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Abstract: Monitoring and early warning technology for forest fires is crucial. An early warn-
ing/monitoring system for forest fires was constructed based on deep learning and the internet
of things. Forest fire recognition was improved by combining the size, color, and shape characteristics
of the flame, smoke, and area. Complex upper-layer fire-image features were extracted, improving
the input conversion by building a forest fire risk prediction model based on an improved dynamic
convolutional neural network. The proposed back propagation neural network fire (BPNNFire)
algorithm calculated the image processing speed and delay rate, and data were preprocessed to re-
move noise. The model recognized forest fire images, and the classifier classified them to distinguish
images with and without fire. Fire images were classified locally for feature extraction. Forest fire
images were stored on a remote server. Existing algorithms were compared, and BPNNFire provided
real-time accurate forest fire recognition at a low frame rate with 84.37% accuracy, indicating superior
recognition. The maximum relative error between the measured and actual values for real-time online
monitoring of forest environment indicators, such as air temperature and humidity, was 5.75%. The
packet loss rate of the forest fire monitoring network was 5.99% at Longshan Forest Farm and 2.22%
at Longyandong Forest Farm.

Keywords: forest fire monitoring; deep learning; convolutional neural network; back propagation
neural network; internet of things (IoT)

1. Introduction

Forest fires destroy numerous trees and cause the death or displacement of wild
animals. They cause the destruction and modification of forest vegetation and structure,
and of the ecological environment, climate, and soil properties, reducing the ability of
the forest to prevent water and soil loss and to regulate the weather. Concurrently, they
reduce the vegetation area, allowing the ground to receive direct solar radiation, making
the surface temperature rise too quickly, further damaging ground creatures, and causing
desertification and other hazards [1].Traditional forest fire monitoring is time-consuming
and labor-intensive. Forest fire prevention has gradually shifted from manual patrols,
lookout monitoring, air forest protection, satellite remote sensing, and other monitoring
methods to early monitoring and warning systems for forest fires. Early warning systems
and the timely detection of forest fires are crucial measures to reduce fire loss. Wireless
sensor networks (WSNs) are a relatively stable technical means to obtain environmental
information on combustibles under forests, monitor changes in the environmental mi-
crometeorology before forest fires, and provide early warnings of imminent fires [2,3].
Therefore, the WSN, as an early monitoring tool for forest fires, has become an effective
means of real-time forest fire monitoring. Deep learning methods that analyze the forest
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canopy image information from images collected above the forest have also been applied
for dynamic forest fire monitoring/early warning systems. Both techniques are described
in detail below.

Before a forest fire, environmental information under the forest canopy can be collected
using WSN technology, and changes in the forest environment micrometeorological data
can be recorded and used to perceive signs of forest fires at an early stage. The generation
of flame and smoke above the forest can be identified by applying deep learning to forest
canopy images to realize fire-monitoring sampling and identify early warnings, reducing
firefighting time and preventing major fires [4–6].The WSN monitors the meteorological fac-
tors of the forest environment and the moisture content of undergrowth combustibles, using
this data to simulate the spread and propagation of forest fires. A forest fire early warning
model was built, verified, and modified in an actual forest environment by analyzing these
factors [7–10].

Moussa et al. [11] built a forest fire-monitoring WSN system using temperature, hu-
midity, and smoke concentration sensors to collect real-time forest environmental infor-
mation. This system improved the DV-Hop location algorithm and the accuracy of the
traditional iteration algorithm; optimized the distance estimation, node location, and model
performance; and conducted field verification to meet the needs for early monitoring
and positioning.

Saeed [12] employed flame, smoke, temperature, and humidity sensors to monitor
forest fires. In combination with the technical characteristics of ZigBee and long-range
radio (LoRa), Zigbee technology was used for data transmission in the sensing area of
the forest. By improving the LoRa relay–group network communication agreement and
conducting field tests, Saeed collected and transmitted data for an intelligent forest fire
early warning system.

Sinha [13] applied WSN nodes to monitor the characteristic signals of forest fires and
fused temperature, carbon monoxide concentration, and smoke information to obtain the
trust function generated by forest fires. The field test analyzed the probability of a forest fire.
The results demonstrated that the system can reliably set off an alarm when the collected
information exceeds a set threshold, quickly and accurately identifying the probability of a
forest fire.

Moreover, WSNs can collect real-time information, but using them to perceive the
current fire situation in a forest canopy promptly is difficult. Humans have difficulty
reaching and deploying WSN monitoring nodes in certain forest environments, such as
steep terrains. When the tree crown catches fire, monitoring the state of the forest fire under
the trees is challenging. Therefore, many scholars have used deep learning methods to
recognize the forest canopy image information from fire images collected above the forest
to identify fire danger as early as possible [14]. Uncrewed aerial vehicles (UAVs) and video
surveillance can obtain forest canopy image information using deep learning methods for
fire monitoring. The complex features of the forest fire image, such as smoke and flame, are
analyzed to build a forest fire monitoring/early warning model [15–18].

