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Abstract: TheHongheHani Rice Terraces represent the coexistence between natural and cultural sys‑
tems. Despite being listed as aWorldHeritage Site in 2013, certain natural and anthropogenic factors
have changed land use/land cover, which has led to a reduction in the size of the paddy rice area. It is
difficult to accurately assess these changes due to the lack of historical maps of paddy rice croplands
with fine spatial resolution. Therefore, we integrated a random forest classifier and phenological in‑
formation to improvemapping accuracy and stability. We thenmapped the historical distribution of
land use/land cover in the HongheHani Rice Terraces from 1989–1991 to 2019–2021 using the Google
Earth Engine. Finally, we analyzed the driving forces of land use types in the Honghe Hani Rice Ter‑
races. We found that: (1) forests, shrubs or grasslands, and other croplands could be discriminated
frompaddy rice during the flooding and transplanting period, andwater bodies and buildings could
also be discriminated from paddy rice during the growing and harvesting period. (2) Inputting phe‑
nological feature data improvedmapping accuracy and stability compared with single phenological
periods. (3) In the past thirty years, 10.651%, 8.810%, and 5.711% of paddy rice were respectively
converted to forests, shrubs or grasslands, and other croplands in the Honghe Hani Rice Terraces.
(4) Lower agricultural profits and drought led to problems in identifying the driving mechanisms
behind paddy rice distribution changes. This study demonstrates that phenological information can
improve the mapping accuracy of rice terraces. It also provides evidence for the change in the size
of the rice terrace area and associated driving forces in Southwest China.

Keywords: Honghe Hani Rice Terraces; Landsat; land use/land cover; phenology; Google Earth
Engine

1. Introduction
Paddy rice is an important caloric source that feeds more than half of the world’s pop‑

ulation [1]. Rice fields are also vital temporary and anthropogenic wetlands that support
habitats for wildlife [2]. Mapping temporal‑spatial changes in paddy rice plays a crucial
role in food security and ecological conservation [3]. However, applying satellite images
to map paddy rice distribution presents several challenges. The similarity of spectral fea‑
tures between paddy rice and other crops or vegetation types throughout the year is one
of the challenges for mapping paddy rice [4]. On the one hand, the spectral changes of
deciduous plants, other crops, and paddy rice show a consistent positive correlation trend
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with precipitation and temperature changes [5]. On the other hand, different cultivation
conditions, e.g., the input of nitrogen fertilizers or irrigation, also affect the spectral change
of paddy rice [6]. These problems bring challenges when discriminating paddy rice from
other crops or vegetation types. Therefore, determining the differences in spectral features
between other crops and vegetation types at different growing phases or cultivation con‑
ditions is the key to paddy rice mapping.

The availability of satellite images with suitable time windows is another challenge
for paddy rice mapping. In general, paddy rice phenology can be split into three pe‑
riods: (1) the flooding and transplanting rice period (FTP); (2) the rice growing period
(GP); and (3) the fallow period after harvest (FP) [7,8]. Previous studies used phenolog‑
ical features to map and discriminate paddy rice from other land use types by detecting
its surface water and green vegetation change [8–11]. However, due to cloud cover, cloud
shadow, and fog contamination, it is difficult to acquire high‑quality images or suitable
time window images for detecting the phenological phase of paddy rice [3,11,12]. This
also limits the application of classifiers to map paddy rice based on spectral bands and
vegetation indices of phenological features [3]. Therefore, a few previous studies have in‑
tegrated classifiers andphenological information tomappaddy rice distribution and assess
mapping performance.

Historicalmapping is an effective tool tomonitor or assess the temporal‑spatial change
in land use/land cover (LULC) and ecosystem services [13,14]. Many historical LULCmaps
of paddy rice croplands have been produced based on satellite images. However, coarse‑
resolution data might lead to uncertainty in the LULC change process [14,15], making it
challenging to map paddy rice and LULC at the landscape scale. Landsat data have pro‑
vided finer spatial resolution and temporal coverage from 1984 to the present day [16], so
Landsat has beenwidely used tomap paddy rice at regional and national scales. We found
that most current historical mappings of paddy rice based on Landsat images lacked infor‑
mation about other land use types, leading to problems in identifying the driving mecha‑
nisms behind paddy rice distribution changes.

Ethnic minorities, primarily the Hani people, have shaped the steep, mid‑mountain
slopes of the Ailao Mountains into rice terraces in a subtropical monsoon climate over the
past 1300 years [17,18]. The Hani culture believes that natural environments have their
divine owners, and that the Hani people serve as custodians with the right to use these
natural environments, but also a duty to protect them [18,19]. Based on the traditional cul‑
tural system of “vernacular knowledge”, the Hani people maintain the balance between
the local natural environment and traditional agricultural systems [20]. Thus, the Hani
people have developed a sustainable landscape composed of forests, water systems, vil‑
lages, and terraces [21,22]. This harmonious coexisting system of the Honghe Hani Rice
Terraces (HHRT) maintains local ecosystem services and rice productivity while provid‑
ing aesthetic diversity and cultural value for humans [18,20,22]. Consequently, the HHRT
was designated as a Globally Important Agricultural Heritage System by UNFAO in 2010
and as a World Heritage Site by UNESCO in 2013 [20,21,23]. Mapping temporal‑spatial
changes of paddy rice in the HHRT is vital to local landscape planning and supporting
heritage conservation.

