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Abstract: This study developed a rapid rice yield estimation workflow and customized yield pre-
diction model by integrating remote sensing and meteorological data with machine learning (ML).
Several issues need to be addressed while developing a crop yield estimation model, including data
quality issues, data processing issues, selecting a suitable machine learning model that can learn from
few available time-series data, and understanding the non-linear relationship between historical crop
yield and remote sensing and meteorological factors. This study applied a series of data processing
techniques and a customized ML model to improve the accuracy of crop yield estimation at the dis-
trict level in Nepal. It was found that remote sensing-derived NDVI product alone was not sufficient
for accurate estimation of crop yield. After incorporating other meteorological variables into the ML
models, estimation accuracy improved dramatically. Along with NDVI, the meteorological variables
of rainfall, soil moisture, and evapotranspiration also exhibited a strong association with rice yield.
This study also found that stacking multiple tree-based regression models together could achieve
better accuracy than benchmark linear regression or standalone ML models. Due to the unique and
distinct physio-geographical setting of each district, a variation in estimation accuracy from district to
district could be observed. Our data processing and ML model workflow achieved an average of 92%
accuracy of yield estimation with RMSE 328.06 kg/ha and MAE 317.21 kg/ha. This methodological
workflow can be replicated in other study areas and the results can help the local authorities and
stakeholders understand the factors affecting crop yields as well as estimating crop yield before
harvesting season to ensure food security and sustainability.

Keywords: precision agriculture; crop yield estimation; crop yield; crop phenology; multisource
remotely sensed data

1. Introduction

Rice is one of the most consumed staple foods for nearly a half of the world’s pop-
ulation. By 2050, the population is projected to grow to 9.8 billion, and to keep up with
this growth, there will be a 60% rise in food consumption [1]. In addition, the livelihood
of millions of farmers depends directly or indirectly on crop production. Over the past
few years, the world’s total arable land has been diminishing as a result of rising urban-
ization, which has an impact on overall production and results in a persistent inability to
meet the world’s demand for agricultural products [2–4]. To satisfy this anticipated future
demand, ending hunger, establishing food security, and promoting sustainable agriculture
are expressly listed as the top priorities in the 2030 Agenda for Sustainable Development
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Goals (SDG) of the United Nations (UN) [5]. In recent years, a great deal of effort has been
initiated to increase rice production with modern technology. However, it is generally
considered that rice production is associated with the immediate and dynamic nature of
global anthropogenic changes, such as population growth and climate changes, and also
technological advancement [6–8]. Extreme natural and manmade events such as drought,
flood, and fire/war frequently harm food production [9,10]. It is anticipated that both the
rates and patterns of total precipitation amount will keep changing, along with the rise in
global temperatures, which is expected to have mild to severe consequences on agriculture
around the world [11]. The shortage of water and energy supply in the agriculture sector
will further impose constraints on food production [12]. In this regard, more precise crop
monitoring, dependable mapping tools, and early forecasting of rice production, before
the harvest time, can substantially assist the decision makers in minimizing losses and
achieving desired yields [6,7,13,14].

Recently, remote sensing became a popular tool to monitor crop health, growth, mea-
surement, and to determine the optimal time for harvesting and rapid near real-time crop
yield estimation with minimal cost [6,7,13–18]. Remote sensing-based techniques have
already been successfully applied for mapping rice-cultivated areas and demonstrated
promising results in delineating accurate cultivated yield [3,7,9,13,19,20]. Furthermore, the
vegetation index derived from satellite images was also successfully applied for predict-
ing rice yield before harvesting [21–23]. One of the popular remote sensing products is
MODIS NDVI data, which has the benefits of decadal archives and high spatiotemporal
resolution and has been widely employed for regional agricultural yield assessment and
forecast [24]. The most widely used vegetation indices are the normalized difference vegeta-
tion index (NDVI), enhanced vegetation index (EVI), soil-adjusted vegetation index (SAVI),
leaf area index (LAI), and the fraction of absorbed photosynthetically active radiation index
(FPAR) [13,21,23,25,26]. In [27,28], the authors found a substantial link between NDVI and
LAI and green biomass yield before rice harvest. In this study, MODIS NDVI product
along with MODIS LAI and FPAR product and several meteorological factors were used in
the experimental rice yield estimation model development. Since meteorological factors
such as monthly rainfall, land surface temperature, potential evapotranspiration, and soil
moisture content have a substantial influence on rice crop productivity, it is crucial to
take into account this information in the yield estimation workflow [29–31]. Based on
the literature, we initially selected NDVI, LAI, FPAR as the primary factors, then added
soil moisture, rainfall, total precipitation amount, land surface temperature (LST), and
evapotranspiration (ET) as auxiliary factors.

