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Abstract: Cracks in concrete surfaces are one of the most prominent causes of the degradation of
concrete structures such as bridges, roads, buildings, etc. Hence, it is very crucial to detect cracks at
an early stage to inspect the structural health of the concrete structure. To solve the drawbacks of
manual inspection, Image Processing Techniques (IPTs), especially those based on Deep Learning (DL)
methods, have been investigated for the past few years. Due to the groundbreaking development of
this field, researchers have devoted their endeavors to detecting cracks using DL-based IPTs and as a
result, the techniques have given answers to many challenging problems. However, to the best of
our knowledge, a state-of-the-art systematic review paper is lacking in this field that would present
a scientometric analysis as well as a critical survey of the existing works to document the research
trends and summarize the prominent IPTs for detecting cracks in concrete structures. Therefore,
this article comes forward to spur researchers with a systematic review of the relevant literature,
which will present both scientometric and critical analysis of the papers published in this research
area. The scientometric data that are brought out from the articles are analyzed and visualized
by using VOSviewer and CiteSpace text mining tools in terms of some parameters. Furthermore,
this article elucidates research from all over the world by highlighting and critically analyzing the
incarnated essence of some of the most influential papers. Moreover, this research raises some common
questions as well as extracts answers from the analyzed papers to highlight various features of the
utilized methods.

Keywords: crack detection; concrete structures; deep learning; image processing techniques;
scientometric analysis

1. Introduction

A crack in a concrete surface (e.g., bridge, road, wall) is a very narrow gap between two
sides of the surface that generally appears when the surface is slightly damaged. Cracking
in concrete surfaces is quite inevitable and concrete surfaces can be cracked due to various
reasons, such as deformation of the concrete structures, reaction of salts contained in the
earth with concrete surfaces, thermal shrinkage of the concrete structures, overloading
in the concrete surfaces, and so on. Concrete infrastructure, especially in South Korea, is
quite likely to be cracked, as the percentage of ancient (more than 30 years old) reinforced
concrete structures was inferred to be about 3.8% in 2014, and this is predicted to jump
up to 13.8% and 33.7% in 2024 and 2029, respectively [1]. These cracks can cause deadly
accidents as well as the expenditure of a huge amount of money for the maintenance and
repair of concrete structures. So, crack detection at an early stage is very essential; this
includes inspecting as well as evaluating the structural health and serviceability of the
concrete structures.
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For many years, manual inspection was a very common and traditional method for
detecting cracks in concrete structures. However, manual inspection lacks both efficiency
and accuracy. Moreover, this technique is so time-consuming, more arduous, and expensive
because, in this method, the inspectors detect the cracks with only their human vision
by roaming along the concrete structures. Therefore, realizing the drawbacks of manual
inspection and the advancement of automation technologies, Ho et al. in 1990 [2] introduced
the usage of image-based methods for detecting cracks automatically in concrete structures.
Due to the advantages of vision-based algorithms over manual inspection techniques, the
algorithms have gained vast popularity among both engineers and researchers in recent
years. Hence, we see that nowadays, researchers from all over the world are devoting their
efforts to developing and utilizing vision-based automated crack detection algorithms.

The primary steps for detecting cracks include acquiring the images, image preprocess-
ing, and finally detecting or classifying the images. The literature shows that different types
of images, such as camera images [3], Infrared Ray (IR) images [4], Ground Penetrating
Radar (GPR) images [5], ultrasonic images [6], etc., are being utilized for detecting cracks.
To extract necessary features from the acquired images as well as to remove noise due to
shadows, poor illumination conditions, and thin cracks, researchers are developing and
utilizing different IPTs such as wavelet transformation [7], Digital Image Correlation [8],
Percolation methods [9], Ostu’s method [10], Morphological approach [11], Canny edge
detector [12], Sobel operator [13], Hough Transformation methods [14], and so on. After
extracting the features, it is essential to detect and classify the cracks by using different
classifier algorithms. For further improvement in crack detection, researchers nowadays
are more willing to use Machine Learning (ML)- and Deep Learning (DL)-based classifier
algorithms such as Support Vector Machine (SVM) [15], Random Forest [16], Convolutional
Neural Networks (CNNs) [17], Recurrent Neural Networks (RNNs) [18], etc., as Neural
Networks can extract necessary features automatically from concrete images and detect
cracks more accurately.

With the developments of these image processing and classifier algorithms, vision-
based crack detection methods are becoming more popular than ever before. As a result,
a few technical articles have already been published in this research field. However, the
field still lacks a reasonable amount of relevant systematic review papers presenting a
scientometric analysis as well as a critical analysis of the existing works to show the research
trends and summarize the prominent IPTs and classifier algorithms for detecting cracks in
concrete structures. This gap in the existing literature and huge research scope motivate
us to present a systematic review by analyzing the notable papers published between the
years 2010 and 2020 which would focus on image-based crack detection algorithms to
facilitate new researchers with useful information about this research field. In fact, Deep
Learning (DL) started gaining popularity starting in 2012 with the advancement of the
AlexNet model and consequently, researchers thought of utilizing DL for crack detection
after that time. This one decade (2010–2020) has been specifically taken into consideration
for this work because that time period sets the basis for work for this area. We have opted
not to include the years 2021 and 2022, as that would be beyond our research objective
(which is to analyze the very first decade of this particular research domain).

The main contributions of this survey paper are as follows:

• It presents a scientometric analysis of a few selected papers on image-based crack
detection algorithms using data mining techniques to find out the current research
trends, important research terms, influential publications, journals, and collaboration
patterns of this research field.

• It presents a critical analysis of the papers related to image-based crack detection methods.
• Finally, it provides a summary of prominent image processing techniques and classifier

algorithms for detecting cracks.
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2. Literature Review

Computer vision, or image processing-based technology, has revealed itself to be a
prominent research field for crack detection over the last decade. As a result, nowadays, it
has become a great contributor to automating the crack detection process. Researchers from
all over the world are devoting their efforts to developing and improving image-based
crack detection methods. As a whole, now these methods have become an engrossing
research interest both for researchers and engineers. Along with the continuous endeavors
of improving the algorithms, researchers also enlisted the existing methodologies in the
theme of survey papers to accelerate the research work in this area. This section briefly
summarizes a few primary aspects from the preceding review papers and discusses the
prominence of modern articles that establish themselves as some remarkable inclusions to
the research field.

The earliest review paper that this work analyzes in this section was authored by
John et al. in 1994 [19]. The authors discussed the usage of ultrasonic imaging techniques
for detecting cracks in concrete structures. They also highlighted that severe improvement
is needed in ultrasonic imaging techniques. After that, McCan et al. and Jahanshahi
et al. presented a deep analysis of nondestructive testing (NDT) methods and image
processing-based technologies like wavelet transform, Haar transforms, and the Digital
Image co-relation technique for detecting cracks in [20] and [21], respectively. In 2014, Yao
et al. [22] provided an overview of crack types and sources of cracks. In addition to this,
the authors categorized the crack detection approaches into direct sensing and indirect
sensing approaches. At a later time, works like [20,23–25] were published in 2016. The
authors discussed various computer vision methods for detecting cracks and presented
several platforms for image acquisition. In [24], Mohan et al. remarked that researchers
would be more willing to use camera images for detecting cracks. Another notable survey
was carried out by Gopalakrishnan et al. [26] in 2018, where the researchers gave a review
of recently published articles (at that time) that used Deep Convolutional Neural Networks
(DCNNs) for pavement crack detection. The authors also discussed and compared existing
DL frameworks and network architectures for detecting cracks.

Vijayan et al. in [19] provided an overview of a few DL algorithms along with other
processing techniques and suggested DL algorithms as the most preferable methods by
analyzing previous works. In 2020, Sharma et al. [27] highlighted crack propagation over
time and the depth and severity of cracks, which need to be determined. The authors also
mentioned that there is still a huge research scope for developing a crack detection technique
that is fast and accurate at the same time. In another paper of 2020, Hsieh et al. [28]
presented ML and DL algorithms and available public datasets for crack segmentation
in pavement images. The authors determined that Fully Connected Networks (FCNs)
and U-Net produce an improved performance in the case of crack segmentation. Table 1
recapitulates the survey papers published on image-based crack detection algorithms. This
table presents the publication year, source, major contributions, and limitations of the
papers. The table is ordered based on the publication year of the papers. However, these
survey papers neither collected articles systematically nor presented a bibliometric analysis
to discuss the research trend, extract the most influential articles and countries, and present
the collaboration pattern of this research field. In addition, many research papers did not
categorize the articles according to their utilized image processing techniques and also
did not analyze the articles (accurately) so that future researchers can have a clear vision
of the research field of image-based crack detection techniques. As there is still a huge
literature gap and research scope, in this work we are going to delineate the existing papers
in this domain in a systematic manner; we will present a bibliometric analysis as well as
a critical analysis of the works in an effort to lessen the difficulties for new researchers
to understand the research trends, hot topics, and methodologies of image-based crack
detection algorithms.
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Table 1. Summary of previous review on image processing-based crack detection.

Ref Year of Publication Name of the Journal/Conference Major Contributions Limitations

[20] 2001 NDT & E International

• Discussing the necessity of NDT methods for structural health
monitoring of concrete bridges.

• Presenting several NDT methods along with their measurable
parameters, advantage, disadvantage, and cost.

• Pointing out the future research areas of NDT methods for
bridge inspection.

• Discussed several NDT methods but did
not analyze papers based on the utilized
methodology and achieved results that use
these NDT methods for bridge inspection.

[21] 2009 Structure and Infrastructure
Engineering

• Presenting a deep analysis of the underlying computational mod-
els of IPTs to detect cracks in concrete bridge structures.

• Reviewing several papers which utilize IPTs for crack detection.

• The papers are not collected in a systematic way.
• Did not categorize the papers based on their

corresponding image processing techniques.

[22] 2014 Structural Control and Health
Monitoring

• Providing an overview of crack types and sources of cracks.
• Categorizing the crack detection approaches into direct sensing

and indirect sensing approaches.
• Analyzing the articles related to each approach.
• Mentioning the accuracy and low computation power as the ad-

vantages of direct and indirect sensing approaches, respectively.
• Highlighting the reduction in consumed power and data loss as

the research challenge for emerging crack detection approaches.

• The articles are not collected in a systematic way.
• The articles are not summarized by the ar-

chitecture, accuracy, and other parameters
of the approaches.

• The articles are categorized in a broader way
(e.g., direct, indirect approach) rather than in
a more precise way (e.g., wavelet transform,
ML, DL, etc., approaches)

[29] 2016 Advanced Engineering
Informatics

• Presenting a comprehensive analysis and synthesis of computer
vision techniques to detect cracks on concrete and asphalt pave-
ment structures.

• Reviewing relevant articles and categorizing the reviewed ar-
ticles as per their image processing techniques or computer
vision methods.

• Highlighting that visual inspection is necessary for structural
health monitoring of concrete bridges.

• Mentioning that the automatic retrieval and assessment of defect
properties are a future research challenge

• The articles are not collected in a systematic way.
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Table 1. Cont.

Ref Year of Publication Name of the Journal/Conference Major Contributions Limitations

[23] 2016 Computational Methods in
Engineering

• Presenting various image acquisition platforms and IPTs for
pavement crack detection.

• Presenting a general framework for automatic pavement
crack detection.

• Mentioning the papers which focus on the existing IPTs for de-
tecting pavement cracks.

• Comparing among the evaluation metrics for crack detection in
the pavement.

• The articles are not collected in a systematic way.
• The articles are not briefly analyzed based

on the utilized methodology and achieved
results.

[24] 2016 Alexandria Engineering Journal

• Presenting several IPTs to detect cracks and analyzing 50 articles
based on the techniques, dataset, and accuracy level.

• Identifying the steps in IPTs and the research challenges in
this field.

• Highlighting that researchers are more willing to use camera
images for detecting cracks.

• The articles are not collected in a systematic way.

[25] 2016 Journal of Imaging

• Reviewing the literature that discusses IR thermography
with natural excitation for detecting cracks in reinforced
concrete structures.

• Summarizing the utilized equipment and physical background
to analyze thermographs.

• Presenting the application area of IRT as well as both advantages
and disadvantages of IRT methods.

• Pointing out the usage of combined thermography approaches
as the future research trend for crack detection.

• The articles are not collected in a systematic way.
• Did not mention any numerical value to

show the accuracy and efficiency of the used
IR thermography methods.

[30] 2017 Arabic Journal of Science &
Engineering

• Giving a survey on the articles which use NDT methods for
concrete damage detection.

• Identifying the observable parameters for each algorithm or
method in case of damage detection.

• Highlighting both the advantages and disadvantages of
each method.

• The articles are not collected in a systematic way.
• No performance measure metrics or numer-

ical values have been mentioned to evalu-
ate the efficiency of the methods utilized in
the articles.
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Table 1. Cont.

Ref Year of Publication Name of the Journal/Conference Major Contributions Limitations

[31] 2017 ISPRS Journal of Photogrammetry
and Remote Sensing

• Constituted a database by systematic analysis.
• Highlighting the articles which utilize existing ultrasonic NDE

methods to detect cracks in concrete infrastructures.
• Mentioning that the existing ultrasonic NDE techniques are not

enough; improvement, as well as new approaches, are needed
for better accuracy.

• Mentioned the articles which utilized ultra-
sonic NDE techniques but did not analyze
the papers based on the utilized methodol-
ogy and achieved results.

[26] 2018 Data

• Giving a review of the recently published articles which use
DCNN algorithms for pavement distress detection.

• Pointing out both the achievements and the complexities of
DCNN-based crack detection algorithms.

• Discussing and comparing DL frameworks, hyperparameters,
and network architectures that are relevant for crack detections
deployed by each article.

• Pointing the future research direction as finding out the crack
type, severity of distress along with detecting cracks.

• The articles are not collected in a systematic way.

[19] 2018 International Journal of Pure and
Applied Mathematics

• Reviewing the literature that detects cracks using IPTs.
• Providing an overview of a few DL algorithms which are being

used for detecting cracks on building walls and concrete surfaces.
• Claiming that DL algorithms are the best for detecting cracks.

• The authors only presented an overview of
DL algorithms but did not analyze any pa-
per based on the utilized methodology and
achieved results that utilize DL algorithms
for detecting cracks.

• Discussed only 10 papers that utilize image
processing techniques. Furthermore, these
papers were not categorized as per their cor-
responding IPTs.