Furthermore, forest fire risk prediction models have been created to predict the time
of fire occurrence, fire-spread direction, and fire intensity using deep learning to analyze
various factors affecting forest fire [19–23]. Park et al. [24] proposed a semi-supervised
classification model using support vector machine technology to divide forest areas into
high, medium, and low activity based on the likelihood of a forest fire in an area. The
model’s forest fire identification is satisfactory, with a prediction accuracy of 90%.

Sousa et al. [25] determined a forest fire risk index based on the forest area and
vegetation at Mount Tai, and divided the monitoring area into high-, medium-, and low-
risk areas on a fire-risk rating map. Based on the sensitive characteristics of chaotic systems,
the theory of differential flatness was adopted to track and control UAVs, realizing random
path planning.

Elshewey et al. [26] employed data enhancement technology to enhance the data
features of forest fire images and mark candidate boxes on target detection datasets. Three
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convolutional neural networks(VGG16, Inception V3, and ResNet50)were applied to build
a forest fire early warning model using migration technology. The model parameters were
gradually optimized, and their accuracy was verified. This method can accurately detect
the fire area in an image and provide fire location information.

Shreya et al. [27] combined cellular automata with existing forest fire models to build
an improved forest fire spread model. The model calculates the speed change rate index
according to meteorological factors affecting the forest fire spread, and adaptively adjusts
the time steps of the cellular automata through a speed change rate index. The model
can be used to simulate and predict forest fire spread. The experimental data reveal that
the fire-prediction accuracy of the model output reaches the fire-detection accuracy of
real-time prediction.

Thus, deep learning methods are highly suitable for forest fire identification [28–33].
However, in practical applications, most deep learning methods suffer from low accuracy
in identifying forest fires. The low efficiency of complex upper-layer feature extraction of
fire images results in low robustness of input conversion [34–38]. This study researches
forest fire monitoring using the WSN, deep learning, and existing research in this field,
providing critical technical support for enriching and innovating the current forest fire
prevention and control technologies and management methods, considering the limitations
of the WSN and deep learning-based methods.

The main contributions of this study are the construction of a forest fire monitoring and
early warning system based on deep learning and the internet of things (IoT). A forest fire
recognition method based on image segmentation processes the collected forest fire images.
Forest fire recognition is improved by combining the size, color, and shape characteristics
of the flame, smoke, and area. Complex upper-layer features of fire images are efficiently
extracted, improving the robustness of input conversion by building an improved dynamic
convolutional neural network (DCNN) forest fire risk prediction model. The proposed
back propagation neural network forest fire identification (BPNNFire) algorithm calculates
the processing speed and delay rate of the video images. The data are collected and
preprocessed to remove noise. The model recognizes the forest fire images, and the classifier
classifies them to distinguish between images with fire and those without fire. A fire image
is classified locally for feature extraction of forest fire images and is transmitted to a remote
server for storage.

2. Materials and Methods
2.1. The Dataset Description

A total of 7690 forest fire images of diverse types were collected from Guangdong
Province and the internet to build a dataset. The dataset contains top-view image informa-
tion for trees, lakes, roads, and other forest environments captured using a UAV from the
air, collected under sufficient light and low-illumination conditions.

The dataset was divided into training and testing sets in an 8:2 ratio (i.e., 6152 image
samples for training and 1538 images for testing, collected with the same background). The
rotation angle method increased the number of training set samples. Six angles were used to
rotate the training set images: 30◦, 75◦, 180◦, 210◦, 255◦, and 300◦. This approach increased
the training sample diversity, prevented overfitting during training, and improved the
model detection accuracy. Forest fire images were recognized as different images in the
training network using various rotation angles. The original image dataset can be increased
six-fold through rotation angles. The number of samples before the dataset expansion
was 7690, and the number after the expansion was 53,830. The expanded sample data
were divided into training and validation sets. Table 1 presents the data distribution of the
training, verification, and testing sets.
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Table 1. Distribution of forest fire image datasets.

Category Number of
Dataset Samples

Training
Set Samples

Verification
Set Samples

Testing
Set Samples

Fire image 53,830 43,064 5237 5529

This study constructed a dataset with 3840 images from the internet and forest fire
images collected in Longshan Forest Farm (23◦12′N, 113◦22′E), which is located in Lechang
City, Shaoguan, Guangdong Province, China. The forest farm mainly grew Chinese fir,
as well as Lechang Michelia, camphor, and various local broad-leaved trees. The gener-
alizability of model training and the effectiveness and efficiency of extracting relevant
features from images were ensured. The dataset was divided into training and testing
sets. The training set consisted of 3072 images, including 320 images with fire and 2752
without fire. The testing set had 768 images: 384 with fire and 384 without fire. The training
set distribution was unbalanced, but the testing set distribution was balanced; therefore,
whether the model could be used in real-world scenarios could be assessed. The dataset
contained images of various scenes, such as forest fires with various sizes and varying
lighting intensity at night and in the morning. Non-fire images were captured in bright
light, during early morning, and at sunset. Figure 1 depicts representative images of forest
fire datasets in diverse environments.
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Figure 1. Images in one forest fire dataset.