Traditional rice terraces worldwide face various challenges from natural and anthro‑
pogenic factors [24,25]. Economic benefits, labor shortages, and food habit changes have
led to rice terraces decreasing by 40% in Japan [26,27]. Soil erosion is also threatening the
quality of most terraces [28]. Meteorological disasters, organic fertilizer misuse, pests, and
soil erosion are the primary reasons that have led to rice terrace degeneration and loss at
Ifugao in the Philippines [29]. The HHRT is also facing a series of problems: conversion
of paddy rice areas to dry crops [30], farmer outmigration [31], landslide risk [17], climate
change [18], etc. These problems are causing traditional culture and paddy rice area losses
in the HHRT [31,32]. Most of these studies were conducted by questionnaire surveys or
field monitoring, resulting in a lack of temporal‑spatial quantified evidence to reveal driv‑
ing forces in the rice terraces.
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Here, we will investigate the traditional ecological knowledge used to acquire phe‑
nological information on paddy rice in HHRT and phenological‑based paddy rice to pro‑
duce historical mapping in HHRT using Landsat time‑series images and the Google Earth
Engine (GEE). In this study, we will address four objectives: (1) assess the separability be‑
tween paddy rice and other land use types at different phenological periods; (2) assess the
accuracy and stability of paddy rice mapping between three inputs of phenological infor‑
mation; (3) update the historical maps of LULC for HHRT from 1989–1991 to 2019–2021
using GEE and phenological information; and (4) analyze the driving forces of LULC in
HHRT from 1989–1991 to 2019–2021.

2. Materials and Methods
2.1. Study Area

The HHRT (22◦30′–23◦30′N, 101◦30′–103◦30′E), distributed across four counties
(Yuanyang, Honghe, Jinping, Lvchun), covers 978.071 km2 in the southern Yunnan
Province, China (Figure 1). The terraces are located on the south edge of the Ailao Moun‑
tains, which range in elevation from 339 m to 2865 m. Due to the lower latitudes, the
study area has a typical ‘stereoscopic’ climate. The average temperature in the study area
is 25 ◦C. The Honghe hot‑dry valley in the northern part of the Ailao Mountains has the
highest recorded temperature (42 ◦C), and the lowest recorded temperature on the high‑
est mountain is 11.6 ◦C [21]. The major climate in the study area is the subtropical mon‑
soon. Precipitation ismainly influenced by the southwestmonsoon from the IndianOcean,
and the southern area of the Honghe River has the highest annual rainfall (1397.6 mm) in
Yunnan Province [21]. River valleys with high evaporation and abundant rain often cause
the study area to have dense fog and clouds, seriously affecting paddy rice mapping.
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2.2. Phenological Features of Paddy Rice in the HHRT
2.2.1. Traditional Ecological Knowledge Investigation

We used semi‑structured interviews based on the recall method to collect traditional
ecological knowledge (TEK) of paddy rice phenology. We investigated TEK from eight
villages in Honghe and Yuanyang Counties (Figure 1), which mainly included five Hani
ethnic minority villages, two Yi ethnic minority villages, and one Dai ethnic minority vil‑
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lage in the HHRT. Each local village head invited one or two elders to answer our TEK
questions. These elders were all above 60 years old and could speak Mandarin or the local
dialects. Some previously served as the heads of paddy rice production or were priests
(咪谷) in their villages. Each interview was composed of four people in a relatively closed
room, including an interviewer who was responsible for asking questions, an interviewer
who recorded and supplemented questions, a participant who answered our questions,
and a translator who was responsible for conveying the correct meaning between Man‑
darin or the local dialect and their ethnic minority language. The questions included the
planting history of rice species in the HHRT, the traditional paddy rice farming methods
in the HHRT, the phenological features and dates of each paddy rice production sector,
and the conventional technology and equipment used in paddy rice production. The in‑
terviewer did not follow the list of TEK questions during the semi‑structured interviews
but allowed the interviewees to freely answer our questions according to their experiences
and perceptions [33]. This helped to increase reciprocal interactions between interviewers
and participants [34].

2.2.2. Traditional Paddy Rice Ecological Knowledge
The Hani people have plenty of TEK for paddy rice production. Local governments

encourage HHRT farmers to plant traditional rice species to protect traditional cultures.
Although the Hani Terrace zones have high enough temperatures and rainfall, they only
plant single rice [23]. Therefore, Table 1 and Figure 2 show that the rice phenology in
HHRT could be separated into three periods: (1) FTP; (2) GP; and (3) harvesting period
(HP). The phenological dates used by the interviewees to answer our questions are based
on the lunar calendar. In the past 20 years, the Gregorian calendar has been, on average,
36 days earlier than the lunar calendar.

Table 1. The Hani lunar calendar and related farming activities.

Month of Lunar Calendar Meaning of Hani
Nationality Farming Activities Vegetation Indices Changes

of Paddy Rice

January The month of creatures
awakening Nursery rice seedlings

NDVI lower than 0.4; EVI,
NDSVI, and LSWI lower than

0.2
February The season for transplanting

seedlings
Transplant seedlings and

hoeing in terracesMarch

April
The season of leisure hoeing, hunting, repair farm

tools
NDVI from 0.4 increased to
0.8; EVI, NDSVI, and LSWI
from 0.2 increased to 0.7, 0.55,

and 0.4, respectively.

May

June The harvest preparation
month

hoeing, repair farm tools,
prepare for the harvest

July The month of rice growing
Autumn harvest, fallow NDVI decreased to lower

than 0.4; EVI, NDSVI, and
LSWI decreased to lower than

0.2.