• The articles are not collected in a systematic
manner.

• Claimed that DL is the best method but did
not present any evaluation metrics or nu-
merical values to prove the efficiency of DL
methods.
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Table 1. Cont.

Ref Year of Publication Name of the Journal/Conference Major Contributions Limitations

[27] 2020 Easychair Preprint

• Surveying articles related to image-based crack detection.
• Presenting several crack types and suitable algorithms both for

detecting and classifying cracks of a particular type.
• Highlighting the determination of crack propagation over time

as a current research trend.
• Mentioning that there is still a huge research scope for develop-

ing a crack detection technique that is fast and accurate at the
same time.

• The articles are not collected in a systematic way.
• Presented an overview of DL algorithms but

did not analyze any paper based on the uti-
lized methodology and achieved results cor-
responding to those algorithms.

• Analyzed image-based articles but did not
categorize those papers based on image pro-
cessing techniques.

[32] 2020

2020 International Conference on
Emerging Trends in Information

Technology and Engineering
(ic-EITTE)

• Reviewing papers that focus on the classifiers used for crack
detection on concrete roads.

• Presenting comparison among the classifier algorithms.
• Claiming CNN as the most preferable algorithm for crack detec-

tion on roads.

• The articles are not collected in a systematic way.
• Number of analyzed papers that utilize the

DL algorithms is too low.

[28] 2020 American Society of Civil
Engineers

• Presenting the research trend of ML- and DL-based crack detec-
tion algorithms in terms of annual publication rate and appear-
ance time of algorithms.

• Categorizing the crack detection algorithms into three classes:
classification, object detection, and segmentation.

• Presenting a survey of 68 publications that focus on the ML and
DL algorithms to detect cracks in pavement images and also
presenting the publicly available dataset for crack detection.

• Finding out the algorithms (FCN and U-Net) which produce
an improved performance in the case of crack segmentation by
conducting some performance evaluation techniques.

• The articles are not collected in a systematic way.
• Only mentioned the papers under their cor-

responding algorithms but did not analyze
the papers one by one based on their fea-
tures or characteristics.
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3. Research Methodology

This work has been designed using a mixed method for presenting a bibliometric
analysis and critical analysis of the papers which focus on the algorithms utilized for
crack detection on concrete bridges, buildings, and roads. Figure 1 presents the overall
methodology of this study.

Stage 1: Data collection
Literature retreival

Data filtering

Stage 2: Bibliometric analysis
Cluster analysis

Key research area identification

Paper screening and classification
based on 

utilized techniques

Stage 3: Critical analysis

Description of the state-of-the-art
Deep Learning approaches and

technologies 

Figure 1. Overview of research methodology.

As seen in Figure 1, the first stage is about the data collection for this systematic review.
The second stage is related to the bibliometric analysis for identifying the key research
areas. Stage 3 presents the critical review of the papers based on the abstract, methodology,
and results for giving a brief overview of the development of the algorithms utilized for
crack detection. For conducting the literature review in a systematic manner, we have
followed a set of guidelines to include the most relevant articles. The overall process of the
literature retrieval and data filtering technique (the first stage of Figure 1) can be visualized
in Figure 2.

Figure 2. Overview of the literature retrieval and filtering process.

The data collection (literature retrieval and data filtering) process was divided into
a total of four phases based on the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) method: identification, screening, eligibility, and inclusion.

• Phase 1: The authors searched for the papers in four different online digital libraries
in November 2020 including Web of Science (WOS), Sciencedirect, IEEE Xplore, and
Willey online library using the search string “crack detection” AND (“bridge” OR
“road” OR “concrete”) AND (“vision” OR “image”). In this way, the authors were able
to download 642 papers initially. However, they limited the search string to a time
span of ten years (2010 to 2020) for discussing the latest technologies. After removing
the duplicate records, the authors identified a total of 395 papers at the end of Phase 1.
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• Phase 2: In this stage, the authors screened 285 papers among the 395 papers extracted
in Phase 1 by title and abstract which were published in the peer-reviewed journals. To
avoid the inclusion of irrelevant articles in a systematic fashion, the authors developed
some exclusion criteria and discarded the papers if (a) the research focus of any
particular article is on non-image-based crack detection algorithms, (b) the paper
discusses crack detection on reinforced plastic, beam, or steel structures, (c) the article
is a review article instead of an original study. By employing the exclusion criteria, a
total of 30 articles were excluded in this phase.

• Phase 3: In this stage, the remaining 255 papers were assessed by investigating the full
text of the articles. The authors excluded an article from the systematic review if the
article (a) was not closely related to the research focus of this study, (b) did not have a
novel as well as efficient contribution to the research domain of image-based crack
detection algorithms, (c) did not provide detailed information about the design or the
implementation of the proposed idea. As a consequence, 21 papers were excluded.
So, the number of extracted papers becomes 234. After that, an additional 105 papers
were also excluded from these 234 papers for bibliometric analysis as they were not
supported by the data mining software utilized in this work.

• Phase 4: After completing all the previous phases, 129 papers were finally included in
this systematic review for scientometric analysis, and of the 234 papers, 65 DL-based
papers were selected for critical analysis.

4. Bibliometric Analysis

The scientometric analysis is a technique to assess the academic quality of publica-
tions, sources, and authors and determine the research trends of a particular research
topic by several statistical methods, such as publication rate, citation rate, collaboration
pattern, keyword occurrences, etc. This work utilized two prominent visualization tools,
VOSviewer [33] and CiteSpace [34], to provide a bibliometric analysis of the papers col-
lected from the databases chosen in this work. In the following section, this work will
extract the most productive publications, authors, and publication sources in the research
field of image-based crack detection algorithms. In addition, this work will also present
some scientific mapping analysis. This work considered co-citation analysis, co-authorship
analysis, and occurrences of the keyword and timeline view analysis as the subsections of
scientific mapping analysis. Co-citation analysis can elicit the relatedness and measure the
proximity degree of the sources and authors. Co-authorship analysis can determine the
collaboration pattern among the countries and institutions. Again, keyword occurrences
can extract the research trends and important terms of a particular research topic.

4.1. Overview of the Publications
4.1.1. Annual Analysis of the Publications

From the online databases, this work was capable of extracting a total of 129 papers
for bibliometric analysis within the year range 2010–2020. Figure 3a shows the number
of publications per year. As can be observed from the figure, the publication rate in the
earlier years (2010–2013) of this decade was too low; less than five papers were published
each year. After 2013, the number of published articles per year begins to accelerate and
fluctuates in the range of six to nine during the years 2014–2019. However, the number of
published articles increases dramatically in 2019. The number of publications jumps to 29,
which is about 22.48% of the total published papers (by that time). In 2020, the publication
rate also follows an upward trajectory. As a result, until November 2020, forty-two (42)
papers were published, which clearly indicates that by that time, the researchers started
devoting their efforts more towards this research area, and from the analysis, it can be
said that this research field would then undergo a huge increase in publication rate in the
upcoming days. As in our analysis, we modeled the first crucial decade of this research
trend, i.e., up to 2020 would be our range; however, checking the most recent works, we
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also find a similar pattern in 2021 (so far at the time of writing this article, even in 2022);
the increase in the number of published papers is continuing.
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Figure 3. Overview of annual characteristics of the publications. (a) Number of IPT-based publications
over the years (2010–2020). (b) Number of received citations (2010–2020). (c) The H-index of the
publications (2010–2020).

This work has also analyzed the citation rate of publications per year. Figure 3b illus-
trates the distribution of citations achieved by the publications each year. The 129 papers
were cited 3112 times during that period of ten years. The figure shows that the citation
rate follows a continuously increasing trend with the passage of time. If this work divides
the time span from 2010 to 2020 into three phases, then it can be seen from the figure that
in the first phase (2010–2013), the number of citations in each year was less than 50 and the
total number of citations was 51, which covers only 1.54% of the total citations. In the next
phase (2014–2017), the distribution of citations also follows an increasing trend. The highest
number of received citations in this phase is 254 in 2017, followed by 78 and 84 citations in
2015 and 2016, respectively. This phase consists of 18.54% of total received citations.

In the last phase (2018–2020), the number of citations increases significantly. In 2018,
the publications were cited 462 times, and this number jumps to 838 in 2019. This is the
highest increment of received citations by the publications between two particular years.
Finally, in 2020, the publications received 1184 citations, which is the topmost among all the
years in the decade. The last phase covers about 75% of the total citations, which implies
that in recent years, impactful contributions are being made to this chosen research field.

This work also uses an author-level metric named the H-index, which ensures pro-
ductivity and citation impact, to conduct the annual analysis of the publications. Figure 3c
depicts the H-index distribution of the papers over the years. From the figure, it can be
seen that the topmost H-index is 10 in 2019. The years 2018 and 2017 hold the second and
third positions with H-index 9 and 8, respectively. It can also be seen that the H-index
fluctuates over the years over the whole decade. The total H-index for 129 publications
is 23, which means that among the 129 publications, only 23 publications have at least
23 citations. Furthermore, as this H-index is greater in the later part of the decade than in
the earlier part, it can be inferred that the number of influential and productive papers is
increasing in recent years.

4.1.2. The Most Cited Publications

In this work, we have found and analyzed the most influential and popular articles
among the 129 articles based on the received citations by the publications. As a consequence,
we set a threshold of a minimum of 50 citations and were able to extract 15 papers. These
15 papers were cited 2090 times, which is about 67.16% of the total citations received by
all of the publications. As the lion’s share of the citations comes from these papers, the
productivity and influence of these papers in the research domain of image-based crack
detection algorithms are evident.

These top-cited papers are summarized in Table 2 by their title, publication year, pub-
lication source, corresponding author’s name, corresponding author’s country, received
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citations, and average citations per year. This table is ordered based on the number of
citations received by the publications. The highest citation (574) received by any single
article is for the paper entitled “Deep Learning-based Crack Damage Detection Using Convo-
lutional Neural Networks”, which was published in 2017 in “Computer-Aided Civil and
Infrastructure Engineering”. This paper is so influential and popular among researchers
that it received 574 citations within only 4 years, with a citation rate of 134.50 per year. The
second highest on the list, “Crack Tree: Automatic Crack Detection From Pavement Images”,
received 242 citations. This paper was published in 2012 and its citation rate per year
is 26.89.

A deeper analysis reveals that (see Table 2) most of the papers are receiving citations
over the years in a linear manner, but [35–37] are receiving citations at an increasing rate.
Though [36,37] were published in 2019 and 2018, respectively, they received 80 citations,
each with a citation rate of 40 and 26.67 per year, which clearly indicates that along with [35],
these papers are going to contribute significantly in the research field. It also indicates that
these papers are highly influential and receiving attention from the researchers within a
relatively short time. In addition, refs. [38–40] have also maintained a good citation rate
over the years. On the other hand, refs. [41,42] have the least citations (56 and 52), and
their low citation rates (5.60 and 7.43 citations per year) indicate that these papers are not
receiving enough attention from researchers.

Table 2. Summary of the top cited papers.

Reference Journal Corresponding
Author

Country of
Corresponding

Author

Publication
Year Citation Average Citation

per Year

[35] Computer-aided Civil and
Infrastructure Engineering Young-Jin Cha Canada 2017 575 143.50

[38] Pattern Recognition Letters Qin Zou China 2012 242 26.89

[43] Machine Vision and
Applications

Tomoyuki
Yamaguchi Japan 2010 176 16

[39] Computer-aided Civil and
Infrastructure Engineering Shirley Dyke USA 2015 142 23.67

[44]
IEEE Transactions On

Intelligent Transportation
Systems

Henrique
Oliveira Portugal 2013 139 17.38

[45] Computer-aided Civil and
Infrastructure Engineering

Takafumi
Nishikawa Japan 2012 136 15.11

[40]
IEEE Transactions on

Automation Science And
Engineering

Kristin J. Dana USA 2016 118 23.60

[46] Sensors David F. Llorca Spain 2011 115 11.50

[47] Computer-aided Civil and
Infrastructure Engineering Eduardo Zalama Spain 2014 102 14.57

[48] Machine Vision And
Applications Yusuke Fujita Japan 2011 101 10.10

[36] Automation In Construction Cao Vu Dung Japan 2019 80 40

[37] Construction And Building
Materials Sattar Dorafshan USA 2018 80 26.67

[10] Optik Ahmed Mahgoub
Ahmed Talab China 2016 57 11.40

[41] Image And Vision
Computing Qin Zou China 2011 56 5.60

[42] Journal Of Computing In
Civil Engineering

Matthew M.
Torok Japan 2014 52 7.43
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4.2. Influential Journals, Authors, and Countries
4.2.1. The Most Productive Journals

In this subsection, this work describes the most productive publication sources in the
field of image-based crack detection algorithms. The 129 collected papers were published in
64 different journals. However, this work extracted the top 10 publication sources based on
the number of publications. These 10 journals published 68 (52.71%) articles in total among
the 129 papers. The other 54 journals are responsible for the other 61 (47.29%) papers.
Table 3 summarizes these most productive journals by their name, total publications, total
citations, average citations per year, Impact Factor, 5-year Impact Factor, and H-index. The
table is ordered based on the number of publications. From Table 3, it can be seen that
the journal “Computer-aided Civil Infrastructure Engineering” holds the first position
with a total of 11 publications and 1100 citations. The IF (8.552) of this journal is also
quite high. This journal has an H-index of 8, which clearly indicates the popularity of this
journal among researchers. The “Sensors” of “MDPI” is in second place because of its 10
publications and 193 citations.

Table 3. Summary of the most productive journals.