2.2. Network Structure

This section describes the improved BPNNFire algorithm. Figure 2 illustrates the early
warning structure of the forest fire monitoring network. The upper part represents the
image information regarding fire over the forest monitored by a UAV, and the image is
recognized using deep learning technology. Finally, the forest fire image is recognized and
predicted at the output layer. The lower part represents identifying forest environmental
information through the WSN to provide a timely warning of forest fires. The collected
data are stored in the database.
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The forest fire monitoring/early warning system is depicted in Figure 3, with a
forest environment information collection node, UAV, camera, sensor, solar power supply
module, BPNNFire algorithm and DCNN model deployment platform, and forest fire
online monitoring system. The forest environmental information collection nodes deployed
in the field were powered using solar panels. The nodes include various sensors, such
as air temperature, humidity, soil moisture, illumination, and wind speed sensors. The
forest environmental information monitoring node collects forest environmental data
within its area and transmits data to the gateway node in multi-hop form to a remote
server through the network node. The data in the server are connected to the forest
fire monitoring/early warning system through the interface, which can display real-time
monitored forest environment data. The UAV collects forest fire image data over the forest
and transmits the monitored image signal to the BPNNFire algorithm and DCNN model
deployment platform. The forest fire online monitoring/early warning system can display
and process the monitored forest fire images online and promptly detect a forest fire.
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2.3. BPNNFire Algorithm

We propose the improved BPNNFire algorithm. Figure 4 presents the steps of the
BPNNFire algorithm. First, data were collected and preprocessed to remove noise. The
model recognized the forest fire image after input, and the classifier distinguished between
images with and without fire. An image with fire was classified locally for feature extraction
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and transmitted to a remote server for storage. Figure 4 displays the framework of the
forest fire recognition algorithm.
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Figure 4. Framework of the forest fire recognition algorithm.

The following steps are performed in the improved BPNNFire algorithm:

• The checked window is divided into 16 × 16 parts;
• Each pixel is compared to the neighboring pixel;
• If the value of the neighbor is smaller than the focal pixel value, the pixel value is set

to 0; otherwise, it is 1, generating an 8-bit binary number;
• The frequency histogram generated by each member number is calculated in the entire cell;
• Histograms can be normalized according to the use-case authenticity, and the his-

togram of each cell is normalized to obtain the feature vector;

When the DCNN model provides an early warning, the forest fire risk prediction
model generates region of interest (ROI) particles in rectangles, constantly moving in
various directions and changing positions. In this case, the size of the ROI is updated over
time. Step 1 explains each point of ROI formation in detail, and the similarity of fire or
smoke can be identified. The following are the model parameters: object weight Wi, object
height Hi, central coordinates Ci(x, y), and rectangles of each coordinate described by the
ROI (RC1(x, y), RC2(x, y), RC3(x, y), RC4(x, y)). The derivation process is as follows:

CROI = Ci−1(x, y) (1)

WROI = Wi−1 × 1.2 (2)

HROI = Hi−1 × 1.2 (3)

RC1(x, y) = CROI [x− (WROI ÷ 1.5), y− (HROI ÷ 1.5)] (4)

RC2(x, y) = CROI [x + (WROI ÷ 1.5), y + (HROI ÷ 1.5)] (5)

RC3(x, y) = CROI [x− (WROI ÷ 1.5), y + (HROI ÷ 1.5)] (6)

RC4(x, y) = CROI [x + (WROI ÷ 1.5), y− (HROI ÷ 1.5)] (7)

Image = Corp(RC1, RC2, RC3, RC4) (8)

Among them, Hi−1, Wi−1, and Ci−1(x, y) are inputs.
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2.4. Construction of the DCNN Prediction Model

Next, we build a forest fire risk prediction model based on the improved DCNN and
BPNN algorithm to extract complex upper-layer features of fire images and improve the
robustness of input conversion. Figure 5 details the DCNN prediction model network
architecture. The last layer is the high inference classification for the DCNN.
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(1) Convolutional layer

The convolutional layer applies convolution to the input of an image, and the result is
transferred to the next layer. Each point in the convolutional layer is an acceptance region,
a collection of units in the previous layer. Neurons can acquire basic visual features of local
perception, and this layer has various feature maps and can display multiple feature maps.
The form of the convolutional layer is expressed by Equation (9):

Xl
j = f

[
∑ iεεMxl−1

j ∗ kl
ij + bl

i

]
(9)

where the Xl
j output denotes a feature map of a specific convolutional layer, Mj represents

a set of input maps, k indicates the core size determining the contribution of the model to
the image, and b is a deviation value;