August The month of rice maturation

September The alternate month of the
new year and the last year Harvest late rice, fallow

October The first month of new year

Fallow, plough the paddy
lands, repair ridges and farm

tools

NDVI lower than 0.4; EVI,
NDSVI, and LSWI lower than

0.2

November The month of creature
hibernation

December The month of seed
germination

Notes: October of the lunar calendar is the first month of the new year for the Hani nationality.

As shown in Table 1, the lunar calendar month of January is the awakened month
of creatures in the Hani nationality [35]. In January of the lunar calendar, the day of the
year (DOY) is from 36 to 66, and theHani people nurse rice seedlings and flood the paddies.
February andMarch of the lunar calendar (DOY from 66 to 126) are the time for transplant‑
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ing seedlings. The DOY of the FTP in the lunar calendar is from 36 to 126. In this period,
the paddy rice NDVI values are lower than 0.4, and the EVI, NDSVI, and LSWI values are
lower than 0.2. At the same time, the paddy rice values of NDVI, EVI, and NDSVI are
lower than those of forests and shrubs or grasslands, but the paddy rice value of NDSVI is
lower than that of other croplands. The paddy rice values of LSWI were lower than those
of forests but higher than those of shrubs or grasslands, and other croplands (Figure 2).
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Figure 2. The time series of NDVI, EVI, NDSVI, and LSWI indices for paddy rice (PR), forests
(FS), shrubs or grasslands (SG), and other croplands (OC) calculated from Landsat 8 images in 2019:
50 points for each land use type.

The work of the Hani people from April to June of the lunar calendar is hoeing, re‑
pairing farm tools, and preparing to harvest (Table 1). This period can be defined as the
GP of paddy rice and the DOY is from 126 to 216. In this period, the paddy rice value of
NDVI increases from 0.4 to 0.8, EVI increases from 0.2 to 0.7, NDSVI increases from 0.2
to 0.55, and LSWI increases from 0.2 to 0.4 (Figure 2). At the same time, the vegetation
indices of forests, shrubs or grasslands, and other croplands also show an increasing trend
during GP.

The major rice harvesting period is from late July to August of the lunar calendar. A
part of the autumn harvest will last until early September of the lunar calendar (Table 1).
This period can be defined as HP and the DOY is 216 to 300. Therefore, the paddy rice
values of NDVI, EVI, NDSVI, and LSWI show a decreasing trend but are higher than those
of the FTP.

After the harvest period, the paddy rice in the HHRT enters the FP. The Hani people
celebrate the rice harvest from the first LoongDay to the firstMonkeyDay inOctober of the
lunar calendar. In addition, the paddy lands are fallowed fromOctober to December of the
lunar calendar, and the Hani people plough the paddy lands and repair ridges and farm
tools (Table 1). However, the HHRT paddy flooding differs greatly from other places. The
local interviewees said that most rice paddies are flooded after harvest to the transplant
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period. The DOY of the fallow and flooding period is from 300 to 36 of the following
year. In this period, the paddy rice values of NDVI, EVI, and NDSVI are lower than those
of forests, shrubs or grasslands, and other croplands. The paddy rice value of LSWI is
lower than that of forests but higher than that of shrubs or grasslands, and other croplands
(Figure 2).

2.3. Landsat Data Pre‑Processing
Image pre‑processing, phenological detection, classification, and validationwere anal‑

ysed by Google Earth Engine (GEE) Python API and geemap [36]. Given that Landsat
satellites have several advantages, such as a long observation history, fine spatial resolu‑
tion, and free access, Landsat satellite datasets are widely used to monitor LULC change
and map historical datasets [37]. We selected Surface Reflectance Tier 1 (SRT1) products
of the Thematic Mapper Sensor (TM) and the Operational Land Imager (OLI) to map the
land use types from 1989 to 2011 and 2013 to 2021, respectively. Because the band numbers,
wavelength ranges, and spatial resolution of the Enhanced Thematic Mapper Plus (ETM+)
are similar to those of TM, a previous study used TM images and ETM+ images to map the
historical distribution of paddy rice in Japan [4]. In this study, we combined TM images
from 2010–2011 and ETM+ images from 2012 into an image collection from 2010 to 2012 to
make up for missed Landsat images in 2012. A total of 1456 Landsat images were used in
this study from 1989 to 2021 (Table S1), and the path/row of Landsat satellites in the HHRT
are 128/44, 128/45, 129/44, 129/45, and 130/44.

BothLandsat datasets underwent atmospheric correction andorthorectification. Then,
the CFmask algorithm was used to reduce the effect of clouds and cloud shadows on the
images. Previous studies have proven that the normalized difference vegetation index
(NDVI), enhanced vegetation index (EVI), and land surface water index (LSWI) can help
improve the mapping accuracy of paddy rice [8,9,38]. The normalized difference senes‑
cent vegetation index (NDSVI) can help detect vegetation senescence caused by leaf water
loss [39]. Finally, we calculated four spectral indices and added these indices into spec‑
tral bands based on the GEE platform, including NDVI [40], EVI [41], NDSVI [39], and
LSWI [8]:

NDVI =
ρnir − ρred
ρnir + ρred

(1)

EVI = 2.5 × ρnir − ρred
ρnir + 6 × ρred − 7.5 × ρblue + 1

(2)

NDSVI =
ρswir1 − ρred
ρswir1 + ρred

(3)

LSWI =
ρnir − ρswir1

ρnir + ρswir1
(4)

where ρblue, ρred, ρnir, and ρswir1 are the reflectance of the blue, red, near‑infrared (NIR),
and shortwave‑infrared 1 (SWIR1) bands in Landsat images, respectively.