The selection of a suitable ML model is also an important part of rice yield estimation
model development. As the yearly crop yield dataset extends only over a few years (the
years 2001 to 2019 in this study), an efficient ML model that can learn from only a few
multivariate time-series data points and provide a satisfactory estimation is necessary.
ML models such as random forests (RF), decision trees, artificial neural networks (ANN),
and support vector machines (SVM) are effective for building the non-linear relationship
between predictors and an observed phenomenon, which has led researchers to apply these
techniques to crop yield estimation and prediction [20,24,32–37]. ML models can handle
an infinite number of complicated, multi-dimensional datasets and exhibit promising
results while predicting yields that are more accurate than those from traditional statistical
regression models [38–43]. Several studies applied ML to develop a rice yield estimation
model by integrating meteorological variables such as LST, ET, pressure, solar radiation,
soil moisture, total precipitation amount, and relative humidity along with NDVI, with
satisfactory results [24,27,29]. However, these models produced excellent results for the
most part, although they were hampered by the optimization of variables and overfitting
due to limited data points that affected crop yield estimation. Considering data availability,
multicollinearity, and overfitting issues of ML models, this study constructed a hybrid
model by stacking four different simple tree-based regressor models.
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Initially, we used linear regression as a benchmark model in this study and trained
several ML models to see how they improved accuracy over benchmark models. This
study also applied one of the popular tree-based regressor models XGBoost and compared
the result with the benchmark model. Finally, we proposed a customized stack-ensemble
model by combining four different tree-based regressors: XGBoost [44], LightGBM [45],
Gradient Boost [46], and random forest model [47]. The main limitation for accurate crop
yield estimation model development for Nepal was lacking a sufficient amount of training
data. As the yearly crop yield training data available was from the years 2001 to 2019
for the study area, there were only 19 time-series data points available for each district,
which was not good enough for learning patterns from data. A low amount of training data
with a limited number of predictors may cause poor performance, and if multicollinearity
presents among the predictors, it will severely influence the model’s performance. To
overcome these issues, we carefully selected tree-based regressors approaches which are
not affected by multicollinearity. To improve the crop yield estimation accuracy, we also
employed a series of data processing techniques, which are described in the methodology
section. Initially, we carried out a few experiments with LR, RF, LightGBM, Gradient Boost,
XGBoost, and stack-ensemble model with only NDVI vs. yield in order to understand how
NDVI alone is associated with rice yield. Later, the meteorological factors were included in
the models to improve the accuracy.

2. Materials and Methods

The entire workflow of crop yield estimation was implemented in several steps, in-
cluding study area selection, data preprocessing, combining multiple datasets, ML model
development, and model performance evaluation. Figure 1 displays the simplified work-
flow of the entire crop yield estimation model development process.
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2.1. Study Area