(2) Sampling layer

The subsampling or pooling layer performs subsampling and local averaging to reduce
the complexity resolution of the feature map. It also eliminates output sensitivity. The form
of the subsampling layer can be expressed as follows (10):

Xl
j = f

[
βl

jdown

(
xl−1

j

)
+ bl

i

]
(10)

where βl
jdown denotes a subsampling function. Generally, the subsampling (down) function

provides n by n blocks in the input image to calculate the final output, offering an n-times
smaller normalized output. In addition, β represents the multiplication deviation, and b is
the additive deviation. The proposed DCNN model follows;

(3) DCNN model

The model has five convolutional layers, five max-pooling layers, and two fully
connected layers, each of which has 4096 neurons. The softmax classifier is implemented
for the last level of high inference classification, and the rectified linear unit activation
function is employed, as presented in the following formula:

f (x) =
{

x i f x > 0
ax x ≤ 0

(11)
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An image is input into the model, adjusting its size to 256 × 256 × 3. The convolu-
tional layer performs 11 operations on the input image of size 11 × 11 × 3 with 96 core
filters, in Step4.Then, in the second volume-building layer, there are 256 cores with a size
of 5 × 5 × 64. In Step 2, the output is transferred to the pooling layer. On the third convo-
lutional layer, the convolutional operation is reapplied. There are 384 cores with a size of
3 × 3 × 256 but no pooling process. The remaining two volume layers use filters with 256
and 384 cores in Step 1. After the fifth roll-up layer, the pooled layer is reused, and a single
3 × 3 filter is used. Finally, there are two fully-connected layers for final classification, each
with 4096 neurons. Figure 6 displays the schematic diagram of flame-area extraction using
the neural network.
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3. Results
3.1. Performance Comparison Test and Analysis of the BPNN Algorithm
3.1.1. Model Performance Test

Table 2 lists the specific training environment parameters, including the processor
parameters, graphics card parameters, memory, development environment, and other
specific information used in this experiment.

Table 2. Training environment parameters.

Name Training Environment

CPU Inter® Xeon® Gold 6240@2.59 GHz
GPU NVIDIA GTX 3090@24 GB
RAM 128 GB

PyCharm version 2020.3.2
Python version 3.7.10
PyTorch version 1.6.0
CUDA version 11.1
cuDNN version 8.0.5

The convolutional layer realizes a highly-active DCNN by training the convolutional
filter. More convolutions result in more complex characteristics. The convolutional kernel
is trained to form a better combination mode, obtain optimal parameters through the
proposed model, and effectively classify the test samples by optimizing the parameters.
The training and testing loss function curves of the algorithm are presented in Figure 7.
These curves reveal that the value of the loss function gradually decreases, and the curve
tends to converge as the number of training and testing iterations increases. Figure 7
depicts the test accuracy iteration curve, revealing that the testing accuracy increases as the
number of training iterations increases, and the curve reaches the maximum value with
500 iterations.
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3.1.2. Forest Fire Image Recognition Effect Test

Various algorithms are used to compare the forest fire image data processing speed
and to process videos with a duration of 4 min and 16 s. The video has 29 images/s, and
the size of each frame is 960×540, for a total of 7424 images. The processing speed and
delay rate are calculated using the BPNNFire algorithm, BPNN, interframe difference,
background elimination, and Vibe algorithm, presented in Figure 8.
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Figure 8 indicates that the processing speed is 7.54 fps for the BPNNFire algorithm,
7.26 fps for the BPNN algorithm, 7.13 fps for the interframe difference algorithm, 6.79 fps
for the background elimination algorithm, and 0.87 fps for the Vibe algorithm. When the
flight speed of the UAV is constant, owing to the limited change-of-scene information
recorded in the video, preprocessing during video frame capture can reduce the number of
frames to achieve a real-time data processing effect. When the video frame is set to 5 fps, the
interframe difference algorithm and background elimination method are used to increase
the processing speed to verify the accuracy of the forest fire recognition algorithm at a low
frame rate. The test data in Figure 8 reveal that, under the same conditions, the BPNNFire
algorithm has the lowest delay rate, and its processing speed can meet the real-time usage
and accuracy requirements. Regarding algorithm processing results, other algorithms are
used to process images. Figure 9 presents the recognition results of various algorithms.
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Figure 10 displays the accuracy of fire-image determination using various algorithms,
revealing that the BPNNFire algorithm can meet real-time accurate forest fire recognition
requirements under a low frame rate. The recognition accuracy rate reaches 84.37%, indicat-
ing that the BPNNFire algorithm is superior to other algorithms in recognition accuracy.
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3.2. Internet of Things Monitoring System Test and Analysis