2.4. Ground Reference Data
We collected reference data using a stratified sampling method based on Yang’s prod‑

ucts [14]. A total of 1000 points of interest (POIs) were collected between 1999 and 2019.
The POIs in 1999 and 2019 were used to map the land use types of Landsat TM images
and Landsat OLI images, respectively. In this study, we defined six land use types, includ‑
ing paddy rice, forests, shrubs or grasslands, other croplands, water bodies, and buildings.
To ensure that each land use type had enough reference data for the training and testing
datasets, each one was equally allocated 50 POIs. In addition, we assigned the remaining
700 POIs based on the land use area of Yang’s dataset in 1999 and 2019. Yang’s dataset
was based on GEE, and Landsat images mapped annual LULC data in China from 1990 to
2019 [14]. This dataset has six land use types in the study area: forests, shrubs, grasslands,
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croplands, buildings, and water bodies. Therefore, we merged the shrubs and grasslands
of Yang’s dataset as a new land use type in our classification scheme, and the POIs of paddy
rice were incorporated into the croplands. We randomly allocated POIs of each land use
type in 1999 and 2019 by Yang’s dataset and the number of POIs. Because the average over‑
all accuracy of Yang’s dataset is 79.30% [14], we double‑checked all of the POIs on Google
Earth with high spatial resolution. In the end, there were 118 and 97 POIs for paddy rice,
555 and 528 POIs for forests, 127 and 126 POIs for shrubs or grasslands, 97 and 141 for
other croplands, 52 and 53 POIs for water bodies, and 51 and 55 POIs for buildings in 1999
and 2019, respectively.

Finally, we randomly selected 50 POIs of each land use type to extract the time series
values of NDVI, EVI, NDSVI, and LSWI in 2019 to map the phenology features (Figure 2)
and to calculate the Jeffries–Matusita distance (JMD) separability values between indices
and spectral bands of the six land use types [42]. The basic idea of JMD is that if spectral
or index values become more different between various land use types, the land use types
are discriminated more easily [43]. The value of JMD ranges from 0 to 2, and when the
value reaches 2, the land use types can be better discriminated [43]. The JMD is calculated
using the equation [43,44]:

Jij = 2 ×
(

1 − e−Bij
)

(5)

in which

Bij =
1
8
×
(
ui − uj

)2 × 2
v2

i + v2
j
+

1
2
× ln

(
v2

i + v2
j

2vivj

)
(6)

where Jij is the value of JMD, Bij is the value of Bhattacharyya distance, and ui and vi are
the means and the variance of adjacent segments of class i, respectively. We calculated the
JMD in R v.4.0.2.

2.5. Classification & Data Input
Random forest has higher stability, lower noise and overfitting, and higher accuracy

than other machine learning algorithms [45,46]. Therefore, the random forest classifier
has been widely used in remote sensing classification. The principle of the random forest
classifier is based on multiple decision trees and bootstrap aggregation to train reference
data [47,48]. The number of trees in the random forest is the number of repeat times in the
ensemble or the number of “trees” (decision trees) in the “forest”. To reduce overfitting
and maintain mapping accuracy in this study, the number of trees was set to 500 in the
random forest classifier [46,49]. A random sub‑selection of 70% of the POIs was used as
the training dataset to map the land use, and the remaining 30% of the POIs were used as
the testing dataset to assess the mapping accuracy.

Previous studies have proven that phenology‑based approaches can help improve
paddy rice mapping accuracy [3,4,8,9]. However, monsoonal climatic conditions in lower
latitude areas that lead to persistent cloud limits the detection of paddy rice phenological
features duringGP [11]. To ensurewehad enoughLandsat imageswith lower cloud covers
(<5%) to analyze the driving forces of paddy rice area changes, we calculated median val‑
ues of Landsat spectral bands and vegetation indices during the FTP (DOY from 1 to 126)
and the growing and harvesting period (GHP, DOY from 126 to 300) data input within
three‑year periods [4], which helped to detect the phenological features of paddy rice.
We obtained 11 Landsat image collections of three‑year periods: 1989–1991, 1992–1994,
1995–1997, 1998–2000, 2001–2003, 2004–2006, 2007–2009, 2010–2012, 2013–2015, 2016–2018,
and 2019–2021. Among them, except for 2001–2003 (cloud cover = 27.455%) and 2013–2015
(cloud cover = 5.771%), the cloud covers of the other Landsat image collections are lower
than 4%. Finally, we compared three different input datasets to assess the performance of
phenological features for LULC mapping improvement. The phenological input dataset
(PID) consisted of the vegetation indices (NDVI, EVI, NDSVI, and LSWI) and Landsat spec‑
tral bands (B4–7) in the time series of the FTP and GHP. Another two input datasets con‑
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sisted of the vegetation indices (NDVI, EVI, NDSVI, and LSWI) and Landsat spectral bands
(B4–7) in the FTP (FID) and GHP (GID), respectively. The workflow is shown in Figure 3.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 19 
 

 

Random forest has higher stability, lower noise and overfitting, and higher accuracy 

than other machine learning algorithms [45,46]. Therefore, the random forest classifier has 

been widely used in remote sensing classification. The principle of the random forest clas-

sifier is based on multiple decision trees and bootstrap aggregation to train reference data 

[47,48]. The number of trees in the random forest is the number of repeat times in the 

ensemble or the number of “trees” (decision trees) in the “forest”. To reduce overfitting 

and maintain mapping accuracy in this study, the number of trees was set to 500 in the 

random forest classifier [46,49]. A random sub-selection of 70% of the POIs was used as 

the training dataset to map the land use, and the remaining 30% of the POIs were used as 

the testing dataset to assess the mapping accuracy. 