The study area (Figure 2) is the Terai belt region of southern lowland Nepal that lies
south of the outer foothills of the Himalayas. Nepal has unique variation in its landforms
and climate conditions. Because of this diversity, Nepal also has a wide range of natural
vegetation, from the subtropical evergreen forests of the Terai region to the pine forests,
alpine grasslands, and tundra types of the Himalayan Region. This indicates that Nepal’s
landform conditions include a variety of climate and vegetation. The monsoon has a
significant impact on Nepal’s climate. People there cultivate tropical and subtropical crops
such as paddy, mustard, tobacco, and sugarcane due to the easier irrigation facilities. Each
year, cultivation of up to three crop types is possible due to the hot temperature (Figure 3).
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The agricultural yield is high when monsoon rains arrive on schedule. When the monsoon
rains are unreliable or excessive, farmers in Terai and hilly areas suffer from droughts,
floods, and landslides.
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Rice is one of the most consumed foods in Nepal. The Terai regions produce most
of the rice, which is about 73% of the total rice production, while hills and high hill areas
produce 24% and 4%, respectively (Tripathi et al., 2019). For a country such as Nepal,
an effective rice yield estimation tool can help to identify the factors affecting yield and
determine optimal harvesting time and early or near-real-time estimation of rice yield.
This vital information can help to reduce crop loss and ensure food security by helping
governments, decision makers, and other stakeholders to formulate appropriate policy
measures for sustainable development.

2.2. Data Collection and Processing
2.2.1. Rice Yield

The rice-growing season in Nepal is from July to October and the harvesting season
is from October to mid-December. The yearly crop yield data was collected by partners
at The International Centre for Integrated Mountain Development (ICIMOD). The dataset
contains rice yield information for 19 districts from the years 2000 to 2019 and 10 m spatial
raster data of rice cultivation field for the years 2020 and 2021. The yearly yield data was
detrended by applying a polynomial curve fitting to make it stationary as it allows for any
potential sub-trends in the data to be observed, which is common for time-series statistical
modeling [48]. The yield delta (i.e., the difference between the actual reported yield from
the polynomial curve) was used as the ground truth data in the ML models. We also made
a combined rice field mask by merging the raster layer of rice field of the years 2020 and
2021. The rice mask layer was used to exclude non-agricultural pixels from NDVI and
other data layers. Figure 4 displays a district-wise yearly rice yield.
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The spatiotemporal rice yield maps (Figure 5) exhibit yearly rice yield patterns that
vary from district to district and time to time. A slightly increasing trend of rice yield in all
districts in the recent years can be observed from the spatiotemporal rice yield maps.
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2.2.2. NDVI

Rice growing and harvesting can be monitored from remotely sensed data. It can
be used to make relationships with yearly yield trends in order to make the estimation
of the yield. However, there are several limitations of remotely sensed data. We noticed
the presence of a significant amount of cloud cover on Landsat/Sentinel-2 data over
Nepal during the rice-growing season. Therefore, we were not able to derive high spatial
resolution NDVI products from Landsat/Sentinel-2 satellite imageries; instead, the team
used coarser spatial resolution but finer temporal resolution MODIS products where images
with a significant presence of cloud cover were filtered out. Initially, we selected the peak
NDVI image for each district during crop growing and harvesting season for each year and
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then we extended the selection algorithm backward and forward to collect a few more peak
NDVI images for a particular year. Later, we limited the selection criteria only between
August and September, based on local expert opinion, in order to avoid noisy NDVI data.
We collected a total of eight NDVI images for August and September, and the average
NDVI values for all pixels within agricultural lands for each district was calculated. We also
used MODIS LAI and FPAR products, but we found that NDVI, LAI, and FPAR were highly
correlated with each other where the correlation coefficient between NDVI vs. LAI = 0.99
and NDVI vs. FPAR = 0.97, and our experiment showed that using both products together
did not improve the yield estimation accuracy. Therefore, we excluded the LAI and FPAR
products and only used the NDVI product as the latter had a better spatial resolution
(250 m) than the following image products (500 m). NDVI values were smoothened by
using the Savitzky–Golay filter (Savitzky and Golay, 1964). The Savitzky–Golay (SAVGOL)
filter is used to eliminate noise and improve the smoothness of time-series NDVI values.
The filter calculates a polynomial fit of each window based on polynomial degree and
window size. Figure 6 displays a smoother time-series pattern of NDVI values each year
for all rice-growing districts in Nepal.
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2.2.3. Auxiliary Variables

Apart from NDVI, we also used several auxiliary variables, including rainfall (Figure 7a),
soil moisture content (Figure 7b), LST (Figure 7c), ET (Figure 7d), and total precipitation
amount (Figure 7e). The yearly dataset was collected from ICIMOD. The following figures
show an average yearly pattern of each five auxiliary variables only for the corresponding
months of the NDVI images. Then, the mean of yearly values for each district was calculated
and used in ML models as a factor.