Journal Name Total
Publications

Total
Citations

Average
Citations

Impact
Factor

5 Years Impact
Factor Publisher H-Index

Computer-aided
Civil

Infrastructure
and Engineering

11 1100 122.22 8.552 6.212 Willey 8

Sensors 10 193 21.44 3.275 3.427 MDPI 6

Journal of
Computing in

Civil
Engineering

9 136 19.43 2.979 2.943
ASCE-AMER

SOC Civil
Engineers

6

Automation in
Construction 8 143 71.50 5.669 6.121 Elsevier 4

Construction and
Building
Materials

7 128 21.33 4.419 5.0396 Elsevier 4

IEEE Access 7 15 7.50 3.745 4.076 IEEE 2

Applied Sciences
Basel 5 20 10.00 2.474 2.458 MDPI 2

Structural Health
Monitoring an
International

Journal

4 12 2.00 4.87 4.922 SAGE 2

Advances in
Civil

Engineering
3 23 11.50 1.176 - Hindawi 2

Machine Vision
and Applications 3 277 27.70 1.605 2 Springer 2

The top 5 journals on this list have the higher number of citations. However, it is
quite strange for the other journals. For example, IEEE Access has published seven papers
until now but received only 15 citations. Interestingly, the number of published articles in
other journals would fluctuate from three to five, with a low citation number, which is a
clear indication that the researchers are not paying attention to the journals at the bottom
part of Table 3 for the papers related to the chosen research field of this work. However,
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it is notable that the journal “Machine Vision And Applications”, which has an IF of only
1.605, published just 3 articles, but the papers were cited (already) 277 times. The number
of received citations of this journal implies that the published papers in this journal are
playing a significant role in the research field.

To understand the trend of citations and impact, we were interested in those journals
which published the least number of papers but received a higher citation, so we searched
in the dataset to check for the existence of these journals. We were able to find a few
journals, such as “IEEE Transactions on Intelligent Transportation System” (2 papers, 257
citations), “Pattern Recognition Letters” (1 paper, 242 citations), and “IEEE Transaction on
Automation Science and Engineering” (1 paper, 118 citations).

To understand the historical development of the top publication sources in terms
of publications and citations, we have summarized the information in Table 4. From
Table 4 it can be seen that all of the journals started publishing image-based crack detection
algorithms-related papers regularly in around 2018. Before that period, i.e., 2010–2017,
these journals published merely three to four papers per year except in 2013. In fact, in
2013, these journals did not publish a single paper in this research field (in accordance
with our set criteria). In the case of citations, the understanding is that only three journals,
“Computer-aided Civil Infrastructure Engineering”, “Sensors”, and “Machine Vision and
Applications”, are receiving citations in all of the years, and the rest are receiving citations
from 2015 onwards. Among the journals, “IEEE Access” and “Applied Sciences Basel”
received citations only in 2019 and 2020. It is notable that the journals are following an
upward trend in the case of receiving citations over the years and, as a result, all of the
journals received the maximum number of citations in 2020.

Table 4. Historical development of the journals in terms of the publications and citations.

Journal Name
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

P C P C P C P C P C P C P C P C P C P C P C

Computer-aided
Civil Infrastructure

and Engineering
0 0 0 0 1 2 0 12 2 17 1 7 0 39 1 67 1 196 3 331 2 429

Sensors 0 0 1 0 0 2 0 2 0 3 0 9 0 20 1 22 3 28 3 36 2 71

Journal of
Computing in Civil

Engineering
0 0 0 0 0 0 0 0 1 1 0 4 3 13 0 12 0 23 2 34 3 49

Automation in
Construction 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 25 3 116

Construction and
Building Materials 0 0 0 0 0 0 0 0 0 0 1 3 0 5 0 0 2 6 1 35 2 79

IEEE Access 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 2 3 13

Applied Sciences
Basel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 8 2 12

Structural Health
Monitoring an

International Journal
0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 3 0 0 0 0 3 7

Advances in Civil
Engineering 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 5 1 18

Machine Vision And
Applications 1 0 1 3 0 7 0 10 0 16 0 15 0 32 0 34 0 47 0 50 1 63

P denotes the number of published papers; C denotes the number of citations received by the paper.

4.2.2. The Most Productive Authors

In this subsection, this work will discuss the most productive authors in the research
area of image-based crack detection algorithms. From the dataset collected from WoS,
we found that 425 authors are responsible for 129 papers. We have extracted the top
ten authors according to the number of publications (five authors) and the received citations
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(five authors). Table 5 summarizes the most productive authors by their name, number of
total publications, total citations, average citations per year, number of published papers as
first author, H-index, and country.

Table 5. Summary of the most productive authors.

Author’s Name Total
Publications

Total
Citations

Average
Citations

As 1st
Author H-Index Country

Based on Publications

Ying Chen 5 49 12.25 0 3 China

Zhong Qu 5 44 8.80 5 3 China

Weigang Zou 4 18 9.00 0 3 China

Wei Li 4 9 4.50 1 2 China

Qingquan Li 3 338 37.56 1 3 China

Based on Citations

Young-zin Cha 1 575 143.75 1 1 Canada

Choi Wooram 1 575 143.75 0 1 Canada

Oral Buyukozturk 1 575 143.75 1 1 Canada

Qingquan Li 3 338 37.56 0 3 China

Mao Qin ZOu 2 298 33.11 1 2 China

The first part of Table 5 presents the top five authors who have the highest number of
publications. From the table, it can be seen that the highest number of publications by any
single author is five. “Ying Chen” and “Zhong Qu” both have published five papers, but
“Ying Chen” has received more citations than “Zhong Qu”. However, the interesting thing
is that “Zhong Qu” has published all of his five papers as the first author, while no other
author has published more than one paper as the first author. “Weigang Zou” and “Wei
Li” both have published four papers and received eighteen and nine citations, respectively.
“Qingquan Li” holds the fifth position on this list with three publications. However, with
only 3 publications, “Qingquan Li” received 388 citations, which is a clear indication of
both productivity and the high influence of this author. One more noticeable thing from
the first part of this table is that all of the productive authors in terms of the number of
publications are from China, which implies the significance of Chinese researchers in the
chosen research field (of this work).

The second part of this table presents the top five most cited authors. It is visible
from the table that the first three authors have the same values for all of the measurement
parameters used in this table. They are the authors of the highest cited paper of the dataset
entitled “Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks”.
They published only one paper in the chosen research field and received 575 citations, with
an average of 143.75 citations per year, and proved their excellence in this field. “Qingquan
Li” is the only author among the top ten authors who places in both the first part and
the second part of Table 5. Finally, “Mao Qin Zou” holds 5th place, with 2 publications
and 298 citations. Among the top five authors extracted based on received citations, two
authors are from China and the other three are from Canada. However, “Young-zin Cha” is
also a Chinese researcher who was working at the University of Manitoba, Canada during
the publication of his paper.

4.2.3. The Most Productive Countries

Let us now see the most productive countries in the research domain of image-
based crack detection algorithms. From the dataset collected from WoS, it is found that
29 countries are responsible for 129 papers. Figure 4 presents the geographical distribution
of the papers around the world. In this figure, crimson-colored countries published more
papers than lavender-colored ones. If we analyze the contributions of the continents in
the case of publishing papers, then it can be observed that Asia is the supreme continent,
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publishing 58.43% of all the publications. America, Europe, and Australia are responsible
for 20.48%, 15%, and 3.61% of the published papers, respectively, while the remaining
2.48% comes from the other parts of the globe.

Figure 4. Geographical distribution of the publications.

After presenting the geographical distribution of the publications, our work extracted
the top 10 countries based on the number of publications. Table 6 summarizes the most
productive countries by their names, total publications, total citations, average citations per
year, the number of cited papers greater than or equal to 30/20/10/5, and the H-index. This
table is ordered based on the number of published papers by each country. From Table 6, it
can be seen that China is the leading country, with 54 publications and 722 citations. The
H-index (14) of China is also the highest among these countries, along with the USA. The
next country on the list is the USA. The number of published papers (29) from the USA
is less than China, but the total number of citations (1450) is not only greater than China,
but also the highest among all the countries. Again, the USA has the highest number of
publications (8) and received greater than or equal to 30 citations. The USA claims the
highest rate of citations (161.11) per year. South Korea holds the 3rd position on the list,
with 13 articles and 104 citations. Following South Korea, Japan published 11 articles with
551 citations. However, the citation rate of South Korea (52) is quite close to Japan (55.10),
though there is a huge difference between their citations.

With a deeper understanding, if we check Table 6, then it can be found that despite
being number 5 on the list with 7 publications, Germany has received only 21 citations,
while Canada and Spain received 584 and 252 citations, respectively, for only 5 publications,
which clearly denotes the influence of the papers published from these countries. England,
Australia, and Vietnam published 5, 4, and 3 papers, respectively, and received 21, 16, and
90 citations. However, there are also a few other countries in the dataset that are not
present in the top 10 countries, but they received greater citations with the least number of
publications. This fact indicates the significance of the papers published in those countries,
e.g., Portugal (1 publication, 139 citations) and India (2 publications, 98 citations).
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Table 6. Summary of the most productive countries. TP (total publications), TC (total citations), AC
(average citations).

Country TP TC AC ≥30 ≥20 ≥10 ≥5 H-Index

China 54 722 60.57 5 9 5 3 14

USA 29 1450 161.11 8 3 21 24 11

South Korea 13 104 52 6 1 5 1 7

Japan 11 551 55.10 2 1 1 2 6

Germany 7 21 4.89 0 0 1 2 3

Canada 5 584 23.14 3 1 0 1 5

Spain 5 252 12.10 2 2 1 0 5

England 5 21 5.33 0 0 2 1 4

Australia 4 16 3.56 0 0 1 1 3

Vietnam 3 90 13.13 1 1 0 1 3

4.3. Science Mapping Analysis
4.3.1. Co-Citation Analysis

This work considered co-citation analysis as one of the techniques for science mapping
analysis. Co-citation occurs when a pair of published articles, say, x and y, are cited
together in any other published document z. In this section, this work will present a
co-citation analysis by using cited sources and cited authors as the unit of analysis to show
the relatedness between the journals and authors in terms of the research focus. If two
sources or two authors are cited together, it goes without saying that they have a common
research interest. This work set a threshold of at least 30 citations and found 20 sources
that satisfied the threshold. Table 7 presents these sources with the total link strength of
co-citation. This table is ordered by the total link strength of the journals. The total link
strength of a source refers to the sum of link strengths between that source and all other
sources, whereas link strength is the frequency of co-citation between the two sources in a
third source.

For a better analysis, this work generated the scientific landscape of co-citation network
of the journals using the VOSviewer software (Figure 5).

Figure 5. Co-citation analysis of the sources.
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Table 7. Co-citation indices of the sources.

Cited Source Citation Total Link Strength

Computer-aided Civil Infrastructure and Engineering (compute-aided civ inf) 363 5201

Automation in Construction (automat constr) 183 3053

Journal of Computer in Civil Engineering (j comput civil eng) 178 2943

Proceeding CVPR IEEE (proc cvpr ieee) 112 1905

IEEE Transactions on Pattern Analysis and Machine Intelligence (ieee t pattern anal) 98 1541

IEEE Transactions on Intelligent Transportation Systems (ieee t intell transp) 78 1364

Lecture Notes in Computer Science (lect notes comput sc) 63 1105

Construction and Building Materials (constr build mater) 72 1010

Machine Vision and Applications (mach vision appl) 63 933

Sensors (sensors-basel) 70 924

Advanced Engineering Informatics (adv eng inform) 48 881

IEEE Conference on Computer Vision and Pattern Recognition (ieee i conf comp vis) 39 806

Structural Health Monitoring (struct health monit) 36 707

Structural Control and Health Monitoring (struct control hlth) 44 677

Pattern Recognition Letters (patetrn recogn lett) 45 623

Transportation Research Record (transport res rec) 39 602

NDT & E International (ndt & e int) 34 463

IEEE Transactions on Image Processing (ieee t image process) 30 432

Smart Materials and Structures (smart mater struct) 30 360

From Figure 5, it can be seen that the journals have been divided into a total of
3 clusters (red, green, blue) with 190 links and 13,484 link strength in total. Each node in
Figure 5 represents the corresponding journal. The bigger the node, the higher the weight.
For the co-citation analysis, total link strength has been selected as the weight in this work;
that means the sources which have higher weight have higher link strength. The connection
line between two consecutive journals illustrates that these two sources have been cited
together in a publication. The thicker the line, the more frequently they have been cited
together. The interesting issue about the clusters is that all the sources of each cluster have
been cited along with the sources of all other clusters.

With a deeper perspective, it can be noticed that the red cluster contains a total of
10 sources (50%). The prominent journal in the red cluster as well as all the clusters is
“Computer-aided Civil Infrastructure and Engineering”, with 19 links and a total link
strength of 5201. The journal has been cited with all the other journals; however, it has been
cited the most times (819) along with the journal “Automation in Construction”, which
clearly indicates the high relatedness of these two journals in this specific research field.
“Automation in Construction” achieves the second position, with a total link strength of
3053 in the red cluster. The other influential sources in this cluster are “Journal of Computer
in Civil Engineering” (2943), “Construction and Building Materials” (1010), “Machine
Vision and Applications” (933).

The second cluster (green) consists of seven sources. The most influential source in
this cluster is “Proceeding CVPR IEEE”, with a total link strength of 1905. This source
has been cited the most times (476) with the journal “Computer-aided Civil Infrastructure
and Engineering”. The other influential journals of this cluster are “IEEE Transactions on
Pattern Analysis and Machine Intelligence” (1541) and “IEEE Transaction on Intelligent
Transportation System” (1438). The interesting point about the green cluster is that the
sources of this cluster have been cited more times with a few sources of the red cluster
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(“Computer-aided Civil Infrastructure and Engineering”, “Automation in Construction”,
“Journal of Computer in Civil Engineering”) than the sources of its own cluster, which
undoubtedly indicates the high influence of those three sources of the red cluster in the case
of co-citation. Finally, the blue cluster consists of only three sources. The highly influential
source of this cluster is “Advanced Engineering Information”, with total link strength of
881. The other two sources of this cluster are situated closely in Figure 5, but “Advanced
Engineering Information” is situated far away from the other two journals of the blue
cluster. The sources of the blue cluster have been cited more times with the highest sources
of the red and green clusters than the sources of the blue cluster. It implies that though the
sources of the blue cluster have relatedness based on their research topic, over the years,
these sources have not been cited too many times together.

After analyzing the co-citation network of cited sources, this work analyzes the co-
citation network of cited authors. As a consequence, this work set a threshold of at least
30 citations, and among 2361 cited authors, only 14 authors met the threshold. Table 8
presents these cited authors with the total link strength of co-citation. This table is ordered
by the total link strength of the authors.

Table 8. Co-citation indices of the authors.

