train set was increased
from 800 to 1600 samples. By training with more samples with a more complex spatial
distribution of the forest, all networks had different degrees of improvement. DeepLabV3+
had the most pronounced lifting effect but still had the poorest results. The FCN-8s also had
a significant improvement, with slightly below average performance. After expanding the
train set with data augmentation, PSPNet outperformed DANet, U-Net, and MultiResUnet,
and Attention U-Net still performed best among the compared segmentation networks. The
performance of the proposed network was further improved with an IoU of 90.19, which
was a 0.48% improvement in comparison to the performance of the train set of 800 samples
without data augmentation. By training with 1600 samples, the IoU of the proposed
network was improved by 1.99% compared to U-Net and 1.05% compared to Attention
U-Net. Compared to training without data augmentation algorithms, the improvement
was more evident.

3.2. Segmentation Visual Assessment

To better demonstrate the advantages of the proposed methods, a visualization of the
comparison of the forest segmentation results of different algorithms is shown in Figure 8.
There are six representative forest remote sensing images of different types are shown.
Combining the segmentation results of all the remote sensing images of the forest in the
figure, it is evident that the segmentation results produced by PSPNet and FCN had some
undesired noise at the forest boundaries, and the forest segmentation results were presented
in the shape of small rectangles in the results produced by FCN. The segmentation results
generated by other methods had relatively clear and smooth forest boundaries. While
DeepLab V3+ provided the worst segmentation results in the accuracy assessment of
different evaluation metrics, the forest boundaries were relatively smooth and clear in
visualization.

As shown in images (a), (c), and (e) in Figure 9, it is difficult for the compared widely
used segmentation networks to extract the non-forest parts of small areas in the image.
As the proposed network was designed according to the characteristics of forest remote
sensing images and had a strong ability to extract detailed feature information, it had
a very impressive performance in extracting the non-forest parts of small areas in the
image, and, by training with 1600 samples, which was expanded by the proposed data
augmentation, the ability to extract detailed feature information was further improved,
and the segmentation effect was further improved. Additionally, as shown in image (b)
in Figure 9, even if the small part of the non-forest was not labeled in the ground truth,
the proposed network with or without the proposed data augmentation algorithm could
identify these detailed parts. As shown in image (d) in Figure 9, the compared segmentation
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networks incorrectly identified non-forested parts of the image as forests, whereas the
proposed network accurately identified them as non-forested. This demonstrated the
ability of the proposed network to identify non-forested parts of forest remote sensing
images. However, for the non-forest parts of the image (f) in Figure 9, the proposed network
also incorrectly identified them as forest, but, after training with 1600 samples expanded
with the proposed data augmentation, the proposed network improved the accuracy of
identifying the non-forest parts significantly. As a result, this demonstrated the effectiveness
of the proposed data augmentation approach. This improved the ability of detail feature
information extraction and the accuracy of the remote sensing image segmentation network
in complex scenarios.

3.3. Data Augmentation Assessment

The experiments in Sections 3.1 and 3.2 demonstrated that the proposed data aug-
mentation method was effective in improving the accuracy of the different CNN models
in different degrees. To demonstrate the advantages of the proposed data augmentation
method over the common data augmentation method, we also expanded the training data
from 800 to 1600 by flipping to train networks as contrast experiments. The visualization
effect of the remote sensing image and flipped image with their ground truth labels is
shown in Figure 10. As shown in Figure 10, the remote sensing image and its ground truth
label was flipped in in the vertical direction. The training models used were the same as
those used in Section 3.1, including the compared image segmentation networks and the
proposed remote sensing image segmentation model. The train set contained 1600 samples,
and the only difference from the train set used in Section 3.1 was that 800 of these samples
were expanded by flipping. To ensure a fair comparison, all the trained models were
tested on a test set with 387 samples as same as the experiments in Table 3. The results of
comparing the segmentation performance of different networks trained with 1600 samples
are shown in Table 4.

Table 4. The results of comparing the segmentation performance of different networks trained with
1600 samples.