By monitoring environmental forest data, the hidden dangers that may lead to a forest
fire can be perceived early, providing an advanced warning to minimize the occurrence
of disasters. When a forest fire is about to occur, the micrometeorological information of
the forest environment changes. By setting a threshold in the online forest fire monitoring
system, an early warning of a forest fire can be realized to prevent it. When a forest fire
occurs, the environment forest information around the fire also initially changes. When the
monitored forest environment parameters exceed a certain threshold, the online forest fire
monitoring and warning system initiates an alarm. The UAV is applied to collect the forest
fire image data over the forest and transmit the monitored image signal to the BPNNFire
algorithm and DCNN model deployment platform in real time. From May to August 2021,
WSNs for online forest fire monitoring were deployed in Guangdong Shaoguan Longshan
and Guangdong Longyandong Forest Farmsto verify the function of the forest fire moni-
toring/early warning system and conduct real-time online monitoring of environmental
indicators, such as air temperature, humidity, soil moisture, and illumination. The online
forest fire monitoring/early warning system processed the monitored forest fire image
online to detect a fire promptly.

3.2.1. System Packet Loss Rate Test

The forest fire monitoring data from two forest farms from 1 July 2021 to 30 September
2021 were downloaded onto the monitoring data management platform to perform a
statistical analysis. According to the 30 min collection cycle, the number of monitoring
data packets was 3572, and the number of data packets received by the platform was 3358
for Longshan and 2725 for Longyandong. As the SIM card of Longyandong Forest Farm
gateway was not recharged in time, 785 data were lost between 0:00 on 15 July 2021 and
10:00 on 5 August 2021. Table 3 presents the statistics for the packet loss rate data. The
packet loss rate of the forest environment monitoring network of Longshan Forest Farm
was calculated at 5.99%, and the packet loss rate of the forest environment monitoring
network of Longyandong Forest Farm was 23.7%. If the data loss period of Longyandong
Forest Farm had not been considered, the gateway of Longyandong Forest Farm would
have sent 2787 packets, with a packet loss rate of2.22%.

Table 3. Packet loss rate statistics.

Forest Farm Longshan Longyandong

Number of local packets sent 3572 3572
Number of packets received by the platform 3358 2725

Packet loss rate 5.99% 23.7%

The analysis found that the packet loss rate for Longshan Forest Farm was higher
than that of Longyandong Forest Farm. The environment data monitoring node for Long-
shan Forest Farm was deployed close to the gateway node. However, due to the dense
tree growth in the deployment environment, the difference in geographical locations and
altitudes between the two nodes, and the weak signal strength of the SIM card, the gateway
node was often disconnected and lost several data packets. However, although a height
drop and housing block occurred between the environment information monitoring node
and gateway node in Longyandong Forest Farm, many nodes were deployed, improving
the data transmission link, overcoming the effect of geographical factors, and effectively
reducing the packet loss rate. The results indicate that the hardware device and embed-
ded routing protocol can be applied to an unattended situation in a forest environment
monitoring field to ensure long-term stable system operation.
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3.2.2. Fire-Monitoring Network Deployment of Longyandong Forest Farm

Several sets of WSN nodes were deployed on the Maofeng Mountain forested land at
Longyandong Forest Farm during the experiment, and the network deployment method
was consistent with that for Shaoguan Longshan Forest Farm. The air temperature, humidity,
soil moisture, light intensity, and other indicators of the forest environment were collected.

The relative error test on the forest environmental data was conducted from 1 to 30
August 2021. The maximum temperature humidity data measured in this period and the
maximum temperature humidity data measured on the platform were used for relative
error statistics. The error calculation formula is as shown:

relative error =
|Platform data − measured data|

measured data
× 100% (12)

The data measurement tool recorded the maximum temperature and humidity data
daily, fitting and analyzing the monthly monitoring data and generating the data curve in
Figures 11 and 12.
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The results indicate that the designed forest fire monitoring/early warning system is
stable. Figure 12 displays the actual and platform maximum temperature data measured in
the period, and it also depicts the actual and platform maximum humidity data measured
in the period. Figure 11 demonstrates that the maximum relative error of temperature and
humidity is 5.75%, whereas the minimum relative error is zero.

4. Conclusions

This study conducted comprehensive tests and analyses in Longshan and Longyan-
dong Forest Farms to verify system stability and functionality. The research results are
as follows:

• The system can typically transmit the forest environment data monitored by the
ground WSN, and the UAV can generally return fire images above the forest and
provide a prompt early warning, meeting the needs of forest fire monitoring;

• Multiple algorithms compared the processing speed of a video with a processing
time of 4 min and 16 s. The video had 29 images/s, and the size of each frame was
960×540, for a total of 7424 images. The processing speed and delay rate of the video
images were calculated using the BPNNFire algorithm and other algorithms. The test
results revealed that the BPNNFire algorithm’s judgment accuracy rate was 84.37%,
indicating that this algorithm was superior to other recognized algorithms;

• The real-time online monitoring of forest environmental indicators for three months
indicates that the packet loss rate of the forest fire monitoring network was 5.99%for
Longshan Forest Farm and 2.22% for Longyandong Forest Farm. The constructed hard-
ware equipment and embedded routing protocol could be applied to an unattended
situation in the forest fire monitoring field to ensure long-term stable system opera-
tion. The maximum relative error between the measured temperature and humidity
values and the actual value was 5.75%, indicating that the forest fire monitoring/early
warning system could stably receive and transmit forest environmental data, and that
the system connectivity was good.