Cited Author Citation Total Link Strength

Young-Jin Cha 363 5201

Tomoyuki Yamaguchi 77 387

Qinayun Zhang 52 372

Mohammad R. Jahanshahi 44 314

Qiang Zou 44 255

Christian Koch 37 254

Abed Abdel Qader 39 253

Fu-Chen Chen 31 250

Lei Zhang 33 245

KM Liew 35 240

Yann LeCun 33 220

Henrique Oilveira 49 219

Yusuke Fujita 32 208

Sattar Dorafshan 38 202

For better understanding, we have generated the scientific landscape of the co-citation
network of the cited authors using VOSviewer software, as shown in Figure 6.

From Figure 6, it can be seen that the authors have been divided into a total of 2 clus-
ters (red, green) with 91 links and a total link strength of 1973. Like the cited sources in
the case of cited authors, total link strength has been selected as the weights of the nodes.
If there is a connection line between two authors, then it indicates that the authors have
been cited together in any other publications. The thicker the line, the more frequently
the authors have been cited together. It can be seen that the red cluster contains a total of
nine authors. The leading author in this cluster is “Young-jin Cha”, with a link strength of
527. The author has been cited the most times (59) with “Qinayun Zhang”, which clearly
indicates that their publication focus is on a similar type of research topic. Young-Jin
Cha is also cited many times along with other authors, such as “Fu-Chen Chen” (50),
“Yann LeCun” (49), and “Tomoyuki Yamaguchi” (49). The other influential authors accord-
ing to total link strength in this cluster are “Qinayun Zhang” (372), “Qiang Zou” (255), and
“Fu-Chen Chen” (250). The cited authors of the red cluster have higher citation linkage
with the authors of the red cluster rather than the authors of the green cluster.
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Figure 6. Co-citation analysis of the cited authors.

The green cluster consists of five authors. The most prominent cited author of this
cluster is “Tomoyuki Yamaguchi”, with 387 link strength. This author has the maxi-
mum link strength with “Yu Fujita” (64), and he has also a higher link strength with
“Mohammad R. Jahanshahi” (56). The other influential authors of this cluster include “Mo-
hammad R. Jahanshahi” (314) and “Christian Koch” (255). Like the red cluster, the cited
authors of the green cluster have higher citation linkage with the authors of the green clus-
ter rather than the authors of the red cluster. So, this thing is different from the co-citation
network of cited sources. In case of cited sources, few sources are so influential that they
have a higher citation linkage with the sources of all the clusters.

4.3.2. Co-Authorship Analysis

Collaboration in research works is very important to produce creative ideas and
implement them in an easier and smarter way, as one individual can find it too difficult to
complete a research task. Co-authorship analysis is another technique that has been used
in this work as a bibliometric measurement. In this section, this work will present a co-
authorship analysis by using countries and institutions as the units of analysis to show the
collaboration pattern among the authors of different countries and institutions. In the case
of the co-authorship analysis of the countries, this work set a threshold of a minimum of
5 documents per country and found 8 countries among the 29 countries which satisfied the
threshold. Table 9 presents the countries by total link strength. This table is ordered by the
total link strength of the countries.
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Table 9. Co-authorship indices of the countries.

Country Documents Total Link Strength

China 54 18

USA 29 9

Canada 5 5

Germany 7 4

England 5 3

South Korea 13 3

Spain 5 3

Japan 11 1

For a better analysis, we have generated the scientific landscape of the co-authorship
network of the countries using the VOSviewer software (Figure 7).

Figure 7. Network visualization of co-authorship of the countries.

From Figure 7, it can be seen that the countries have been divided into a total of three
clusters (red, green, blue). Each node in Figure 7 represents a country. The bigger the node,
the more the country has collaborated with other countries. The connection line between
the two countries reveals the presence of collaboration between the countries. The thicker
the line, the more frequently the countries have collaborated. It is clear here that the red
cluster is the prominent one among the clusters; it has four countries in total. Among the
countries in the red cluster, “China” is the leading one, with a total link strength of 18.
China has collaborated with all the other countries in Figure 7, which clearly indicates the
productivity and significance of China. However, China has collaborated the most times
(7) with the USA. The next influential country in the red cluster is the “USA”, with a total
link strength of 9. However, the USA has collaborated with only three countries (China,
South Korea, Canada). South Korea and Canada have collaborated with only China and
the USA. In the green cluster, there are only three countries. In this cluster, all the countries
are from Europe (Germany, Spain, England). These countries are collaborating with each
other along with China, which implies that European researchers in this particular area
generally collaborate with other European researchers. Finally, Japan is the only country in
the blue cluster. Though Japan is an Asian country, it is not in the same cluster as China.
However, Japan is collaborating with only China, with a link strength of 1.

4.3.3. Co-Occurrence and Timeline View Analysis

Keywords of a research paper are very important tools for understanding the research
topic of an article. The keywords are said to co-occur when they are present in a single
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article. In this subsection, this work will present a co-occurrence analysis of the keywords
to map the research trends and highlight the research hotspots in the field of image-based
crack detection algorithms. From the total 129 publications, we have obtained 519 keywords
altogether using VOSviewer. Among the 519 keywords, 30 keywords satisfied the threshold
that we set as the least number of co-occurrences of a keyword (value 5). Figure 8 presents
the network visualization of the publications’ keyword co-occurrences.

Figure 8. Network visualization of co-occurrences of the keywords.

The keywords are presented by the nodes or circles in Figure 8. The size of a node
reveals the weight or the number of occurrences of a keyword. The bigger nodes represent
the most weighted or frequently occurring keywords. On the other hand, if any circle
or node is small, then it means that the keyword has not occurred so many times in the
publications. According to the terminology, it can be noticed from Figure 8 that “crack
detection” is the keyword with the highest number of occurrences. A few other keywords
with a higher number of occurrences include “deep learning” (25), “damage detection” (21),
and “system” (17). The connection line between the nodes is also important information. If
there is a line between two nodes, then it implies that these keywords appeared together.
The thickness of these lines reveals the link strength; in other words, it indicates the number
of co-occurrences between the keywords. The thicker the line is, the more co-occurrences
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the keywords have. From Figure 8, it can be noticed that the keyword “crack detection”
has the highest link strength (121) among the keywords. The node “crack detection” has
a higher link strength or a thicker line with “deep learning” (11), “image processing”
(9), “concrete” (9), and “damage detection” (9). The relationship of “deep learning”,
“image processing”, “concrete”, and “damage detection” with “crack detection” implies the
close integration between the keywords. It is a clear indication that during those crucial
10 years, deep learning-based image processing was highly utilized for detecting cracks
and damage on reinforced concrete structures.

Another important thing in Figure 8 to notice is the distance among the nodes. The
distance among the nodes represents the semantic similarity of the keywords. The key-
words which have stronger similarity are situated within a shorter distance. In contrast,
a longer distance denotes a lower similarity between the nodes. VOSviewer divides the
keywords of a dataset into several clusters or sets of keywords based on their similarity.
From the same figure, it can be observed that the keywords are divided into a total of
three clusters denoted by three different colors (red, blue, and green). Table 10 summarizes
the clusters.

Table 10. Summary of the resulting clusters related to keywords analysis.

Cluster Color Observed Keywords No. of Keywords

Red
damage detection, algorithm, identification, model,

system, inspection, deep, convolutional neural network,
neural-network, recognition, CNN, images

12

Green

deep learning, crack, neural-networks, pavement crack
detection, 3d asphalt surfaces, semantic segmentation,

structural health monitoring, computer vision,
image processing

9

Blue
crack detection, concrete, edge detection, vision, bridge

inspection, segmentation, edge-detection, road crack
detection

9

From Figure 8, it can be noticed that the red cluster is the prominent one among the
clusters containing 12 keywords. The most frequent keyword in the red cluster is “damage
detection” (21), which has a total of 25 links; this means that it co-occurred with 25 different
keywords in the articles. The other notable keywords in this cluster include “system” (17),
“algorithm” (16), “inspection” (14), and “model” (12), which highlight the technical and
mathematical aspects in the case of damage or crack detection. The green cluster’s core is on
“deep learning” (25), with a close linkage with other keywords such as “image processing”
(18) and “computer vision” (9), highlighting the importance of deep learning-based IPTs for
crack detection. The blue cluster connects “crack detection” (45), which is the most frequent
keyword in the publications, with “concrete” (12), “segmentation” (11), and “convolutional
neural network” (11), highlighting the crack detection and segmentation on reinforced
concrete structures.

After analyzing the clusters, we have extracted the top 10 keywords in the publications.
Table 11 summarizes the top 10 keywords with their frequencies, links, and link strength.
This table is ordered by the frequency of the keywords. From Table 11, it can be observed
that among the keywords, “crack detection”, “damage detection”, “system”, “inspection”,
and “identification” are connected with all other keywords on the list, so each of them has
nine links, which clearly indicates that these terms are closely integrated and indivisibly
connected, as well as that they are the core keywords in this research area. One more
noticeable thing from this table is that the keywords which have higher frequencies may
not have higher link strength in all cases. For example, “image processing” is at number
4 on the list based on the frequency (18) and has 7 links, but its link strength is only 19,
which indicates that it has not co-occurred so many times with other keywords.
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Table 11. Summary of the top 10 keywords.

Keyword Frequency Links Link Strength

crack detection 45 9 61

deep learning 25 9 44

damage detection 21 9 46

image processing 18 7 19

system 17 9 37

algorithm 16 7 27

inspection 14 9 39

model 12 7 33

identification 12 9 27

concrete 12 7 21

For this work, we have also made a timeline view of the keywords (which met the
threshold) using the CiteSpace software to present the development trend of the important
topics during 2010–2020 (Figure 9). From Figure 9, it can be noticed that there are a total of
four stages in terms of time. In the first stage, from 2010 to 2013, the prominent keywords
were “neural network”, “crack detection”, “image processing”, and “computer vision”. The
research on crack detection in this stage was dependent on Neural Networks and image
processing. In the later stage, from 2013 to 2016, the research on crack detection began to
increase and especially focused on the mathematical models and technical aspects. For
this reason, the prominent keywords of this period were “algorithm”, “system”, “model”,
and “inspection”. The research on crack detection had a revolution during the third stage
(2016–2019). The researchers started utilizing deep learning- and convolutional neural
network-based techniques to detect cracks in reinforced concrete structures. The notable
keywords of this period were “deep learning”, “convolutional neural network”, “pavement
crack detection”, and “bridge inspection”. Finally, in the last stage from 2019 to 2020, the
number of keywords is too low. In this stage, the specific focus was on “structural health
monitoring” and “3d asphalts surfaces”. As per our observation, this happened due to the
emergence of state-of-the-art technologies already in the third stage (2016–2019). These
technologies were also employed in 2019–2020, and no newer technology was developed
for detecting cracks during that time period. Table 12 lists the keywords of crack detection-
related publications that occurred during the four different periods.

Figure 9. The timeline view of the keywords.
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Table 12. The keywords of crack detection-related publications occurred during four different periods.

Periods Keywords

2010–2013 neural network, crack detection, segmentation, concrete, edge
detection, computer vision, image processing

2013–2016 algorithm, system, identification, damage detection, crack, image,
model, inspection

2016–2019
pavement crack detection, bridge inspection, recognition, deep,
cnn, crack enhancement, convolutional neural network, deep

learning, vision

2019–2020 structural health monitoring, 3d asphalt surfaces

5. Critical Analysis

After analyzing the previous survey papers and performing bibliometric analysis
based on keywords, we have found out that in recent years, DL methods are more viable
and have received much more attention from researchers. As a consequence, we decided to
present a critical analysis of the papers based on DL techniques (especially) for elucidating
and acquiring knowledge on DL methods used for crack detection. Therefore, after omitting
the articles based on traditional techniques by using the methodology described in Section 3,
this work ended up with 65 papers (Figure 2). We have grouped these 65 papers based on
the type of computer vision technique used in them, i.e., classification, object detection,
and segmentation. Then, we analyzed the 65 papers based on their problem statements,
methodologies, and results. After summarizing the papers, we have brought forward some
questions as follows:

• Q1. Which DL method is used in an article?
• Q2. Which backbone is used by the DL method?
• Q3. Which DL library is used by an article?
• Q4. Which datasets are used by an article?
• Q5. Which concrete surface is taken into consideration by an article?
• Q6. Which loss function is used in an article?
• Q7. Which optimizer is used in an article?
• Q8. Which annotation tool is used by an article?
• Q9. What performances are achieved by an article?

The answers to these are summarized in Tables 13–15 for the papers of different categories.

5.1. Classification

In [49], Tran et al. presented a two-step sequential Mask region-based Convolutional
Neural Network (Mask-RCNN) model to classify pavement crack type and severity level
of the cracks. The authors trained, validated, and tested their model using 32,563 images
which were collected by a CMOS vision sensor mounted on a road screening vehicle.
After completing the training process, the model was able to classify three types of cracks
(i.e., longitudinal, transverse, fatigue) as well as the severity level of the cracks (i.e., low,
medium, high). Tran et al. mentioned that the model was 92.10% accurate and showed
96.32% and 94.67% average precision and recall, respectively. The authors compared their
methods with a few other classification techniques and showed that their model was
more accurate than others, and they also claimed that they performed crack classification
problems with the highest (nine) number of classes. Moreover, the authors measured the
widths of the cracks; though the predicted width was slightly different from the original
width that they considered, this error, however, is acceptable.

In [50], Wang et al. proposed a new framework for detecting cracks by fine-tuning
the AlexNet architecture. The authors considered the class imbalance problem and the
presence of disturbance on non-crack images and solved the issues by developing an active
learning method. The proposed framework used a sliding window approach to filter out
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the images and divided one image into four training images, which increased the number
of training images and facilitated the classification task. Wang et al. trained their model
and obtained 97.55% accuracy. In addition, the authors compared their model with ChaNet
and showed that their method outperformed ChaNet in terms of all evaluation metrics.

In [51], Zhang et al. proposed a hybrid method based on IoT (Internet of Things)
technology and a CNN model for classifying cracks as well as monitoring the structural
health condition of concrete bridges in real time. In this work, Zhang et al. first preprocessed
the crack images by converting the images into grayscale, increasing the contrast using a
piecewise linear function, and denoising the images using wavelet transformation. Then,
the authors developed a CNN model to classify different types of cracks (i.e., small, large,
serious cracks) for measuring the severity level of the cracks. Zhang et al. trained their
model with 300 images and obtained an accuracy of more than 90%.