Previous studies have proven that phenology-based approaches can help improve 

paddy rice mapping accuracy [3,4,8,9]. However, monsoonal climatic conditions in lower 

latitude areas that lead to persistent cloud limits the detection of paddy rice phenological 

features during GP [11]. To ensure we had enough Landsat images with lower cloud co-

vers (<5%) to analyze the driving forces of paddy rice area changes, we calculated median 

values of Landsat spectral bands and vegetation indices during the FTP (DOY from 1 to 

126) and the growing and harvesting period (GHP, DOY from 126 to 300) data input 

within three-year periods [4], which helped to detect the phenological features of paddy 

rice. We obtained 11 Landsat image collections of three-year periods: 1989–1991, 1992–

1994, 1995–1997, 1998–2000, 2001–2003, 2004–2006, 2007–2009, 2010–2012, 2013–2015, 

2016–2018, and 2019–2021. Among them, except for 2001–2003 (cloud cover = 27.455%) 

and 2013–2015 (cloud cover = 5.771%), the cloud covers of the other Landsat image collec-

tions are lower than 4%. Finally, we compared three different input datasets to assess the 

performance of phenological features for LULC mapping improvement. The phenological 

input dataset (PID) consisted of the vegetation indices (NDVI, EVI, NDSVI, and LSWI) 

and Landsat spectral bands (B4–7) in the time series of the FTP and GHP. Another two 

input datasets consisted of the vegetation indices (NDVI, EVI, NDSVI, and LSWI) and 

Landsat spectral bands (B4–7) in the FTP (FID) and GHP (GID), respectively. The work-

flow is shown in Figure 3. 

 

 

Figure 3. The land use/land cover mapping workflow in the HHRT.

2.6. Validation
To assess the accuracy between different input data, we used K‑fold cross‑validation

of random sub‑selections of 70% of POIs to map LULC in 2019–21, and the remaining
30% of POIs to assess the accuracy of thematic maps [45]. Then, we randomly selected
300 samples for accuracy validation from six periods (1989–1991, 1995–1997, 1998–2000,
2004–2006, 2010–2012, and 2013–2015). We checked these samples by visual interpretation
with Landsat images and Google Earth [14]. Finally, we utilized the F1 score (FS), pro‑
ducer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA), and kappa coefficient
(KC) to determine the accuracy of the land use maps [14].

2.7. Area Changes and Driving Force Analysis
Wedivided the Landsat images from1989 to 2022 into collections of three‑year periods

to cover the gaps caused by clouds and cloud shadows [4,11]. In this study, we found that
PID achieved the highest mapping accuracy and stability. Therefore, PIDwas used to map
the land use distribution from 1989–1991 to 2019–2021. Because cloud cover percentage in
2001–2003 was 27.455%, we did not use the land use map in 2001–2003 to analyze driving
forces. Instead, we used ArcGIS 10.5 software (version: 10.5.0.6491) and linear regression
to compare the differences in land use change trends and land use transfer between HHRT
and outside the HHRT from 1989–1991 to 2019–2021. Previous studies revealed that eco‑
nomic developments and climate change are themajor driving forces impacting paddy rice
area changes in China [50,51]. Therefore, economic data (GDP and proportion of primary
industry) and climate data (annual temperature and annual precipitation) were used to
assess the driving forces of land use types in four countries from 1989–1991 to 2019–2021
by Pearson correlation analysis in R. Among them, we collected Yunnan Statistical Year‑
book economic data from 1989 to 2022 and climate data from local meteorological depart‑
ments from 1989 to 2021. Finally, we randomly interviewed 37 local people in 8 villages
to support driving force analysis. The average age of interviewees was 47 years old. The
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questionnaires included household income sources, agricultural production, employment
planning, forest coverage changes, and water yield changes.

3. Results
3.1. The Separability Analysis in Two Phenological Periods

The vegetation indices and Landsat spectral bands in the FTP performed better when
discriminating paddy rice from forests, shrubs or grasslands, and other croplands (Figure 4
and Table 2). The JMD values of NDVI, EVI, and NDSVI between paddy rice with forests
and paddy rice with shrubs or grasslands during the FTP are more than 1. This meant that
paddy ricewith forests and paddy ricewith shrubs or grasslands could be discriminated in
the FTP by adding the vegetation indices NDVI, EVI, andNDSVI (Figure 4 and Table 2). In
addition, B6 (1.059), NDSVI (0.994), B7 (0.979), and LSWI (0.842) show better separability
performances than other indices or bands to discriminate paddy rice and other croplands
(Figure 4 and Table 2). Furthermore, during the FTP, only B6 (1.006) can better discriminate
paddy rice andwater bodies, andLSWI (1.092) andB7 (1.247) can better discriminate paddy
rice and buildings (Table 2).
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Figure 4. The annual mean of different land use types in four indices and spectral bands. FTP is the
flooding and transplanting rice period, GHP is the growing and harvesting period, B4 is red band,
B5 is NIR band, B6 is SWIR 1 band, B7 is SWIR 2 band, PR is paddy rice, FS is forests, SG is shrubs
or grasslands, OC is other croplands, WB is water bodies, and BS is buildings.