Although the improved BPNNFire algorithm, as applied to forest fire detection,
achieved good results, the detection accuracy and performance of the forest fire recognition
model must still be improved for further optimization. Future research could explore how
to reduce the model complexity, simplify the model structure, and optimize the model
parameters, ensuring a lightweight model the calculation efficiency.

Author Contributions: Conceptualization, S.Z., X.Z. and S.C.; methodology, S.Z., X.Z., S.C. and Y.Z.;
software, S.Z. and P.G.; validation, S.Z., X.Z., P.G. and Y.Z.; formal analysis, S.Z., P.G. and Z.W.;
investigation, S.Z., X.Z., S.C., L.W., F.H. and P.G.; resources, S.Z., S.C. and Y.Z.; data curation, S.Z., P.G.
and Y.Z.; writing—original draft preparation, S.Z., P.G. and X.Z.; writing—review and editing, S.Z.,
S.C., P.G. and X.Z.; visualization, S.Z., P.G., F.H. and X.Z.; supervision, S.C., W.W. and Y.Z.; project
administration, S.Z., S.C., X.Z., Y.Z. and Z.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Scientific Research Project of Guangdong Eco-Engineering
Polytechnic, grant number 2020kykt-xj-zk10; Special fund project of Guangdong science and tech-
nology innovation strategy, grant number pdjh2021b0850; Characteristic Innovation Projects of
Department of Education of Guangdong Province, grant number 2018KJCX003; Guangdong Basic
and Applied Basic Research Foundation, grant numbers 2022A1515140162 and 2022A1515140013;
Guangdong Forestry Science and Technology Innovation Project, grant number 2018KJCX003 and
2020KJCX003.

Data Availability Statement: The data can be requested from the corresponding authors.

Acknowledgments: We would like to thank the anonymous reviewers for their critical comments
and suggestions for improving the manuscript.

Conflicts of Interest: The authors declare that there are no conflict of interest.



Remote Sens. 2023, 15, 2365 14 of 15

References
1. Hanewinkel, M.; Hummel, S.; Albrecht, A. Assessing natural hazards in forestry for risk management: A review. Eur. J. For. Res.

2011, 130, 329–351. [CrossRef]
2. Díaz-Ramírez, A.; Tafoya, L.A.; Atempa, J.A.; Mejía-Alvarez, P. Wireless sensor networks and fusion information methods for

forest fire detection. Procedia Technol. 2012, 3, 69–79. [CrossRef]
3. Bouabdellah, K.; Noureddine, H.; Larbi, S. Using wireless sensor networks for reliable forest fires detection. Procedia Comput. Sci.

2013, 19, 794–801. [CrossRef]
4. Vikram, R.; Sinha, D.; De, D.; Das, A.K. EEFFL: Energy efficient data forwarding for forest fire detection using localization

technique in wireless sensor network. Wirel. Netw. 2020, 26, 5177–5205. [CrossRef]
5. Nebot, À.; Mugica, F. Forest Fire Forecasting Using Fuzzy Logic Models. Forests 2021, 12, 1005. [CrossRef]
6. Nikhil, S.; Danumah, J.H.; Saha, S.; Prasad, M.K.; Rajaneesh, A.; Mammen, P.C.; Ajin, R.S.; Kuriakose, S.L. Application of GIS and

AHP Method in Forest Fire Risk Zone Mapping: A Study of the Parambikulam Tiger Reserve, Kerala, India. J. Geovisualization
Spat. Anal. 2021, 5, 1–14.

7. Faroudja, A. A survey of machine learning algorithms based forest fires prediction and detection systems. Fire Technol. 2021, 57, 559–590.
8. Barmpoutis, P.; Papaioannou, P.; Dimitropoulos, K.; Grammalidis, N. A review on early forest fire detection systems using optical

remote sensing. Sensors 2020, 20, 6442. [CrossRef] [PubMed]
9. Gaur, A.; Singh, A.; Kumar, A.; Kumar, A.; Kapoor, K. Video flame and smoke based fire detection algorithms: A literature review.

Fire Technol. 2020, 56, 1943–1980. [CrossRef]
10. Moumgiakmas, S.S.; Samatas, G.G.; Papakostas, G.A. Computer Vision for Fire Detection on UAVs—From Software to Hardware.