In [52], Dung et al. detected cracks on the joints of bridges using three deep learning
methods. Firstly, the authors developed an SCNN model from scratch to classify crack
images. Secondly, the authors utilized a pre-trained VGG-16 model and finally fine-tuned
the top layers of the VGG-16 model for detecting cracks. The authors trained the model by
using the images collected from a previous fatigue crack inspection at Tokyo University and
demonstrated that the third method outperformed the previous two methods in terms of
accuracy (97%), while the other two methods produced 90% and 94% accuracy, respectively.
They also mentioned that data augmentation helped to increase the accuracy at a rate of
5%, 2%, and 5% of the models, respectively.

In [35], Cha et al. presented a CNN-based approach to classify concrete images as
“crack” or “non-crack”. The authors designed their model with 4 convolution layers,
2 pooling layers, and 1 softmax layer and trained the model with 332 images collected
from a building of the University of Manitoba, Canada. After training the model, Cha
et al. tested their model with 55 images and the model was able to classify the images
successfully with an accuracy of 98.22%. They compared their model with the Canny edge
detector and Sobel operator and demonstrated the advantage of the CNN model over the
traditional models.

In [53], Nehdi et al. presented a classifier based on CNN and Otsu image processing
techniques for classifying the presence of cracks and the position of cracks in concrete
structures. The authors trained their model with 20,000 images and achieved 96.17%
accuracy. Nehdi et al. developed their classifier in such a way that it can classify three
things (i.e., crack or not, the position of cracks, a combination of two) simultaneously. The
authors also quantify the length, width, and angle of the cracks successfully.

In [37], Dorafshan et al. compared the performance of a few conventional edge
detectors (i.e., Roberts, Prewitt, Sobel, etc.) methods with Deep Convolutional Neural
Networks (DCNNs) for classifying cracks in concrete images. The authors considered
AlexNet as the DCNN model and trained it in three different modes (i.e., Fine-tuned,
Transfer learning, and classifier). Dorafshan et al. mentioned that the AlexNet models
achieved 97–98% classification accuracy, whereas the traditional methods managed to
achieve 53–79% accuracy. They also showed that AlexNet with a transfer learning scheme
obtained the highest accuracy.

In [54], Gopalkrishnan et al. deployed a DCNN framework based on a truncated
VGG-16 model for classifying asphalt and Portland cement concrete images as “crack” or
“non-crack”. The authors utilized a subset of images from the dataset of FHWA and LPTT
programs. Then, they extracted features using the pre-trained VGG-16 model and classified
crack images using different classifiers (i.e., NN classifier, Random Forest, SVM, Logistic
Regression). Gopalkrishnan et al. demonstrated that the NN classifier along with the
VGG-16 model obtained the highest (90%) classification accuracy.

In [55], Yang et al. presented a transfer learning method based on VGG-16 to clas-
sify cracks on civil infrastructures. They trained their model on three different datasets
(i.e., CCIC, BCD, SDNET) and obtained an accuracy of 99.83%, 99.72%, and 97.07%, re-
spectively. Yang et al. presented three modes of transfer learning (i.e., sample transfer
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learning, model transfer learning, and parameter transfer learning) and demonstrated that
the parameter transfer learning mode is the best among all three models.

In [56], Li et al. presented a deep learning model by modifying the AlexNet architecture
and integrating the Exhaustive Search Technique into the CNN model for classifying cracks
on concrete structures. The authors prepared a dataset containing 60,000 images and after
training the model, they achieved 99.07% accuracy. In addition, Lie et al. integrated their
trained model into a mobile phone application so that people can detect cracks easily.

Table 13. Summary of Deep Learning techniques for crack classification.

Ref Method Backbone Framework Dataset Surface Loss Function Optimizer Performance (%)

[49] Mask
RCNN ResNet-101 Keras,

Tensorflow
Own

collection
Asphalt

pavement - Adam
Accuracy = 92.10%,
Precision = 96.32%,

Recall = 94.67%

[50] CNN AlexNet MATLAB Own
collection

Concrete
structure Cross entropy -

Accurac y = 97.22%,
Precision = 90.53%,

Recall = 83.37%,
F1-score = 84.63%

[51] CNN - MATLAB
2016A

Own
collection Bridge deck - Back

propagation Accuracy = 90%

[52] CNN VGG16 -
Metropoliton
expressway

Co. Ltd.
Bridge deck Binary

cross-entropy

Stochastic
Gradient
Descent
(SGD)

Accuracy = 97%

[35] CNN MatConvNet -

Own
collection

from
University of

Manitoba

Concrete
structures

Softmax loss
function SGD Accuracy = 98%

[53] CNN - - CCIC Concrete
structures

Binary
cross-entropy

Natural
Gradient
Descent
(NGD)

Accuracy = 96.17%

[37] DCNN AlexNet MATLAB
2018A

Simulated
panels from
SMASH Lab

Bridge deck - - Accuracy = 97%

[54] CNN VGG16 Keras FHWA, LTPP Pavement - Adam
Accuracy = 90%,
Cohen’s Kappa
score = 74.2%

[55] DCNN VGG16 Keras CCIC, SDNET,
BCD

Concrete
structures - - Accuracy = 99.15%,

92.59%, 98.97%

[56] CNN AlexNet Caffe Own
collection

Concrete
structures

Softmax loss
function SGD Accuracy = 99.06%

‘-’ denotes the paper did not provide the particular information.

5.2. Detection

In [57], Deng et al. utilized a modified form of the You Only Look Once (YOLO) version
2 algorithm where the base extractor was the VGG-16 architecture for detecting cracks using
bounding boxes on concrete surfaces having a complex background for the first time. The
authors took two classes (i.e., crack, handwriting scripts) into account and gathered images
to train their model for distinguishing cracks from handwritten scripts on concrete surfaces.
After training the model, the authors evaluated the model’s performance and robustness by
using three images containing both cracks and handwritten scripts. Deng et al. showed that
their model successfully detects objects like cracks and handwritten scripts with confidence
scores of each class. The authors also compared their model with the Faster-RCNN model
and observed that their model outperformed the Faster-RCNN model in terms of accuracy
and inference speed.

In [58], Li et al. designed a convolutional neural network called Skip-Squeeze-and-
Excitation Networks (SSENets) by embedding Skip-Squeeze-Excitation (SSE) module and
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the Atrous Spatial Pyramid Pooling (ASPP) module with CNN layers for detecting cracks
on concrete bridges. The authors utilized the SSE module for reducing the vanishing
gradient problem as well as the computational complexity of the deeper network. They
used an ASPP module containing a depthwise separable convolutional layer for extracting
features of a crack image in a multi-scale rate which facilitated the model to detect the
cracks with different widths. Li et al. trained their model with the Xu et al. dataset [59] and
got 97.77% accuracy for detecting cracks. After detecting crack successfully, the authors
compared their model with Xu’s model and ResNets model and they showed that their
model performed better in terms of accuracy, F1 score, and running time.

In [60], Chen et al. presented a deep learning framework consisted of a CNN model
and Naive-Bayes decision-making algorithm for detecting cracks with bounding boxes
at underwater nuclear power plant surfaces. The authors maintained the spatiotemporal
coherence using the CNN and discarded false-positive samples by the Naive-Bayes fusion
scheme. The authors demonstrated that their model achieved a 98.3% hit rate while the
false positive rate was only 0.1%.

In [61], Park et al. utilized tiny YOLO for detecting cracks in real-time on concrete
structures. In this work, the authors also quantify the crack images using structured light
projected from laser beams. To avoid the installment error of the sensors, Park et al. used
the Jig module and successfully measured the lengths and the widths of the cracks. They
claimed that their model successfully detected cracks with bounding boxes where the
model achieved 94% accuracy and 98% precision.

In [62], Majdifard et al. presented a hybrid method based on YOLO v2 and U-Net
for segmenting cracks and detecting crack severity on road images. In a previous work,
Majdifard et al. built a dataset and trained their model using YOLO V2. However, in this
later work, they integrated U-net and detected different types of cracks (i.e., alligator crack,
block crack, longitudinal crack) accurately by eliminating the presence of shadow problem,
presence of cars on the roads, and various other problems. The authors also compared their
method’s condition index with PASER (Pavement Surface Evaluation and Rating) ratings.

In [63], Deng et al. proposed a faster region-based convolutional neural network
(Faster-RCNN) for detecting cracks on the concrete bridges with contaminated backgrounds
(i.e., presence of handwritten scripts). The Faster-RCNN model consisted of RPN which
was utilized to generate bounding boxes and the Fast-RCN model for detecting cracks
and handwritten scripts. The authors extracted the crack features by using Zeiler-Fergus
Network (ZF-Net) as the base CNN model for which 5 shareable layers were shared by both
RPN and Fast-RCN. The authors trained their model with 160 images and demonstrated
that their model can successfully detect tiny cracks and handwritten scripts. Deng et al.
also compared their model with YOLO V2 and claimed that their model is superior.

In [64], Li et al. proposed a crack detection framework named Crack Deep Network
(CrackDN) for detecting sealed and unsealed cracks on road images. The authors developed
the CrackDN model based on a FRCNN architecture where they used ZF-Net as the feature
extraction module. Li et al. integrated a sensitivity detection network along with ZF-Net
and added them to a Region Proposal Refinement Network (RPRN) for detecting the cracks.
The authors collected images by mounting smartphones and cameras and trained their
model using the images of different complex backgrounds (i.e., variation of illuminations,
shadings, and markings on-road). Li et al. evaluated their model in terms of accuracy,
precision, and recall and also compared the performance with faster-RCNN and SSD300.
They demonstrated that their model performed better than the compared models with
respect to all evaluated metrics.

In [65], Ma et al. presented an FCN model based on ResNet-101 to detect and localize
cracks on pavement images. The proposed model utilized the base model (ResNet-101) for
feature extraction, RPN for predicting the cracks as well as generating the bounding boxes,
and a position-sensitive ROI (Region of Interest) pooling for predicting the output map.
The authors trained their model by using both CCIC and CIDB datasets and got 91.4%
and 86.4% accuracy respectively. Ma et al. examined the influence of data augmentation
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and online hard example mining techniques on their model and claimed that using the
techniques increased their model’s accuracy.

In [66], Co et al. presented a model based on Alex-Net for detecting cracks on concrete
surfaces. They collected images from concrete surfaces and categorized them into a total of
five classes including cracks, plants, intact surfaces, two crack-like patterns. They trained
the model using transfer learning and fine-tuned the Alex-Net. After classifying the images,
Cho et al. utilized a probability map in the third stage and detected the cracks with
bounding boxes. Their model produced accuracy, precision, and recall of 98%, 86.73% and
88.68% respectively. They utilized a drone to capture real images and performed an on-site
experiment. The authors demonstrated that their model successfully detected cracks except
for only one thin crack.

In [67], Chang et al. compared the performance of eight different deep learning models
for detecting different types of cracks on road images. The authors considered 4 models
based on SSD (i.e., SSD MobileNet-v1, SSD MobileNet-V2, SSD inception V2, SSDLite-
MobileNet-V2) and 4 models based on faster R-CNN (i.e., Faster RCNN inception V2,
Faster R-CNN ResNet-50, Faster-RCNN ResNet-101, Faster RCNN Inception ResNet-V2)
for comparison. The authors utilized a dataset containing 15,435 images to train and
evaluate the models. Cheng et al. demonstrated that the Faster-RCNN models performed
better in terms of mAP (mean Average Precision) while SSD models are faster in terms of
inference time than the Faster RCNN models.

In [68], Li et al. presented a DL model based on coarse-to-fine region localization method
for detecting cracks on concrete tunnels. They collected images from different tunnels and
annotated as well as processed them. After that, the authors designed a Faster RCNN model
with 5 regular CNN layers, an RPN layer for localizing cracks, and an ROI pooling layer for
classifying cracks. Finally. Li et al. deployed an edge detection-based method based on a
median filter for generating fine detection of the results. They trained their model with their
own dataset and their model detected cracks successfully with 93.6% mAP.

Table 14. Summary of Deep Learning techniques for crack detection.

Ref Method Backbone Framework Dataset Surface Loss Function Optimizer Annotation
Tool Performance (%)

[57] YOLO v2 VGG16 MATLAB
2019A Own collection Concrete

bridges SDGM SGD
Labeler
app in

MATLAB
map = 77%

[58] SSENets VGG16 Pytorch
Bridge crack

dataset of
Xu et al. [59]

Bridge
deck - SGD -

Accuracy = 97.77%,
Precision = 95.45%,

Recall = 97.67%

[60] NB-CNN Customized
CNN - Own collection

Nuclear
power
plant

- - Manually Hit rate = 98.3%,
AUC = 79.2%

[61] YOLO
V3-tiny

Customized
CNN - Own collection Concrete

structures - - YOLO
V3-tiny

Accuracy = 94%,
Precision = 98%

[62] YOLO v2 +
U-Net - - Own collection Pavement - GEP

Python
based

software

F1-score = 84%,
Precision = 93%,

Recall = 77%

[63] Faster
R-CNN ZF-net MATLAB

2018B Own collection Bridge Momentum loss
function SGD

Labeler
app in

MATLAB

mAP = 79%,
F1 = 67%

[64] CrackDN Customized
CNN Tensorflow Own collection Pavement Multitask loss

function - - Accuracy = 85%

[65] FCN ResNet-101 Caffe CCIC,CIDB Pavement Binary
cross-entropy SGD Manually Accuracy = 91.4%,

86.4%

[66] CNN AlexNet MATLAB Own collection Concrete
structures - - -

Average
precision = 86.73%,

Average recall = 88.68%

[67] Faster
R-CNN, SSD - - BCD Road - - - mAP = 27.66%, 19.45%

[68] Faster
R-CNN ZF-Net Caffe Own collection Tunnel Regression loss SGD Manually mAP = 93.6%

‘-’ denotes the paper did not provide the particular information.
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5.3. Segmentation

In [69], Li et al. presented a convolutional encoder–decoder network (CedNet) for
detecting the cracks at the pixel level by using the DenseNet-121 architecture as the encoder
part of the proposed CedNet. In this work, the authors built a dataset for crack detection
including 1800 images and trained the model by utilizing their own dataset. After suc-
cessfully detecting the cracks with 98.90% accuracy, the authors performed perspective
transformation to correctly construct the distorted predicted images. They also measured
the width of the cracks and determined the orientation of the cracks by employing the Eu-
clidean distance transformation and least square principle, respectively. Li et al. compared
their model’s performance with Mask-RCNN as well as FCN and showed that their model
was able to detect cracks more accurately than those two models even if the crack was thin.