The vegetation indices and Landsat bands in GHP performed better when discrim‑
inating paddy rice from water bodies and buildings (Figure 4 and Table 2). The vegeta‑
tion indices NDVI (1.700), EVI (1.509), NDSVI (1.755) and Landsat bands B5 (1.136) and B6
(1.070) could be used to discriminate paddy rice andwater bodies duringGHP.At the same
time, the vegetation indices of NDVI (1.607), EVI (1.148), LSWI (1.465) and Landsat bands
of B4 (1.394) and B7 (1.305) performed better in discriminating paddy rice and buildings
during GHP (Figure 4 and Table 2). However, only NDVI, NDSVI, and B4 during GHP
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could be used to discriminate paddy rice and forests. No vegetation indices or Landsat
bands during GHP could be used to discriminate paddy rice with shrubs or grasslands,
and paddy rice with other croplands (Table 2).

Table 2. Results of the Jeffries–Matusita distance (JMD) between paddy rice (PR) and forests (FS),
shrubs or grasslands (SG), other croplands (OC), water bodies (WB), and buildings (BS).

FTP GHP

Indices
or

Bands

PR vs.
FS

PR vs.
SG

PR vs.
OC

PR vs.
WB

PR vs.
BS

PR vs.
FS

PR vs.
SG

PR vs.
OC

PR vs.
WB

PR vs.
BS

NDVI 1.934 1.034 0.094 0.710 0.338 1.029 0.068 0.148 1.700 1.607
EVI 1.444 1.379 0.368 0.751 0.117 0.547 0.158 0.026 1.509 1.148

NDSVI 1.707 1.445 0.994 0.991 0.338 1.188 0.516 0.030 1.755 0.850
LSWI 0.458 0.193 0.842 0.833 1.092 0.398 0.111 0.504 0.088 1.465
B4 1.118 0.062 0.339 0.237 0.462 1.038 0.057 0.650 0.793 1.394
B5 0.531 0.952 0.618 0.968 0.186 0.175 0.209 0.155 1.136 0.325
B6 0.035 0.856 1.059 1.006 0.749 0.007 0.428 0.803 1.070 0.594
B7 0.037 0.527 0.979 0.814 1.247 0.304 0.269 0.798 0.764 1.305

3.2. Phenological Information Improved Mapping Accuracy
By adding phenological information, the mapping accuracy and stability performed

better than the other two single phenological periods. The OA and KC of PID on average
are 0.871 (SD = 0.011) and 0.813 (SD = 0.015), which are higher than 0.859 (SD = 0.021) and
0.794 (SD = 0.027) of FID on average and 0.796 (SD = 0.016) and 0.695 (SD = 0.023) of GID on
average, respectively. In addition, Figure 5 shows that the PA,UA, and FS of PID are higher
than those of FID in paddy rice, forests, shrubs or grasslands, and water bodies. However,
the UA and FS of PID are lower than those of FID in other croplands and buildings. The
PA, UA, and FS of PID are higher than those of GID in each land use type. Figure 5 also
shows that PID resulted in the highest stability of PA, UA, and FS comparedwith the other
two single phenological periods. Moreover, Figure 5 also shows that the GID had better
stability of PA, UA, and FS than the FID, and the PA, UA, and FS of water bodies in the
GID are higher than those in the FID. Therefore, adding phenological information helps
improve mapping accuracy and stability.

3.3. Paddy Rice Decreased from the 1990s to 2020s
We selected the PID using the random forest classifier to map the land use changes

from 1989–1991 to 2019–2021. The average OA and KC in six periods were 88.721± 2.798%
and 80.387 ± 4.716%, respectively (Table S2).

Paddy rice, shrubs or grasslands, and other croplands show a decreasing trend from
1989–1991 to 2019–2021 (Figures 6 and 7). The loss proportions of paddy rice, shrubs or
grasslands, and other croplands in HHRT are lower than those out of HHRT, but the in‑
creased proportion of forests in HHRT is higher than that outside the HHRT. Figure 7 and
Table 3 show that 24.724% and 42.529% of paddy rice, 0.468% and 8.484% of shrubs or
grasslands, and 51.943% and 56.879% of other croplands decreased in HHRT and outside
the HHRT from 1989–1991 to 2019–2021, respectively. The forests increased to 31.572%
and 17.027% in HHRT and outside the HHRT from 1989–1991 to 2019–2021, respectively.
In addition, the area of paddy rice in the HHRT decreased from 13.659% in 1989–1991 to
5.566% in 2010–2012, then increased to 13.880% in 2013–2015, but decreased to 10.282%
in 2019–2021. Although the HHRT was listed as a World Heritage Site in 2013, the paddy
rice area decreased from 2013–2015 to 2019–2021 (Figure 7). The area of paddy rice outside
the HHRT decreased from 6.347% in 1989–1991 to 2.511% in 2010–2012, then increased to
5.675% in 2013–2015, but decreased to 3.648% in 2019–2021.
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Figure 5. Accuracy assessment with producer’s accuracy (PA), user’s accuracy (UA), and F1 score
(FS) in 2019–2021 from three kinds of data input: phenological features input dataset (PID); FTP
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grasslands, OC is other croplands, WB is water bodies, and BS is buildings.
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Paddy rice is the major land contributor converted to other land use types from
1989–1991 to 2019–2021. Figure 6 and Table 3 show that 10.651% and 22.963%, 8.810%
and 11.886%, and 5.711% and 6.640% of paddy rice areas were converted to forests, shrubs
or grasslands, and other croplands in the HHRT and outside the HHRT from 1989–1991
to 2019–2021, respectively. At the same time, 34.602% of other croplands and 36.517% of
shrubs or grasslands were converted to forests outside the HHRT, and 30.597% of other
croplands and 38.976% of shrubs or grasslands were converted to forests in the HHRT. In
addition, 23.822% and 24.615% of other croplands were converted to shrubs or grasslands
in the HHRT and outside the HHRT from 1989–1991 to 2019–2021, respectively. There‑
fore, paddy rice and other croplands were the primary sources of the forests and shrubs
or grasslands.