The district-wise processed dataset was split into two sets—the training set which
contains data points from the years 2001 to 2017 (17 data points for training) and the
validation set which contains data points from the years 2018 and 2019 (2 data points for
validation) for each district. Each dataset has a total of six features—NDVI, rainfall, total
precipitation amount, soil moisture, evapotranspiration, LST, and corresponding yield delta.
The yield delta was calculated from actual reported yield and polynomial curve fitting; this
was then used as the dependent variable in the models. ML models were trained using
the training set whereas the validation dataset was used to evaluate the performance of
the models. During the validation process, the predicted yield was calculated by adding
model output (i.e., yield delta) with yearly base yield from polynomial curve fitting.
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2.3. Stack-Ensemble Model

Model stacking is a way to improve model predictions by combining the outputs
of multiple models and running them through another machine-learning model called a
meta-learner. In the customized model, we only used four tree-based regressions. The
reason for using tree-based regression models is that multicollinearity does not affect
the estimation. The only limitation was overfitting as the dataset contains only 19 cases
(from 2001 to 2019) for each district. To observe whether the model is overfitting or
underfitting and the actual prediction performance, the dataset was split into two sets:
the aforementioned training and testing sets. After training the model on the training set,
we used the validation dataset to check the actual performance of the model. The model
accuracy was measured based on the validation dataset in terms of accuracy assessment
metrics, which are described in the following section. Figure 8 displays the architecture of
the customized stack-ensemble model.
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2.4. Accuracy Assessment Metrics

This study primarily used traditional statistical accuracy assessment metrics such as
root mean squared error (RMSE) and mean absolute error (MAE) for model evaluation.
RMSE is the standard deviation of the residuals (i.e., the difference between actual and
predicted values, which is also called the error). RMSE measures how spread out these
residuals are or how concentrated the data are around the line of best fit.

RMSE =

√
∑N

i=1 ||y(i)− ŷ(i)||2
N

(1)

where N is the number of data points, y(i) is the i-th measurement, and ŷ(i) is its corre-
sponding prediction.

MAE measures the absolute mean difference of the predicted and actual values.

MAE =
∑N

i=1|yi − xi|
n

(2)

where yi is the prediction, xi is the true value/ground truth value, and n is the total number
of data points.

3. Result

Several models were trained and tested and compared regarding the potentiality in
accurate rice yield estimation, and we found that the proposed stack-ensemble model
achieved overall less error than the benchmark linear regression and other ML models.
While evaluating the model’s performance on the validation dataset, the model’s output
was added with yearly-based yield from polynomial curve fitting to calculate final predic-
tion of yield. The predicted yield values were compared with the actual reported yield
with accuracy assessment metrics, which are presented in Table 1.

The experiments were carried out in two phases—(initially, only NDVI was used to
model yield. We found that the benchmark LR model can achieve an average 685.17 RMSE
and 633.83 MAE for all districts whereas other ML models performed slightly better than
the benchmark model. The proposed model with the same predictor achieved an overall
451.05 RMSE and 425.35 MAE. The results indicate that the proposed stack-ensemble model
combining four different tree-based regression model is more effective and provide more
accurate yield estimation. (2) Later, we added five different auxiliary variables (Rainfall,
Total precipitation amount, Soil Moisture, Evapotranspiration, and LST) with NDVI and
found that the auxiliary variables significantly improve the prediction performance of all
models. With new variables added to the stack-ensemble model, its accuracy improved
dramatically. The average RMSE was reduced to 328.06 and MAE was reduced to 317.21.
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Based on the validation accuracy, this study used only the stack-ensemble model for
further analysis.