In [70], Huyan et al. proposed an encoder–decoder-based architecture named CrackU-
Net by improving the “U”-shaped model U-Net for detecting cracks on pavement images.
the authors deployed a 3D data collection system for building the dataset, which consisted
of 3000 images. In this work, Huyan et al. took the problem of false positive crack detection
into consideration and successfully improved it using their model. The proposed model
produced 99.01% accuracy and it outperformed some well-known traditional methods (e.g.,
Sobel, Roberts, LG) as well as FCN and U-Net for the pixel-level segmentation of pavement
crack images.

In [71], Chen et al. exploited the rotation-invariant property of the cracks for the
first time and as a consequence, they integrated active rotating filters (ARFs) with an
FCN model named DeepCrack and presented a new model called ARF-crack for detecting
cracks at the pixel level. The authors assessed their model on four different benchmark
datasets including DeepCrack, CFD, Crack500, and GAPS384. The authors presented
visually that their model was able to segment cracks accurately for all the datasets and they
claimed through some numerical results (e.g., average precision, recall) that their model
outperformed the DeepCrack, FPHBN, and IRA-Crack models. They also mentioned that
the proposed model needs a fewer number of parameters and less time to be trained.

In [72], Pan et al. developed a deep learning model named spatial-channel hierarchical
network (SCHNet) by employing the VGG-19 model as the baseline for segmenting cracks
in reinforced concrete structures. The authors integrated a self-attention mechanism with
their proposed model by running three different modules (feature pyramid attention
module, spatial attention module, and channel attention module) to establish a relationship
between pixels and improve the reliability of crack segmentation. Pan et al. trained their
model with the SDNET2018 dataset and selected Mean IOU as the evaluation metrics of
their task. They mentioned that usage of each attention module increased the model’s
IoU (Intersection over Union) gradually and it finally ended up at 85.31%. The authors
compared their model with a few other state-of-the-art methods and ensured that their
model was the superior one. They also tested their model under various conditions (i.e.,
holes, shadow on the surfaces, rough surface) and each and every time, their model
successfully segmented the cracks.

In [73], Kalfarisi et al. presented two deep learning methods; one is FRCNN-FED,
which is a combination of faster region-based convolutional neural network (FRCNN) and
structured random forest edge detection (SRFED) methods, and the other is Mask-RCNN.
The authors attempted to detect cracks using bounding boxes and segment the cracks
simultaneously. Kalfarisi et al. trained their model with some images which were collected
during some real-life structure inspection and also evaluated their technique’s performance
by detecting the cracks from the images of roads, bridges, buildings, and so on. They
claimed that their model was able to detect cracks as well as measure the length and width
of cracks successfully.

In [74], Lee et al. presented a semi-supervised learning method for detecting cracks in
concrete structures. To reduce the cost of acquiring a vast quantity of data for supervised
learning, Lee et al. developed an adversarial network to produce labeled confidence maps
from unlabelled images. After that, the authors applied a multiscale segmentation learning
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network instead of encoding decoder architecture to segment crack images efficiently.
The authors trained their method using METU and USU datasets and achieved 98.176%
accuracy. To show the robustness of the method, Lee et al. compared their technique with
a few other encoder–decoder-based models, and their method outperformed all of the
compared methods in terms of all evaluated metrics.

In [75], Fan et al. modified the U-Net architecture by embedding a Hierarchical
feature learning (HF) module and a multi-dilation module (MDM) and proposed a novel
framework named U-Hierarchical Dilated network (U-HDN) for detecting cracks on asphalt
pavements at the pixel level. The authors employed MDM with different dilation rates for
extracting crack features of different context sizes and HF for predicting the feature maps
on different scales and fused them to obtain an accurate segmented image of pavement
cracks. Li et al. trained their model on both CFD and AgileRN datasets and their model
showed better precision and recall values than all the compared methods.

In [76], Gil et al. developed a novel method named ConnCrack by combining a
conditional Wasserstein generative adversarial network (cWGAN) and connectivity maps
for crack detection on pavement images. In this work, the authors also published a
dataset named EdmCrack600 containing 600 images and trained their model with both
EdmCrack600 and CFD datasets. The authors evaluated their model in terms of precision,
recall, and F1-score. They compared their model’s performance with a few conventional
methods (i.e., Canny, CrackTree, CrackForest) and deep learning methods (ResNet 152-FCN,
VGG19-FCN, Cracknet-V). Gil et al. demonstrated that their model outperformed other
methods by means of all parameters; however, they noticed that the model performed
better using the CFD dataset than the EdmCrack600 dataset.

In [77], Alipour et al. presented a fully convolutional neural network named Crackpix
based on the VGG-16 architecture in order to perform semantic segmentation of cracks on
concrete structures. The authors employed five FCN architectures (i.e., FCN32s, FCN16s,
FCN8s, FCN4s, FCN2s) and trained their model using images collected from several
bridges, roads, and building surfaces. The method was able to segment cracks successfully
with 92.17% validation accuracy, and the authors claimed that it was the first FCN model
which could segment images of arbitrary sizes.

In [78], Ji et al. utilized DeepLabV3+ for segmenting cracks on pavement images. The
authors also deployed a crack quantification algorithm named the fast parallel training
(FPT) algorithm for calculating the length, width, area, and ratio of the cracks. Ji et al.
trained their model using a dataset of 300 images and the model successfully segmented
several types of cracks (i.e., single crack, multiple crack, intersecting crack, alligator crack).
They evaluated their model by means of the MIoU metric, which was calculated as 0.7331.
Ji et al. compared their model with few other state-of-the-art deep learning models (i.e.,
FCN, DeepCrack, Encoder–Decoder). The authors demonstrated that their model could
predict unseen crack images better than all the compared methods.

In [79], Wei et al. designed an algorithm based on GAN (Generative Adversarial
Network) and neural style transfer for detecting cracks on road images. The authors
produced trained images from only one sample crack image using the GAN simulator.
Then, Wei et al. utilized a segmentation algorithm named Seg which produced an F1-score
of 0.82 and successfully predicted the cracks at the pixel level.

In [80], Lau et al. presented a U-Net model in which the encoder is a ResNet-34
architecture for segmenting cracks on pavement images. The authors trained their model
on both CFD and crack500 datasets. After completing the training session, the authors
demonstrated that their model produced F1-scores of 96% and 73% for the CFD and
crack500 datasets, respectively, as well as predicted the pixels which would contain cracks
on pavement images successfully. Lau et al. compared their method with a few other U-
Net-based models and the FCN model and showed that their method performed better than
all the compared methods according to precision, recall, and F1-score. Then, the authors
performed several ablation techniques (i.e., training the model using frozen layers and not
using the frozen layers, using the SCSE module and not using the SCSE module) to check
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the increase in the performance and robustness of the model. The authors demonstrated
with numerical values that the usage of the ablation studies helped the model perform
better.

In [81], Song et al. presented a deep learning model based on ResNet in which a
multiscale dilated attention (MDA) module and feature fusion upsampling (FFU) modules
are embedded to detect cracks at the pixel level on pavement images. The authors utilized
the MDA module for extracting high-level features and the FFU for restoring the crack
spatial resolution. Song et al. trained their model using the dataset named “CrackDataset”
and produced higher precision, recall, and F1-score than a few other state-of-the-art deep
learning methods, such as SegNet, U-Net, PSPNet, DL-V3+, and DFN. After detecting
the cracks at the pixel level, Song et al. classified the types of cracks (i.e., Transversal,
Longitudinal, Block, Alligator) and severity level of cracks (i.e., normal, medium, high) by
identifying the branches and measuring the height as well as weight of the cracks. The
authors demonstrated that their model obtained over 95% accuracy in terms of classifying
the cracks.

In [36], Dong et al. proposed an encoder–decoder-based FCN network for semantic
segmentation of cracks on concrete surfaces. The authors selected the encoder architecture
of the FCN model by conducting a classification task on a crack dataset using different
deep learning models (i.e., VGG-16, InceptionV3, ResNet). VGG-16 outperformed the
two other models in terms of classification accuracy and was deployed as the encoder of
the FCN model. Dong et al. trained the FCN model using 600 annotated images and the
model successfully detected crack and non-crack pixels on concrete images with an average
precision of 90.9%.

In [82], Bang et al. developed a fully convolutional encoder–decoder-based network
where the ResNet-152 architecture was used as the encoder for detecting cracks on black
box images at the pixel level. The authors installed some black box cameras on the vehicles
and collected images extracted from videos captured by the cameras to train their model.
The authors demonstrated that their model successfully segmented the crack images with
a recall and precision of 71.98% and 77.68%, respectively. The authors also compared
their model with other pre-trained networks such as VGG-16, ResNet-50, ResNet-101, and
SegNet and showed that their model outperformed all the compared methods according to
all the compared evaluation metrics.

In [83], Yao et al. presented a novel concept to reduce the computational complexity
of the encoder–decoder-based architecture for detecting concrete cracks at the pixel level.
They proposed a switching module named SWT consisting of a binary classification header
that would classify crack and non-crack images and would pass only the positive samples
to the decoder module while directly outputting the negative map, without passing the
samples to the decoder module. Yao et al. integrated their switching concept on U-Net and
the DeepCrack model by utilizing the datasets CrackTree 206 and as well as AIMCrack.
The authors demonstrated that their method did not diminish the performance, and also
reduced the computation time and computation complexities by both quantitative and
qualitative analysis. At the end, they showed that U-Net and the DeepCrack model ran
about 30.7% and 62.9% faster with SWT than without SWT.

In [84], Cai et al. developed an FCN model named pavement and bridge crack
segmentation network (PCSN-512) by modifying the SegNet architecture for performing
semantic segmentation on the crack images of pavement and bridge decks. The authors
built a dataset of 5000 images and trained their model using the “Adadelta” crack images
with perplexing backgrounds and also by comparing the method with a few other state-of-
the-art networks (i.e., FCN, MRCNN, PCSN). The authors demonstrated that the proposed
PCSN-512 segmented the images successfully with 93% accuracy and outperformed the
compared models in terms of inference time, precision, and recall.

In [85], Liu et al. utilized U-Net for the first time to detect cracks on concrete images.
The authors collected a total of 84 images from Huazong University, China, and trained
their model with the Adam optimizer. Liu et al. evaluated their model by means of three
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metrics (i.e., precision, recall, F1-score) and also compared their model with Cha’s CNN [35]
and an FCN model. The authors claimed and demonstrated by quantitative analysis that
their model is better than all the compared methods (that they selected).

In [86], Qu et al. performed both classification and semantic segmentation on pave-
ment crack images. The authors fine-tuned the LeNet-5 model for the classification task
and modified the VGG-16 model by reducing some convolution layers, adding a 1 × 1-1
Conv layer after an Eltwise layer, using the horizontal expansion method for detecting
cracks at the pixel level. Qu et al. also built two datasets named CCD1500 and CCD861 in
this work. They trained their model with CCD861, CFD, DeepCrack, and Crack200 datasets
and demonstrated that their model performed better than all the compared methods (i.e.,
VGG-16, U-Net, Percolation) for each dataset.

In [87], Fan et al. deployed an ensemble learning technique on a CNN to detect cracks
in pavement images. The authors used only convolution layers and fully connected layers
without any pooling layers in each individual CNN model, as the pooling layer loses
important pixel information. The authors averaged the output of each CNN model and
presented the predicted pavement images. Fan et al. trained their model on both CFD and
AgileRN datasets; they conducted an experiment with the number of CNN models to be
ensembled and finally selected three CNN models, as they obtained the highest resulta
from three ensembled CNN models for both datasets. They also compared their model
with a few other state-of-the-art methods and claimed that their model outperformed all
the compared methods in terms of precision, recall, and F1-score.

In [88], Feng et al. presented a novel method based on the U-Net architecture for
detecting cracks on road images. The authors added residual identity blocks on the U-Net
and passed the extracted information of different layers to the final layer by adding the
weighted values of the pixel so that no original information could be lost. The authors
trained their model on the CFD dataset and demonstrated that it achieved precision, recall,
F1-score, and dice coefficient of 94.29%, 99.36%, 96.76%, and 86.95%, respectively.

In [89], Shen et al. developed a deep learning framework named CrackSegNet for
detecting cracks on concrete tunnels. The authors designed their model based on U-Net
and by adding dilated convolution layers on the encoder stage and integrating a Spatial
Pyramid pooling Module (SPP) at the end of the encoder stage. They trained their model
on images collected from Zhejiang province, China. The authors experimented with their
framework by using different forms (i.e., dilated convolution, skip connection, SPP) and
demonstrated that their model performed better by using dilated convolution layers in
terms of all evaluation metrics (IoU, precision, recall, F1-score).

In [90], Alipour et al. developed a deep learning framework based on the Res-18
architecture to detect cracks on multiple types of infrastructure. In this work, the authors
attempted to develop a model which would be able to achieve good accuracy on any kind of
surface (i.e., concrete surface, asphalt surface). Alipour et al. presented three schemes (i.e.,
joint training, sequential training, ensemble training) to endow their model with adaptivity.
The authors trained their mode with two different datasets and showed that the joint train-
ing method obtained the highest accuracy (97.8%). They also demonstrated that their model
outperformed two material-specific models (i.e., Cha et al. [35] and Eisenbach et al. [91]) in
terms of accuracy.

In [92], Wu et al. presented a deep learning model named cascade mask region
conventional neural network (cascade mask RCNN) for segmenting and detecting cracks
simultaneously on stay cables of bridges. The authors used an inspection robot to collect
images from stay cables and trained their model with the images. Wu et al. showed that
their model achieved an IoU index of 74.3 infrastructure and was able to detect cracks
successfully. The authors compared their model with U-Net, PSPnet, FCN8s, Linknet, and
Enet and demonstrated that their model outperformed the compared methods in terms of
IoU, recall, and F1-score, while a few others models were better than the proposed model
with respect to accuracy and precision.
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In [93], Zheng et al. compared the performance of several state-of-the-art deep learning
models (i.e., RFCN, FCN, RCNN) for detecting cracks on building images. The authors
analyzed the working principle of each model and presented the quantitative results of the
models in the case of predicting crack images. Zheng et al. considered accuracy, precision,
recall, and IoU as the evaluation metrics and demonstrated that RFCN is superior among
the models.