3.4. The Driving Factors of LULC
The Pearson correlation analysis and questionnaires revealed that climate and eco‑

nomic factors affected paddy rice area changes (Figure 8). Our questionnaires show that
7 household interviewees rely on agriculture for their income with an average income of
11,125 yuan per year. Working as amigrant worker is themain income source for 27 house‑
hold interviewees with an average income of 50,763 yuan per year. Regarding willingness
to cultivate paddy rice, 16 interviewees hoped the next generation of their family would
continue to grow rice and inherit rice terrace culture. Due to the lower agricultural profits,
11 interviewees were unwilling for the next generation to engage in agricultural produc‑
tion. In addition, Pearson correlation analysis shows a negative correlation between GDP
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and paddy rice (r = −0.493) but a positive correlation between the proportion of primary
industry and paddy rice (r = 0.704). The results of the questionnaires indicated that search‑
ing for higher incomes might be an important reason for local farmers abandoning agri‑
cultural lands. At the same time, we investigated the reasons for rice production changes.
Fifteen interviewees thought new rice varieties improved rice production while four in‑
terviewees thought that precipitation reduction and water shortages decreased rice pro‑
duction. Figure 8 shows a negative correlation between annual temperature and paddy
rice (r = −0.728) but a positive correlation between annual precipitation and paddy rice
(r = 0.587).

Table 3. The transfer matrix of land use and land cover in four counties, the HHRT, and outside the
HHRT in 1989–1991 and 2019–2021 (km2).

1989–1991

Land Use Types Paddy Rice Forests Shrubs or
Grasslands

Other
Croplands

Water
Bodies Buildings

2019–2021

Four
counties

Paddy rice 260.243 124.580 16.231 41.091 5.538 14.199

Forests 282.653 5629.271 1033.406 685.266 1.672 16.710

Shrubs or
Grasslands 102.447 438.720 421.858 529.110 0.764 18.378

Other Croplands 90.305 137.487 135.016 326.121 1.158 13.950

Water Bodies 8.045 8.346 0.926 3.036 13.283 4.629

Buildings 16.243 16.889 11.022 23.117 1.485 17.310

HHRT

Paddy rice 68.315 17.112 2.508 9.658 0.562 2.225

Forests 31.323 367.917 91.377 77.892 0.166 1.392

Shrubs or
GrasslandsOther

Croplands

14.261 31.550 40.941 66.429 0.032 1.540

17.277 13.469 16.272 52.263 0.054 1.639

Water Bodies 0.693 0.234 0.062 0.173 0.207 0.184

Buildings 1.550 2.443 2.339 4.134 0.027 2.843

Out
ofHHRT

Paddy rice 191.935 107.459 13.722 31.425 4.976 11.962

Forests 251.326 5261.489 942.090 607.408 1.506 15.317

Shrubs or
Grasslands 88.190 407.126 380.884 462.603 0.732 16.830

Other Croplands 73.027 124.008 118.721 273.767 1.105 12.308

Water Bodies 7.352 8.111 0.864 2.863 13.078 4.444

Buildings 14.690 14.443 8.682 18.974 1.456 14.457
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4. Discussion
4.1. Phenological Features Improve Paddy Rice Mapping

Our study illustrated that adding phenological information can help improve paddy
rice mapping accuracy [3,4,8–11]. Forests, water bodies, and buildings did not have obvi‑
ous phenological features (Figures 2 and 4), and vegetation indices or spectral bands can
help to discriminate these land use types from paddy rice at different phenological peri‑
ods. The vegetation indices of forests, e.g., NDVI and NDSVI, are much higher than those
of paddy rice in any period (Figure 4). In particular, the JMD of forests and paddy rice
in NDVI and NDSVI are higher than 1.7 during the FTP (Table 2), which can be used to
discriminate forests and paddy rice at FTP. With paddy rice growing at GHP, the vegeta‑
tion indices of paddy rice are higher than those of water bodies and buildings. Therefore,
vegetation indices can be used to identify water bodies and paddy rice, and buildings and
paddy rice at GHP [8,9].

However, deciduous vegetation, such as shrubs or grasslands, other croplands, and
paddy rice, show a similar annual variation [52]. Therefore, it is difficult to identify paddy
rice and other deciduous vegetation types at GHP using vegetation indices and Landsat
spectral bands (Table 2 andFigure 4). Because shrubs or grasslands have plant cover during
the FTP, the vegetation indices of shrubs or grasslands are higher than those of other crop‑
lands and paddy rice (Table 2 and Figure 4) [5]. Previous studies used vegetation indices
or bands that could capture water information at transplanting periods to identify paddy
rice and other croplands [8–10,53–55]. In our study, Figure 4 shows that SWIR (B6–7) has
higher separability to discriminate other croplands and paddy rice because SWIR can de‑
tect water and water absorption [39,56]. Therefore, the calculated NDSVI and LSWI based
on SWIR, can be used to discriminate other croplands and paddy rice at the FTP by detect‑
ing water differences in leaf tissues and surface moisture, respectively [8,39].