Future Internet 2021, 13, 200. [CrossRef]
11. Moussa, N.; El Belrhiti El Alaoui, A.; Chaudet, C. A novel approach of WSN routing protocols comparison for forest fire detection.

Wireless Netw. 2020, 26, 1857–1867. [CrossRef]
12. Saeed, F.; Paul, A.; Karthigaikumar, P.; Nayyar, A. Convolutional neural network based early fire detection. Multimed. Tools Appl.

2020, 79, 9083–9099. [CrossRef]
13. Sinha, D.; Kumari, R.; Tripathi, S. Semisupervised classification based clustering approach in WSN for forest fire detection. Wirel.

Pers. Commun. 2019, 109, 2561–2605. [CrossRef]
14. Varela, N.; Ospino, A.; Zelaya, N.A.L. Wireless sensor network for forest fire detection. Procedia Comput. Sci. 2020, 175, 435–440.

[CrossRef]
15. Yebra, M.; Quan, X.; Riaño, D.; Larraondo, P.R.; van Dijk, A.I.; Cary, G.J. A fuel moisture content and flammability monitoring

methodology for continental Australia based on optical remote sensing. Remote Sens. Environ. 2018, 212, 260–272. [CrossRef]
16. Majid, S.; Alenezi, F.; Masood, S.; Ahmad, M.; Gündüz, E.S.; Polat, K. Attention based CNN model for fire detection and

localization in real-world images. Expert Syst. Appl. 2022, 189, 116114. [CrossRef]
17. Kukuk, S.B.; Kilimci, Z.H. Comprehensive analysis of forest fire detection using deep learning models and conventional machine

learning algorithms. Int. J. Comput. Exp. Sci. Eng. 2021, 7, 84–94. [CrossRef]
18. Avazov, K.; Hyun, A.E.; Sami, S.A.A.; Khaitov, A.; Abdusalomov, A.B.; Cho, Y.I. Forest Fire Detection and Notification Method

Based on AI and IoT Approaches. Future Internet 2023, 15, 61. [CrossRef]
19. Tang, Y.; Huang, Z.; Chen, Z.; Chen, M.; Zhou, H.; Zhang, H.; Sun, J. Novel visual crack width measurement based on backbone

double-scale features for improved detection automation. Eng. Struct. 2023, 274, 115158. [CrossRef]
20. Wardihani, E.; Ramdhani, M.; Suharjono, A.; Setyawan, T.A.; Hidayat, S.S.; Helmy, S.W.; Triyono, E.; Saifullah, F. Real-time forest

fire monitoring system using unmanned aerial vehicle. J. Eng. Sci. Technol. 2018, 13, 1587–1594.
21. Tang, Y.; Qiu, J.; Zhang, Y.; Wu, D.; Cao, Y.; Zhao, K.; Zhu, L. Optimization strategies of fruit detection to overcome the challenge

of unstructured background in field orchard environment: A review. Precis. Agric. 2023, 274, 1–37. [CrossRef]
22. Sevinc, V.; Kucuk, O.; Goltas, M. A Bayesian network model for prediction and analysis of possible forest fire causes. For. Ecol.

Manag. 2020, 457, 117723. [CrossRef]
23. Apriani, Y.; Oktaviani, W.A.; Sofian, I.M. Design and Implementation of LoRa-Based Forest Fire Monitoring System. J. Robot.

Control 2022, 3, 236–243. [CrossRef]
24. Park, M.; Tran, D.Q.; Lee, S.; Park, S. Multilabel Image Classification with Deep Transfer Learning for Decision Support on

Wildfire Response. Remote Sens. 2021, 13, 3985. [CrossRef]
25. Dampage, U.; Bandaranayake, L.; Wanasinghe, R.; Kottahachchi, K.; Jayasanka, B. Forest fire detection system using wireless

sensor networks and machine learning. Sci. Rep. 2022, 12, 46. [CrossRef] [PubMed]
26. Elshewey, A.M. Machine learning regression techniques to predict burned area of forest fires. Int. J. Soft Comput. 2021, 16, 1–8.
27. Tang, Y.; Chen, C.; Leite, A.C.; Xiong, Y. Precision control technology and application in agricultural pest and disease control.