In [94], Manjurul et al. employed an FCN model by using the VGG-16 architecture as
an encoder to predict cracks on concrete structures at the pixel level. The authors trained
their model using the dataset of the Middle East Technical University and examined the
performance of the model in terms of precision (91.3%), recall (94.1%), and F1-score (92.7%).
They demonstrated that their model can predict the cracks successfully and compared their
model with SVM and CNN. Manjurul et al. showed that their model outperformed the
compared models in terms of all evaluated metrics.

In [95], Hoon et al. presented a deep learning method based on U-Net to detect cracks
on underground tunnel images. For improving the performance of the framework, Hoon
et al. added a ternary classifier to the U-Net for reducing the number of false positives.
The authors collected images from several tunnels in Korea (i.e., Masung, Habuncheon,
Sangock) and trained their model using the images to detect cracks. Hoon et al. compared
their model with U-Net, Att-Unet, and DeeplabV3+ and demonstrated that their model
obtained the highest precision (88%, 75%), recall (47%, 45%), and F1-score (61%, 56%) for
the images of Sangock and Habuncheon tunnels.

In [96], Li et al. presented a two-stage deep learning model for detecting cracks on
concrete bridges. In the first state, the authors used smaller receptive fields (3 × 3) and
smaller sizes of images (18 × 18) to produce the confidence map. In the second stage,
the utilized model was the same but the input size was the output (64 × 64) of the first
stage and the receptive field was also bigger (5 × 5). After producing the confidence map,
they fused it with the previous one and finally obtained the predicted result. The authors
used convolution layers and three densely connected layers in the DL model for extracting
features. They collected 65 images from different bridges and trained the model using the
images. Li et al. compared their model with STRUM and the Canny edge detector and
demonstrated that their model outperformed the compared methods in terms of accuracy
(99.55%) and precision (78.49%).

In [97], Liu et al. presented a deep learning framework named NB-FCN consisting of
a VGG-16 architecture and a naive Bayes decision technique. The FCN model extracted
essential features to recognize and segment crack images. In addition, the authors used a
naive Bayes probability fusion scheme to again classify the crack images for reducing the
false detection rate. The authors utilized a device named Bridge Substructure Detection
(BSD-10) to collect images from different bridges and trained their model using the SGD
algorithm. The special characteristic of this model is that it can detect cracks successfully
with different kinds of complexities on the surface (handwriting, water stains, peel-off).
Liu et al. compared their model with the CrackTree algorithm, Random Structured Forest
algorithm, CNN and demonstrated that their model is superior in terms of accuracy and
inference time.

In [98], Pan et al. detected cracks on the U-rib-to-deck welded joint area of bridges
by proposing a deep learning algorithm based on VGG-Net. The authors also tested the
performance of different models including ResNet, Deeplab, and PSPnet and demonstrated
that their model works better in terms of precision and recall.

In [99], Wang et al. presented a DL named CrackNet for detecting cracks on 3D asphalt
surfaces. The authors developed the CrackNet model with one input layer, two convolution
layers, and two fully connected layers. However, the authors did not use any pooling
layers; rather, they compared each pixel with its neighboring pixels to achieve pixel-level
accuracy. Wang et al. trained their model with 1800 images and tested their model with 200
images. They observed that their model achieved 90.13%, 87.63%, and 88.86% for precision,
recall, and F1-score, respectively. They also compared their model’s performance with
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Pixel-SVM and 3D shadow modeling and showed that their model performed better than
the other two methods.

In [100], Wang et al. proposed a recurrent neural network (RNN)-based model named
CrackNet-R for segmenting cracks on pavement images. The authors employed a novel
recurrent unit called gated recurrent multilayer perceptron (GRMLP) instead of LSTM
and GRU for obtaining deeper abstraction, as it conducted multilayer transformation at
each gating unit. The authors trained their model by using the images extracted from
the PaveVision3D system. After a successful training session, the model achieved 93.06%
segmentation accuracy. Wang et al. compared their model with CrackNet, CrackNet-LSTM,
and CrackNet-GRU and showed that their model outperformed the compared methods in
terms of accuracy, precision, and recall, and it was also four times faster.

In [101], Li et al. presented an FCN model using VGG19 as the encoder architecture
for detecting cracks on concrete structures. The authors collected 800 crack images from
different roads and building walls for training their model. The authors mentioned that
their model could segment cracks with 97.96% accuracy, 81.73% precision, and 78.97%
recall, though their model was less accurate than the CrackNet model. After successfully
detecting the cracks, Li et al. predicted the crack skeleton and measured crack height and
width with a minimum error rate.

In [102], Zhang et al. presented a context-aware-based segmentation network for
detecting cracks in concrete structures. First, the authors utilized the sliding window
approach for localizing image patches, and then the authors employed SegNet to classify
crack pixels from the image patches. Finally, Zhang et al. proposed and deployed a context-
aware overlapping patch fusion (CAOPF) scheme for integrating the output of every patch
to generate a final output map. The authors tested their model on three different datasets
and achieved an F1-score of 82.34%, 82.52%, and 79.37%, respectively.

In [103], Xiang et al. presented an encoder–decoder architecture based on FCN integrated
with a pyramid pooling module as well as an attention mechanism module for detecting
cracks on pavement images. The authors used a pyramid pooling module for extracting global
context information and an attention mechanism module for improving the representation
ability of the encoder–decoder architecture. Furthermore, the authors employed dilated
convolution layers for reducing the information loss due to pooling layers. Xiang et al. trained
their model on three different datasets (i.e., Crack500, CrackTree200, CFD) and compared
their model with CrackIT, CrackForest, FPHBN, and SegNet models. They demonstrated their
model’s superiority by visualizing predicted images and in terms of MPA and MIoU.

In [104], Zhang et al. presented a new model named CrackNet-V by modifying the
original CrackNet architecture for detecting pavement cracks at the pixel level. CrackNet-V
consists of three units (i.e., preprocessing layer, convolutional layer, output unit). Zhang
et al. did not use any pooling layers, like the original CrackNet model, and developed a
novel activation function named leaky rectified tanh function in their work. They trained
their model using the images of the PaveVision3D system and obtained 84.3% precision,
90.12% recall, and 87.12% F1-score, which is better than the original CrackNet architecture.

In [105], Wu et al. proposed a sample and structure-guided network based on U-
Net for segmenting cracks on road images. The authors introduced the structure-guided
method to solve the problem of illumination variation and shadow in the case of detecting
cracks. Wu et al. trained their model on CrackForest, ALE, CrackTree200, and CrackPV
datasets. After completing the training session, they demonstrated that their model cam
successfully detect cracks with 90.11% recall and 43.30% precision.

In [106], Choi et al. presented a model named Semantic Segmentation Network (SDDNet)
for detecting cracks on concrete structures. The SDDNet consists of several standard convolu-
tion layers, separable convolution layers, a modified ASPP module, and a decoder module.
Choi et al. generated a dataset named the Crack200 dataset in their work and trained their
model using the dataset. Choi et al. demonstrated that their model can successfully detect
cracks even with complex backgrounds with F1 of 81.9% and mIoU of 84.6%. They also showed
that their model is 46 times faster and 88 times smaller than the compared Deepcrack model.
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In [107], Li et al. presented a semi-supervised learning framework based on an
adversarial learning technique for detecting cracks. In this work, Li et al. intend to reduce
the labor of manual annotation; as a consequence, they employed an adversarial network
for generating a supervisory signal from unlabeled images. Then the authors deployed a
discriminator network based on the DensNet architecture for predicting an output feature
map of segmented cracks. Li et al. utilized both CFD and AigleRN datasets to train their
model and achieved about 95.91% segmentation accuracy. The authors compared their
model with FCN and Hybrid Crack Detector and demonstrated their model’s superiority
in terms of precision, recall, and F1-score.

In [108], Song et al. designed a model named CrackSeg consisting of a multiscale dilated
convolution module, upsampling module, and some convolution as well as pooling blocks for
detecting cracks at the pixel level in the presence of complex backgrounds. The authors built a
new dataset with a total of 8196 images in their work and trained the model. However, they
tested their model with CFD and AgileRN datasets along with their own dataset and achieved
mIoU, F1-score, recall, and precision of 73.53%, 97.92%, 97.85%, and 98.00%, respectively. They
compared their model with other state-of-the-art models (i.e., CrackForest, SegNet, U-Net,
Deeplabv3+, PSPNet, DeepCrack) and claimed with quantitative analysis that their model
outperformed the compared methods in terms of all evaluated metrics.

In [109], Zu et al. developed a weakly supervised model based on autoencoders for
detecting cracks on asphalt concrete bridge decks. The authors differentiated the data using
the autoencoder and then extracted imported features by deploying a K-means clustering
algorithm. After that, the authors used a CNN model with encoder–decoder and skip
connection for segmenting the cracks. Zu et al. utilized a dataset of 46,632 images and
achieved 98% accuracy after training their model with the dataset.

In [110], Yang et al. proposed a novel method named Feature pyramid and Hierar-
chical Boosting Network (FPHBN) for detecting cracks on pavement images. The authors
designed the model with bottom-up convolutional layers, which are basically the first five
layers of the VGG architecture, a feature pyramid pooling module for extracting context
information of different levels, deconvolutional layers, and a hierarchical boosting module
for reweighting the samples. Yang et al. trained their model with five different datasets
(i.e., Crack500, GAPs384, CrackTree200, CFD, AgileRN) and introduced a new evaluation
metric named AIOU. They also compared their model with HED, RCF, FCN, and CrackFor-
est models and demonstrated that their model outperformed all of the models in terms of
AIOU, ODS, and OIS for all of the datasets.

In [111], Ye et al. proposed an FCN model names Ci-Net for detecting cracks in concrete
structures. In the feature extraction part, the authors used six convolutional layers and
two pooling layers. On the other hand, Ye et al. utilized six deconvolutional layers and two
upsampling layers in the decoder module for information restoration and generating predicted
images. The authors trained their model with the images of the CrackForest and TITS2016
datasets by employing the SGD algorithm. They demonstrated that their model achieved 84%
precision, 82% recall, and 72.7% IoU. The authors also showed the model’s superiority over
the Canny edge detector and Sobel operator by visualizing the predicted images.

In [112], Zhang et al. presented an improved U-Net model named CrackNet for detecting
concrete cracks at the pixel level. They proposed a total of four CrackUnet models (CrackNet7,
CrackNet11, CrackNet15, CrackNet19) based on the number of convolutional layers. In this
work, the authors utilized the CrackForest dataset and achieved 98.72% precision, 92.84%
recall, and 95.44% F1-score. They compared the CrackUnet models and demonstrated that
CrackUnet 19 performed the best, even performing better than the FCN model.

From the critical analysis and Tables 13–15, it can be seen that the researchers used a
wide variety of datasets. Though most of them used their own collected private datasets,
there are still a few public benchmark datasets. Table 16 presents a list of the datasets
along with their access link, so that new researchers can easily find databases to start their
research work in this field.
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Table 15. Summary of Deep Learning techniques for crack segmentation.

Ref Method Backbone Framework Dataset Surface Loss Function Optimizer Annotation Tool Performance (%)

[69] CedNet DenseNet-121 Caffe Own collection Building - - Manually

Accuracy = 98.90%,
Precision = 93.58%,

Recall = 93.18%,
F1-score = 87.23%,

IoU = 98.82%

[70] CrackU-Net U-Net Tensorflow Own collection Road - Adam -

Accuracy = 99.01%,
Precision = 98.56%,

Recall = 97.98%,
F1-score = 98.42%%

[71] ARF-crack DeepCrack -
DeepCrack, CFD,

Crack500,
GAPS384

Pavement - - - Average precision = 76.45%,
76.9%, 48.9%

[72] SCHNet VGG19 Tensorflow SDNET2018 Bridge deck Cross-entropy - LabelMe mIoU = 85.31%

[73] FRCNN, Mask
RCNN

Inception
ResNet-V2 Tensorflow Own collection Bridge - - LabelImg Average

precision = 66%, 78%

[74] Multiscale
Adversarial NN - Pytorch METU concrete structures Customized Loss

function Adam LEAR
Accuracy = 98.176%,

MIoU = 88.936%,
F1 = 88.789%

[75] U-HDN U-Net Pytorch CFD, AgileRN Road Customized loss
function - - Precision = 94.5%, 92.1%,

Recall = 93.6%, 93.1%

[76] ConnCrack VGG16 - CFD pavement CwGAN loss - -
Precision = 96.79%,

Recall = 87.75%,
F1-score = 91.96%

[77] CrackPix VGG16 Pytorch Own collection concrete structures - - Image Labeler tool
of MATLAB

Precision = 91.24%,
F1-score = 91.70%

[78] DeepLabV3+ - Tensorflow Own collection Pavement Regression Loss - LabelMe mIoU = 83.42%

[79] DSS framework GAN Pytorch Roadcrack Road - Adam - F1-score = 82%

[80] U-Net ResNet-34 Pytorch, Fastai CFD, Crack500 Pavement Dice coefficient
loss Adamw - F1-score = 96%, 73%

[81] Customized
model ResNet-40 Tensorflow CrackDataset Pavement - - -

Precision = 98.74%,
Recall = 98.05%,

F1-score = 98.39%

[36] FCN VGG16 Keras CCIC Concrete
structures

Binary
cross-entropy RMSprop LIBLABEL AP = 90%
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Table 15. Cont.