Our study found that single phenological images show a lower accuracy but had over‑
fitting problems whenmapping paddy rice or land use types. This limited feature in input
datasets might be related to the lower accuracy [57]. Schulz et al. (2021) reported that
incorporating time series data of phenological information can help address the overfit‑
ting problems of crop monitoring or mapping [58]. By adding phenological information
of vegetation indices and Landsat spectral bands, we achieved higher mapping accuracy
and stability of paddy rice and land use types than either FID or GID. Therefore, we rec‑
ommend using phenological information to map paddy rice or deciduous vegetation.

4.2. The Area Changes of Paddy Rice in the Hani Terraces
The loss of paddy rice is caused by several factors [50,51], including economic devel‑

opment, climate, policy, and technology. Economic development has been a major factor
impacting paddy rice area losses in southern China since the early 1980s [50,59]. In con‑
trast, industrialization and urbanization have replaced paddy rice in built‑up and residen‑
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tial areas in SouthChina in the past 30 years [60,61]. Lower agricultural profitsmight be the
major driver of paddy rice area losses in theHHRT [32]. The development of the secondary
and tertiary industry brings a large number of employment opportunities and increased
incomes. This leads to farm laborers migrating to cities for higher profits. Zhang et al.
(2017b, 2020) reported that young adults prefer to find a nonfarm job in cities because a
family’s annual paddy rice profit is much lower than the income from nonfarm jobs in
cities [31,62]. Therefore, parts of paddy rice areas have been transferred to other croplands
or left uncultivated (Table 3). The remaining labor force in rice terraces mainly consists of
elderly people or uneducated women [23]. The HHRT has diverse tourism resources that
could recall young entrepreneurs back to the HHRT, and support rural tourism develop‑
ment [20,22]. In addition, the rice‑fish‑duck integrated farming model not only maintains
paddy rice areas and ecosystem services but can also help to improve local economic in‑
comes [23]. Therefore, we recommend that the HHRT develop the rural tourism indus‑
try and rice‑fish‑duck integrated farming model to increase incomes and maintain paddy
rice areas.

The climate also has an impact on the paddy rice area changes in the HHRT. Previ‑
ous studies reported that climate change impacted the growing period and distribution of
paddy rice [51,63]. However, continuous severe drought events are an important driving
factor impacting paddy rice losses in HHRT [18]. Yang et al. (2019) reported that con‑
tinuous drought in the Yunnan Province mainly occurred in 1988–1990, 2003–2007, and
2010–2015 [64]. Jiao et al. (2012) also reported that severe drought events caused terraces
to dry‑up in 2005 and 2010 [18]. In addition, Abbas et al. (2014) and Nichol and Abbas
(2015) reported that croplands and shrublands suffered more seriously in dry conditions
than forests in the Yunnan Province due to the severe drought event in 2010 [65,66]. These
studies confirmed our research that a reduction in rainfall led to the paddy rice area in the
HHRT in 2004–2006 (94.607 km2) and 2010–2012 (54.517 km2) being smaller than that in
other periods (Figures 6 and 8). The improvement of hydraulic facilities can help reduce
the impact of drought on paddy rice.

Other factors could also lead to paddy rice losses in HHRT. For example, the imple‑
mentation of the Grain for Green Program might lead to paddy rice being converted to
forests. Landslide risk might lead to temporary or permanent loss of paddy rice areas [17].

4.3. Applications
Our method can help researchers map the crops and vegetation distribution in finer‑

scale Landsat data. Phenological dates, especially rice flooding and transplanting dates,
are widely used to map paddy rice distribution based on Landsat images [4,10–12]. In this
study, we acquired paddy rice phenological dates from semi‑structured interviews and
questionnaire interviews. This not only helped to acquire the specific phenological dates
but also helped to explain the reasons for the paddy rice area change. Moreover, because
of cloud and fog contamination, it is difficult to acquire enough high‑quality images in dif‑
ferent phenological periods for mapping paddy rice in the study area [4,12]. GEE provides
users with high‑performance computing capabilities, massive raster data, and advanced
algorithms [16]. Therefore, we merged the images of the three‑year time intervals based
on GEE to acquire the specific phenological dates with lower cloud and fog contamination.
Finally, our results only rely on Landsat spectral bands and vegetation indices, so they can
bewidely used tomap the historical distributions of paddy rice with phenological features.

5. Conclusions
Historical maps of paddy rice are an important tool to support heritage conservation

and management in the HHRT. Here, we acquired the phenological date of paddy rice by
semi‑structured interviews, and compared the separability of paddy rice and other land
use types. We found that paddy rice could be discriminated from other land use types
in different phenological periods of paddy rice. By adding phenological features, the PID
achieved a higher mapping accuracy and stability than any single phenological period.
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Therefore, we recommend adding phenological information to map paddy rice or other
crops. Moreover, we mapped the LULCwith three‑year periods in HHRT from 1989–1991
to 2019–2021 based on GEE and phenological information. The results show that paddy
rice is the major source that was converted to other land use types, and the area losses
of paddy rice in the HHRT are lower than those outside the HHRT. The questionnaires
and Pearson correlation analysis revealed that lower agricultural profits and drought are
the major drivers leading to paddy rice losses in the HHRT. The development of the rural
tourism industry and rice‑fish‑duck integrated farmingmodel could increase employment
opportunities and incomeswhich can help to recall young entrepreneurs back to theHHRT.
Thus, our thematic maps can help researchers and local governments in landscape plan‑
ning and heritage conservation, and support the driving force analysis of traditional rice
terrace areas.
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