Table 1. Accuracy assessment metrics of each model based on the validation dataset.

Models Average RMSE Average MAE

NDVI vs. Yield
LR 685.17 636.83
RF 556.19 507.45

Gradient Boost 575.03 562.04
LightGBM 545.85 502.08
XGBoost 552.27 507.02

Stack Ensemble 451.05 425.35
NDVI + Auxiliary Variables vs. Yield

LR 550.94 514.50
RF 361.52 337.19

Gradient Boost 372.03 359.04
LightGBM 356.85 334.55
XGBoost 355.90 333.12

Stack Ensemble 328.06 317.21

A district-wise comparison among predicted and actual yield (kg/ha) with validation
accuracy from the stack-ensemble model was presented in Table 2. In some districts, the
predicted yields were very close to the actual yield values. It can be seen that the actual
reported and predicted yield for Dang district was 4180 kg/ha and 4120 kg/ha, respectively,
in the year 2018 where the yield delta was 60 kg/ha, which means the yield estimation
was 98.6% accurate. However, the model’s accuracy was lowest in Sarlahi district where
the actual and predicted yield was 3520 kg/ha and 3068 kg/ha, respectively, and the
difference was 451 kg/ha, which means the estimation accuracy was 87.2%. In this district,
the model gained the worst accuracy with 455 kg/ha RMSE and 455 kg/ha MAE. We
can see variation of yield estimation accuracy from district to district due to their unique
geographical characteristics. However, it can be seen that the overall error difference in
most of the districts was minimal and the predicted values were close to the actual yield.

Table 2. District-wise prediction and original yield (kg/ha) and validation metrics. Based on the
validation dataset.

District Yield 2018 Predicted
Yield 2018

Percentage of
Error 2018 (%) Yield 2019 Predicted

Yield 2019
Percentage of
Error 2019 (%) RMSE MAE

JHAPA 4260 4144 2.7 4403 4203 4.5 163.62 158.08
MORANG 4140 3931 5.05 4237 3953 6.7 248.96 246.08
SUNSARI 3980 3574 10.20 3987 3656 8.3 370.41 368.55

BARA 4060 3773 7.0 4137 3928 5.1 251.22 248.20
DHANUSHA 3980 3654 8.2 3983 3501 12.1 411.30 403.83
MAHOTTARI 3460 3179 8.1 3474 2937 15.4 428.44 408.79

PARSA 4110 3994 2.8 4134 3997 3.3 126.61 126.17
RAUTAHAT 3410 3191 6.4 3443 3024 12.17 334.25 318.90

SAPTARI 3520 3073 12.7 3564 3119 12.5 445.77 445.77
SARLAHI 3520 3068 12.8 3564 3104 12.9 455.45 455.43
SIRAHA 3430 3078 10.2 3515 2744 21.9 599.29 561.04

CHITAWAN 3970 3676 7.4 4002 3755 6.17 270.75 269.74
BANKE 3150 2959 6.1 3476 3134 9.83 276.56 266.07

BARDIYA 4310 4204 2.5 4300 3989 7.23 232.49 208.37
DANG 4180 4120 1.4 4188 4281 2.2 78.40 76.45

KAPILBASTU 3540 3517 0.6 3511 3188 9.2 228.34 172.50
RUPANDEHI 4150 4474 7.8 4145 4542 9.5 362.59 360.79

KAILALI 4160 3803 8.5 4270 3671 14.0 492.81 477.64
KANCHANPUR 3880 3388 12.68 3893 3476 10.71 456.02 454.50
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4. Discussion