Evaluation Metrics P R F1 IoU

FCN-8s [20] 92.29 92.32 92.01 85.82
DeepLab V3+ [24] 88.32 92.30 89.16 81.78

PSPNet [22] 92.75 94.07 93.15 87.70
DANet [25] 92.53 94.34 93.13 87.76
SegNet [23] 93.16 92.97 92.81 87.18
U-Net [21] 93.69 93.43 93.29 87.99

MultiResUNet [45] 93.70 93.15 93.10 87.65
Attention U-Net [44] 93.31 94.93 93.77 88.83

Proposed 94.08 95.16 94.40 89.79
Note: P: Precision, R: Recall, F1: F1 score, IoU: Intersection over Union, Proposed: proposed network.

As shown in Table 4, when comparing the results of models trained with 1600 samples
(expanded by flipping) to those models trained with the original 800 samples (without data
augmentation), there appeared to be a slight improvement in the segmentation accuracy for
all methods. The improvement was relatively evident for FCN-8 and DeepLab V3+, as they
performed poorly when trained without data augmentation. However, the improvement
was far from the performance of the models trained with 1600 samples (expanded by the
proposed data augmentation method). It can be seen that the proposed data augmentation
method had some advantages in improving the performance of the forest remote sensing
image segmentation. It is worth noting that the proposed remote sensing image segmen-
tation network achieved the best results, even in the case of training with 1600 samples
expanded by flipping.
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Figure 9. The visualization of the comparison of the forest segmentation results of different algorithms.
Rows from the top to bottom represent the original images, the corresponding ground truth labels,
segmentation results of FCN-8s, DeepLabV3+, PSPNet, DANet, SegNet, U-Net, MultiResUnet,
Attention U-Net, proposed network trained by 800 samples, and proposed network trained by
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1600 samples (expanded by proposed data augmentation), respectively. The subfigures (a–f) are
representative of the segmentation results of six different areas. The results shown in the red square
demonstrated the effectiveness of the proposed method.
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remote sensing image; (c) remote sensing image after flipping; (d) ground truth label of the remote
sensing image after flipping.

4. Discussion

In this paper, we proposed a novel data augmentation algorithm that modified the
spatial distribution of remote sensing images to expand the training set and proposed a
high-resolution forest remote sensing image segmentation network by fusing multi-scale
features based on double input.

To verify the effectiveness of the proposed method, we performed comparative exper-
iments using the widely used image segmentation networks under the same conditions.
By using the same train set, test set, and evaluation metrics, the comparison experiments
provided a fair and objective evaluation of the proposed method’s performance in both
objective accuracy assessment and subjective visual assessment. Among the methods
compared, as shown in Table 3, FCN-8s and DeepLab V3+ performed relatively poorly
and below average, while PSPNet, DANet, and U-Net were close to each other. The
performance of Attention U-Net, which was designed based on U-Net, was significantly
better than that of U-Net. Additionally, it reached an IoU of 88.74% trained with original
800 samples, which was also the best performance among the methods compared. However,
the performance of MultiResUnet, which was also designed based on U-Net, decreased
slightly compared to U-Net. The proposed forest remote sensing image segmentation
network achieved the best results, with a more significant improvement in performance
compared to the prevalent networks. As also could be seen in Figure 9, in the results
obtained by FCN-8 and PSPNet, there was a lot of noise at the edges of the forest. The
results obtained by Attention U-Net were relatively good, while the results obtained by
the other widely used networks compared were similar. The proposed network had a
clear advantage over the compared prevalent image segmentation models. In addition,
with 1600 samples of training expanded using the proposed data augmentation method,
as shown in Table 3, the performance of all methods improved to varying degrees. The
proposed network had further improved its performance and achieved a 90.19% in IoU.
In the visual assessment results, as shown in Figure 9, the superiority of the proposed
method was better demonstrated. Compared to the widely used networks, the proposed
network could identify local details and forest and non-forest parts more effectively, and the
proposed data augmentation method further improved the results. Furthermore, to further
demonstrate the advantages of the proposed data augmentation method, we compared
it with a common data augmentation method: flipping. By flipping, the training samples
were also expanded from 800 to 1600. However, as shown in Table 4, the improvement in
results obtained by training under the same conditions was only slightly enhanced, which
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was far inferior to the proposed data augmentation method. The performance of FCN-8s
and DeepLab V3+ has been improved relatively effectively, which indicated that these two
networks required a larger amount of training data to achieve satisfactory results [53]. For
other networks, the used common data augmentation methods did not significantly alter
the original image [54]. We believe the changes in the orientation of the remote sensing
image had little effect on the recognition of the forest by the network since the forest had
changed its location [55] and the forest itself remained unchanged. However, the proposed
data augmentation method greatly altered the spatial distribution of the forest in the image
and increased the complexity of the forest remote sensing image, resulting in improved ef-
fectiveness in image segmentation. Both the proposed network and the data augmentation
demonstrated their effectiveness in improving the accuracy of forest remote sensing image
segmentation. However, the comparison revealed that the proposed network was more
innovative, and the improvement effect was more evident.