Ref Method Backbone Framework Dataset Surface Loss Function Optimizer Annotation Tool Performance (%)

[82] FCN ResNet-152 Tensorflow Own collection Roads Cross-entropy SGD LEAR Recall = 71.98%,
Precision = 77.68%

[83] UNet, DeepCrack VGG13, VGG16 Tensorflow CrackTree200 pavement - Adam Manually Recall = 83.1%, 80.0%,
Precision = 77.5%, 76.2%

[84] PCSN-512 VGG16 Keras, Tensorflow Own collection Bridge, pavement Categorical
cross-entropy Adadelta Manually mAP83%,

[85] U-Net - - Own collection Concrete
structures Focal loss function Adam Manually

Precision = 96%,
Recall = 81%,

F1-score = 88%

[86] VGG16 - Caffe CCD1500 Concrete
structures Cross-entropy - -

Precision = 88.9%,
Recall = 81%,

F1-socre = 88%

[87] Ensemble CNN - Tensorflow CFD, AgileRN Pavement Cross-entropy - - Precision = 95.52%, 93.02%
Recall = 95.2%, 91.6%

[88] Pyramid Residual
Network - - Own collection Road - Adam -

Precision = 90.64%,
Recall = 94.92%,

F1-score = 92.73%

[89] CrackSegNet VGG16 Keras Own collection Tunnel Binary
cross-entropy BP Manually with

photoshop

PA = 98.88%,
Precision = 66.49%,
F1-score = 63.09%

[90] ResNet-18 - Pytorch CCIC, GAPS Concrete and
asphalt structures

Customized loss
function SGD - Accuracy = 97.95%, 94.3%

[92] Cascaded Mask
RCNN ResNet Pytorch Own collection stay cables Multitask loss

function - Manually

IoU = 74.3%
Accuracy = 99.6%,
Precision = 82.1%,
Recall = 88.32%

[93] RFCN - Tensorflow Own collection Roads, Bridge Customized loss
function - LabelMe pA = 80.44%,

mIoU = 80.15%

[94] FCN VGG16 - METU Concrete
structures - - -

precision = 91.3%,
Recall = 94.1%,

F1-score = 92.7%

[95] U-Net+Ternary
classifier - Pytorch Own collection Tunnel Binary

cross-entropy Adam Manually
Recall = 92%,

Precision = 47%,
F1-score = 61%



Remote Sens. 2023, 15, 2400 38 of 46

Table 15. Cont.

Ref Method Backbone Framework Dataset Surface Loss Function Optimizer Annotation Tool Performance (%)

[96] Customized CNN - Pytorch Own collection Bridge - - -
F1-score = 84%,

Accuracy = 99.55%,
Precision = 78.49%

[97] NB-FCN VGG19 Tensorflow Own collection Bridge Customized Loss
function SGD LabelMe

Accuracy = 97.96%,
Precision = 81.73%,

Recall = 78.97%

[98] FCN VGGNet MXNet Own collection Bridge 2D cross-entropy Adam - AP = 96.7%

[99] CrackNet - C++ PaveVision 3D Asphalt surface Cross-entropy SGD -
Precision = 90.13%,

Recall = 87.63%,
F1-score = 88.86%

[100] CrackNet-R RNN - PaveVision3D Asphalt surface - - -
Precision = 88.89%,

Recall = 95%,
F1-score = 91.84%

[101] FCN VGG19 Tensorflow Own collection Concrete
structures Cross-entropy Adam Manually

Accuracy = 97.96%,
Precision = 81.73%,
Recall = 78.8 = 97%

[102] SegNet VGG16 MATLAB R 2018A CFD, TRIMMD Concrete
structures - - - Precision = 82%, 79%,

Recall = 82.83%, 85.38%

[103] FCN - Tensorflow Crack500 Pavement Softmax loss
function - - map = 77%

[104] CrackNet-V VGG - PaveVision3D Asphalt pavement Cross-entropy SGD manually
Precision = 84.31%,

Recall = 90.12%,
F1-score = 87.12%

[105] U-Net - Pytorch CrackTree200,
ALE, CrackForest Road Focal loss - Recall = 90.11%, 93.99%,

76.23%

[106] SDDNet Customized CNN - Own collection Concrete
structures mIoU loss Adam Affinity photo IoU = 84.6%

[107] DenseNet - Pytorch CFD, AgileRN Pavement Cross-entropy SGD GAN technology Accuracy = 95.91%

[108] CracSeg - Tensorflow CrackDataset Pavement Cross-entropy Adam -
Precision = 98%,
Recall = 97.85%,

F1-score = 97.92%
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Table 15. Cont.

Ref Method Backbone Framework Dataset Surface Loss Function Optimizer Annotation Tool Performance (%)

[109] TDB-Net FCN Tensorflow Own collection Bridge deck Binary
cross-entropy SGD Manually Accuracy = 98%

[110] FPHBN VGG Caffe Crack500 Pavement - - Manually Average Intersection Over
Union (AIU) = 48%

[111] Ci-Net LeNet-5 - CrackForest, TITS Crack structures - Adam -
Precision = 84%,

Recall = 82%,
IoU = 72.7%

[112] CrackUNet U-Net Keras CrackForest Concrete
structures GDL SGD LabelMe

Precision = 92.84%,
Recall = 92.84%,

F1-score = 95.44%

‘-’ denotes the paper did not provide the particular information.

Table 16. List of the public benchmark datasets along with access links, all accessed on 28 April 2023.

Dataset Links

CCIC/METU https://data.mendeley.com/datasets/5y9wdsg2zt/2

BCD ttps://github.com/tjdxxhy/crack-detection

SDTNET2018 https://digitalcommons.usu.edu/all_datasets/48/

RDD2022 https://github.com/sekilab/RoadDamageDetector/

CFD https://github.com/cuilimeng/CrackForest-dataset

Crack500 https://bit.ly/3HbEC6d

GAPS384 https://bit.ly/3HbEC6d

CrackTree200 https://bit.ly/3HbEC6d

PaveVision 3D http://www.pvision3d.com/

TRIMMD https://trid.trb.org/view/1371755

TITS https://www.irit.fr/~Sylvie.Chambon/Crack_Detection_Database.html

AigleRN https://www.irit.fr/~Sylvie.Chambon/Crack_Detection_Database.html

Crackdataset https://downloads.hindawi.com/journals/jat/2020/6412562.f1.zip

ALE https://www.irit.fr/~Sylvie.Chambon/Crack_Detection_Database.html

DeepCrack https://github.com/yhlleo/DeepCrack/tree/master/dataset

https://data.mendeley.com/datasets/5y9wdsg2zt/2
ttps://github.com/tjdxxhy/crack-detection
https://digitalcommons.usu.edu/all_datasets/48/
https://github.com/sekilab/RoadDamageDetector/
https://github.com/cuilimeng/CrackForest-dataset
https://bit.ly/3HbEC6d
https://bit.ly/3HbEC6d
https://bit.ly/3HbEC6d
http://www.pvision3d.com/
https://trid.trb.org/view/1371755
https://www.irit.fr/~Sylvie.Chambon/Crack_Detection_Database.html
https://www.irit.fr/~Sylvie.Chambon/Crack_Detection_Database.html
https://downloads.hindawi.com/journals/jat/2020/6412562.f1.zip
https://www.irit.fr/~Sylvie.Chambon/Crack_Detection_Database.html
https://github.com/yhlleo/DeepCrack/tree/master/dataset
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6. Findings and Future Research Scope
6.1. Findings of the Study

In this work, we have presented a bibliometric analysis as well as a critical analysis
of a few selected papers related to image-based crack detection methods. During the
bibliometric analysis, our target was to determine the research trends, influential authors,
journals, publications, countries, important research terms, and collaboration patterns. We
list our findings from the bibliometric analysis below.

– The publication rate in the earlier years (2010–2013) was too low; less than five papers
were published each year. After 2013, the number of published articles per year begins
to accelerate and fluctuates in the range of six to nine during the years 2014–2019.
However, the number of published articles increases dramatically in 2019 (29 papers
were published). In 2020, the publication rate also follows an upward trajectory
(42 papers were published).

– Ying Chen, Zhong Qu, Weigang Zou, Wei Li, Qingquan Li, Young-zin Cha, Choi
Wooram, Oral Buyukozturk, Qingquan Li, and Mao Qin ZOu are the influential
authors in this research field.

– Computer-aided Civil Infrastructure and Engineering, Sensors, Journal of Computing
in Civil Engineering, Automation in Construction, and Construction and Building
Materials are the most cited journals.

– Refs. [35,38,39,43,44] are among the most influential publications of this research field.
– The highly influential countries are China, the USA, Germany, and Japan.
– The important research terms are crack detection, deep learning, damage detection,

image processing, system algorithm, inspection, model, identification, and concrete.

In the critical analysis section of our work, we have classified the papers based on
their utilized techniques and described the ins and outs of the papers. We present a list of
our findings from the critical analysis below.

– Deep learning techniques for detecting cracks are classified into three categories
including classification, detection, and segmentation.

– Among the techniques, crack segmentation is widely adopted by researchers.
– CNN, Faster-RCNN, FCN, and U-net are the most used DL methods for performing

crack classification, detection, and segmentation tasks, respectively.
– VGG-16 is the most utilized backbone among the DL methods.
– Most of the works performed their DL tasks on Tensorflow and PyTorch frameworks.
– LabelMe, LEAR, LIBLABEL, and LabelImg are the most widely adopted annotation

tools.
– SGD and the Adam optimizer are utilized for optimizing the DL model by most of

the researchers.
– Fine-tuning the deep learning architectures [66], using a transfer learning scheme [37],

modifying deep learning architectures by adding convolutional layers [86], adding
residual identity blocks [88], and removing pooling layers [87,99] can increase the
accuracy for detecting cracks.

– Modifying the deep learning models by integrating various modules, including
the MDM module [75], SCSE module [80], ASPP module [58], and the attention
mechanism [103] can also increase the performance of the DL methods for detecting
cracks.

– Utilizing of modules (i.e., SSE module [58], SWT module [83]) can also reduce the
computational complexities and reduce the inference time of the DL model.

6.2. Future Research Direction

The previous section listed the findings of our study. Moreover, along with the findings,
we have also determined a set of research scopes and directions for future researchers by
analyzing the extracted DL-based papers.
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– It is our understanding that the segmentation of concrete cracks using DL techniques
is going to be an engrossing research topic in this field. Researchers can focus on
developing and modifying benchmark DL methods for segmenting concrete cracks
with better accuracy. The design and integration of attention mechanisms, the ASPP
module, SSE module, SCSE module, and other modules can be a promising research
topic for researchers, as several research papers showed that usage of the modules
can increase accuracy.

– Very few research works [58,83] took reducing computation complexity as well as
inference time into consideration. This can be a prominent research direction in order
to develop lightweight and fast DL models and deploy them in low-cost devices, as
real-time crack monitoring is important.

– Refs. [62–64,72] highlighted the presence of noise, such as shadow problems, shad-
ings, contaminated backgrounds, road markings, rough surfaces, and variations in
illumination, as challenging scenarios for detecting the cracks and provided solutions.
However, more research should be carried out to develop robust models to tackle
these issues. As a result, this can be pointed out as a huge research scope for new
researchers.

– Another important perspective is to take class imbalance problems into consideration,
as in [50]. As only a few pixels in an image contain crack information, DL models are
very likely to face the class imbalance problem, which may hamper the classification
accuracy. As a result, it also should be a research concern for future researchers.

– Though a few research works [49,53,81,101] already focused on this, there is still
plenty to be researched in developing algorithms to extract the geometric information
of cracks from the segmented images. As a consequence, the researchers will be able
to monitor the length, width, area, and severity level of the cracks.

– Collecting data for research is always a laborious task for researchers. New researchers
in this field can reduce their efforts by putting their focus on collecting data using
drones and vehicles, as in [66,82]. It could be more effective if the researchers follow
the research direction of [5] and develop a robotic vehicle for both collecting data and
detecting cracks in real time.

– As the DL model is data-hungry method and it needs plenty of labeled images to
be trained, researchers need to put a huge amount of effort into collecting images
and labelling them. For solving these issues, ref. [79] comes up with an interesting
solution, producing train images using a GAN simulator from only one sample image.
Refs. [74,107] showed methods for labelling the images automatically by developing
semi-supervised techniques using adversarial networks. New researchers can devote
their efforts in this direction, as it could create a revolution in the research of DL for
crack detection by providing plenty of labeled data within a shorter time and with
less labor.

7. Discussions and Conclusions

In this article, we have presented a literature review of the existing papers on IPT-
based crack detection techniques. IPTs have proved themselves to be essential parts of
crack detection research. This review article has provided both scientometric and critical
analysis of the prevailing papers (within the first crucial decade in this specific area of
research). Bibliometric review offers several advantages over traditional systematic reviews
in research evaluation and analysis. It uses objective and quantitative measures, such as
citation counts and H-index, to gauge research impact, processes large quantities of data
from multiple sources, facilitates the timely identification of emerging trends, and presents
complex data in visual formats. Additionally, it fosters transparency and reproducibility in
research evaluation and analysis. Thus, bibliometric review is a potent tool for gauging
research impact and affords researchers valuable insights into emerging trends, research
gaps, and potential collaborations in their field. This work performs bibliometric analysis
to determine the influential authors, publications, geographical locations, modern research
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trends, and possible future research directions in this field. This was carried out so that
researchers can be familiarized with the pioneers in this field, can follow the prominent
publications to gather knowledge, can be aware of the sources in which to publish their
articles to receive more attention, and can be aware of possible future research directions
in this field to pursue further research in this field. Based on the scientometric analysis
conducted in this work, it is found that [35] is the most influential publications, “Computer-
aided Civil Infrastructure and Engineering” is the most popular among the journals, and
Ying Chen, Zhong Qu, and Weigang Zou are among the pioneer researchers in this field. It
can be seen that among various technologies, DL-based techniques have contributed to a
booming spike in the prosperity curve of crack detection applications. Furthermore, we
have found that DL is considered the most modern technology today from the keyword
timeline analysis.

Furthermore, this work has presented a thorough survey on a few scrutinized DL-
based papers and also abridged many essential insights of the papers. Moreover, some
captivating directive research questions have been yielded as an annex to the primary
findings from the reviewed articles. This article articulates the answers to the questions
related to the robustness and viability of various papers or DL techniques in this research
area. In addition to this, this research work enlists a few benchmark datasets extracted from
the DL-based paper along with their links so that new researchers can easily find necessary
data to start their research in this field. It is our understanding that the segmentation of
concrete cracks using DL techniques is going to be an engrossing research topic in this
field. By means of feasible outcomes and practical application, segmentation can spearhead
DL practice in concrete crack detection. It would be a rational move for the researchers
to channel their research work toward crack segmentation utilizing DL techniques. The
researchers should focus on developing modified DL architectures, integrating various
modules, and introducing loss functions to increase the pixel segmentation accuracy. In ad-
dition to this, researchers should focus on reducing the computational complexity in order
to implement the DL models on low-cost devices for real-time monitoring. Furthermore, it
would be beneficial if they used segmented pictures to extract the geometric features of
the cracks. We hope that researchers from both academia and industry will receive enough
critical information and knowledge on DL-based crack detection techniques from this work
that they will be able to contribute to this domain by incorporating this information into
their research works.
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