To understand the importance of factors on crop yield, the feature importance graphs
(Figure 9) was depicted using the XGBoost model. The feature importance graphs present
the contribution of each factor while developing a tree-based regression model. It can be
seen that the importance of each factor varies from district to district. The reason for the
varying importance of each factor on rice yield estimation is because of the unique diverse
physio-geographic characteristics of each district. In eighteen districts, NDVI was the most
contributing factor, followed by rainfall in one district. In addition, LST was the least
important predictor for eight districts. Based on the F score, the importance of variables
were ranked accordingly as NDVI > rainfall > evapotranspiration > soil moisture > LST.
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The actual reported vs. predicted yield graph (Figure 10) shows the time-series trend
of rice yield along with a linear curve, as well as estimation of yield during the training and
validation period for all districts. It is evident from the time-series graphs that yearly rice
yield (blue curve) fluctuates highly and apparently there is no linear pattern. It also shows
that linear models such as linear regression are not suitable for crop yield estimation for
Nepal as there are no linear trends. Instead, we can see that the non-linear stack-ensemble
model exhibits an almost similar pattern to the yield trend curve. However, it can be seen
as significant differences sometimes but, even still, the fitted curves look similar to the
non-linear trend of yearly rice yield.
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Finally, we plotted the error difference between the actual yield and predicted yield
for the years 2018 (Figure 11a) and 2019 (Figure 11b) for all Terai belt districts. It shows the
error variation of each district for the years 2018 and 2019. We can see that average errors in
all districts are moderate to low. The largest and lowest differences in 2018 were found in
Sarlahi, where 452 kg/ha of rice yield was underestimated, and Kapilbastu, where 23 kg/ha
of rice yield was underestimated. Additionally, in 2019, the biggest discrepancy was seen in
Siraha, where 771 kg/ha of rice yield was underestimated, while the smallest discrepancy
was found again in Dang district where the 93 kg/ha of rice yield was overestimated.
Overall, the average error difference for all districts was 8.33%.

Based on the analysis and results, we can conclude that the proposed stack-ensemble
based rice yield model is an effective and alternative approach for predicting crop yield.
This conclusion is supported by the promising results obtained in comparison to both the
benchmark and other ML models. The workflow presented in this study can serve as a
guide for estimating crop yield, including steps such as detrending time-series yield data,
processing remote sensing data (e.g., applying the SAVGOL filter to eliminate noise from
NDVI trends), combining remote sensing and meteorological data, and selecting a suitable
ML model that can learn from limited observations and provide accurate estimates. This
entire workflow can be replicated for rapid rice yield estimation in other locations.
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5. Conclusions

This study investigated the relationship between MODIS NDVI products along with
several meteorological factors and yearly rice yield. It also presented appropriate data
preprocessing techniques and the performance of customized ML models in order to
improve the rice yield estimation accuracy. We found that the MODIS NDVI product alone
was not a strong predictor. Therefore, incorporating other climatic variables improved the
model’s prediction performance and provided a more accurate estimation of rice yield.
Along with NDVI, we found that rainfall, soil moisture, and evapotranspiration also
showed a strong relationship with rice yield. Finally, we found that tree-based regression
models, especially hybrid stack ensembles of multiple models, can perform better with few
data points and achieved 288 kg/ha RMSE, which was a significant improvement from
the initial 685 RMSE of the benchmark LM model. Due to the unique and distinct physio-
geographical setting of each district, we can see a variation of estimation accuracy. There are
a few limitations in this study, including data availability and lacking sufficient ground truth
information. We found the presence of a significant amount of cloud cover over the Terai
belt districts in Nepal during the main crop growing and harvesting season. Therefore, we
were not able to derive higher-resolution NDVI products from Landsat/Sentinel 2 imageries.
In the future, Sentinel 1 image products could be used to delineate rice fields and calculate
a vegetation index that may achieve better estimation accuracy. Additionally, more ground
truth data and other meteorological and environmental parameters could be incorporated
for statistical analysis and modeling in the future, targeting specific districts that performed
poorly, to better understand the crop phenology and improve yield estimation accuracy.
However, the overall estimation accuracy for all districts was satisfactory and the workflow
can be replicated in other areas that can help ensure food security.
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