Front. Plant Sci. 2023, 14, 1163839. [CrossRef]
28. Guede-Fernández, F.; Martins, L.; de Almeida, R.V.; Gamboa, H.; Vieira, P. A deep learning based object identification system for

forest fire detection. Fire 2021, 4, 75. [CrossRef]
29. Li, C.; Tang, Y.; Zou, X.; Zhang, P.; Lin, J.; Lian, G.; Pan, Y. A Novel Agricultural Machinery Intelligent Design System Based on

Integrating Image Processing and Knowledge Reasoning. Appl. Sci. 2022, 12, 7900. [CrossRef]
30. Naderpour, M.; Rizeei, H.M.; Ramezani, F. Forest fire risk prediction: A spatial deep neural network-based framework. Remote

Sens. 2021, 13, 2513. [CrossRef]

https://doi.org/10.1007/s10342-010-0392-1
https://doi.org/10.1016/j.protcy.2012.03.008
https://doi.org/10.1016/j.procs.2013.06.104
https://doi.org/10.1007/s11276-020-02393-1
https://doi.org/10.3390/f12081005
https://doi.org/10.3390/s20226442
https://www.ncbi.nlm.nih.gov/pubmed/33187292
https://doi.org/10.1007/s10694-020-00986-y
https://doi.org/10.3390/fi13080200
https://doi.org/10.1007/s11276-018-1872-3
https://doi.org/10.1007/s11042-019-07785-w
https://doi.org/10.1007/s11277-019-06697-0
https://doi.org/10.1016/j.procs.2020.07.061
https://doi.org/10.1016/j.rse.2018.04.053
https://doi.org/10.1016/j.eswa.2021.116114
https://doi.org/10.22399/ijcesen.950045
https://doi.org/10.3390/fi15020061
https://doi.org/10.1016/j.engstruct.2022.115158
https://doi.org/10.1007/s11119-023-10009-9
https://doi.org/10.1016/j.foreco.2019.117723
https://doi.org/10.18196/jrc.v3i3.14128
https://doi.org/10.3390/rs13193985
https://doi.org/10.1038/s41598-021-03882-9
https://www.ncbi.nlm.nih.gov/pubmed/34996960
https://doi.org/10.3389/fpls.2023.1163839
https://doi.org/10.3390/fire4040075
https://doi.org/10.3390/app12157900
https://doi.org/10.3390/rs13132513


Remote Sens. 2023, 15, 2365 15 of 15

31. Tang, Y.; Zhou, H.; Wang, H.; Zhang, Y. Fruit detection and positioning technology for a Camellia oleifera C. Abel orchard based
on improved YOLOv4-tiny model and binocular stereo vision. Expert Syst. Appl. 2023, 211, 118573. [CrossRef]

32. Bajracharya, B.; Thapa, R.B.; Matin, M.A. Forest fire detection and monitoring. In Earth Observation Science and Applications for Risk
Reduction and Enhanced Resilience in Hindu Kush Himalaya Region; Springer: Berlin/Heidelberg, Germany, 2021; pp. 147–167.

33. Miller, E.A. A Conceptual Interpretation of the Drought Code of the Canadian Forest Fire Weather Index System. Fire 2020, 3, 23.
[CrossRef]

34. Zhou, Y.; Tang, Y.; Zou, X.; Wu, M.; Tang, W.; Meng, F.; Zhang, Y.; Kang, H. Adaptive Active Positioning of Camellia oleifera Fruit
Picking Points: Classical Image Processing and YOLOv7 Fusion Algorithm. Appl. Sci. 2022, 12, 12959. [CrossRef]

35. Narita, D.; Gavrilyeva, T.; Isaev, A. Impacts and management of forest fires in the Republic of Sakha, Russia: A local perspective
for a global problem. Polar Sci. 2021, 27, 100573. [CrossRef]

36. Bui, D.T.; Hoang, N.D.; Samui, P. Spatial pattern analysis and prediction of forest fire using new machine learning approach of
Multivariate Adaptive Regression Splines and Differential Flower Pollination optimization: A case study at Lao Cai province
(Viet Nam). J. Environ. Manag. 2019, 237, 476–487.

37. Peng, B.; Zhang, J.; Xing, J.; Liu, J. Distribution prediction of moisture content of dead fuel on the forest floor of Maoershan
national forest, China using a LoRa wireless network. J. For. Res. 2022, 33, 899–909. [CrossRef]

38. Michael, Y.; Helman, D.; Glickman, O.; Gabay, D.; Brenner, S.; Lensky, I.M. Forecasting fire risk with machine learning and
dynamic information derived from satellite vegetation index time-series. Sci. Total Environ. 2021, 764, 142844. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.eswa.2022.118573
https://doi.org/10.3390/fire3020023
https://doi.org/10.3390/app122412959
https://doi.org/10.1016/j.polar.2020.100573
https://doi.org/10.1007/s11676-021-01379-9
https://doi.org/10.1016/j.scitotenv.2020.142844
https://www.ncbi.nlm.nih.gov/pubmed/33158519

	Introduction 
	Materials and Methods 
	The Dataset Description 
	Network Structure 
	BPNNFire Algorithm 
	Construction of the DCNN Prediction Model 

	Results 
	Performance Comparison Test and Analysis of the BPNN Algorithm 
	Model Performance Test 
	Forest Fire Image Recognition Effect Test 

	Internet of Things Monitoring System Test and Analysis 
	System Packet Loss Rate Test 
	Fire-Monitoring Network Deployment of Longyandong Forest Farm 


	Conclusions 
	References