Compared to other widely used image segmentation networks, our proposed network
significantly improved the extraction of detailed features from remote sensing images.
Moreover, the robustness of the network was further improved after training with the
proposed data augmentation method. Therefore, we believe that the proposed data aug-
mentation algorithm could be applied to similar binary classification remote sensing image
segmentation tasks, such as road extraction [56], water extraction [57], agricultural land
mapping [58], and more. Furthermore, we also believe that the proposed network could
also be applied to other remote sensing image segmentation tasks and even to non-remote
sensing tasks that require small detail feature information extraction.

However, there were some limitations to this study. The dataset used for this research
was manually annotated by human eye observation of remotely sensed imagery, but the
labeling of forest extent was inaccurate due to the 2 m resolution remotely sensed imagery
not being very clear. We believe that a higher accuracy rate could be achieved through the
methods proposed in this paper by accurately relabeling this dataset through technical
means such as fieldwork or aerial photography [59] or by using a higher resolution remote
sensing image dataset [60]. Meanwhile, the cost of fieldwork could be greatly reduced by
using the proposed data augmentation algorithm. Moreover, the dataset only classified
forest and non-forest and did not accurately classify tree species, which is an area for future
work. To achieve accurate classification of tree species, we will need to acquire more specific
data and conduct more in-depth research on tree species classification [61]. Despite these
limitations, our proposed data augmentation algorithm and high-resolution forest remote
sensing image segmentation network have demonstrated promising results, and we believe
that they will be useful in future remote sensing studies.

5. Conclusions

Forest ecosystems provide a wide range of ecological services and socio-economic
benefits. There are still a number of challenges in applying deep learning to forest cover
monitoring using high-resolution remote sensing imagery.

In this paper, in order to reduce the cost of manual labelling and expand the training
data, we proposed a novel data augmentation algorithm to expand the training set from 800
to 1600 by modifying the remote sensing spatial distribution based on the characteristics of
the forest remote sensing image segmentation task. In addition, in order to strengthen the
ability to extract multi-scale detailed feature information and feature information in the
NIR band in remote sensing images and to improve the accuracy of image segmentation
networks in extracting forests from remote sensing images, we proposed a high-resolution
forest remote sensing image segmentation network by fusing multi-scale features based
on double input. One of the inputs was a conventional RGB band, and the other was
a NIR band in remote sensing images. The proposed network was designed based on
the encoder–decoder structure and was equipped with a proposed convolution block,
multi-scale feature fusion module, and feature amplification extraction module. With
the help of the convolution block, the network strengthened its ability to extract feature
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information from remote sensing images based on the use of convolution with a kernel size
of 1 × 1. Inspired by ASPP, the multi-scale feature fusion module had been designed to
fuse global contextual semantic information from different scales. Feature amplification
extraction module designed to be used in the connection part of the equivalent stage
between encoder and decoder to extract the detail feature information by amplification
from different spatial scales. With and without training of the data augmentation algorithm,
the IoU of the proposed network reached 90.19% and 89.71%, respectively, using the
Sanjiangyuan plateau forest dataset, which temporally scaled from May to June. Compared
to using only U-Net, which is the most widely used in remote sensing, the IoU of the
proposed network with the proposed algorithm was improved by 2.24%.

The proposed methods achieved good performance in the forest segmentation task
of high-resolution remote sensing images and had important implications for large-scale
forest mapping, forest conservation, climate analysis, forest ecosystem management, and
sustainable development, as they can provide a more accurate method for analyzing the
variation in surface forest area over different temporal scales.
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