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Abstract: Remote Sensing (RS) images are usually captured at resolutions lower than those required.
Deep Learning (DL)-based super-resolution (SR) architectures are typically used to increase the
resolution artificially. In this study, we designed a new architecture called TESR (Two-stage approach
for Enhancement and super-resolution), leveraging the power of Vision Transformers (ViT) and
the Diffusion Model (DM) to increase the resolution of RS images artificially. The first stage is the
ViT-based model, which serves to increase resolution. The second stage is an iterative DM pre-trained
on a larger dataset, which serves to increase image quality. Every stage is trained separately on
the given task using a separate dataset. The self-attention mechanism of the ViT helps the first
stage generate global and contextual details. The iterative Diffusion Model helps the second stage
enhance the image’s quality and generate consistent and harmonic fine details. We found that
TESR outperforms state-of-the-art architectures on super-resolution of remote sensing images on
the UCMerced benchmark dataset. Considering the PSNR/SSIM metrics, TESR improves SR image
quality as compared to state-of-the-art techniques from 34.03/0.9301 to 35.367/0.9449 in the scale ×2.
On a scale of ×3, it improves from 29.92/0.8408 to 32.311/0.91143. On a scale of ×4, it improves from
27.77/0.7630 to 31.951/0.90456. We also found that the Charbonnier loss outperformed other loss
functions in the training of both stages of TESR. The improvement was by a margin of 21.5%/14.3%,
in the PSNR/SSIM, respectively. The source code of TESR is open to the community.

Keywords: super-resolution; remote sensing images; vision transformer; self-attention; diffusion model

1. Introduction

RS images obtained from unmanned aerial vehicles (UAVs) and satellites provide
valuable insights into the Earth’s surface. However, these images often have low–medium
quality, which has prompted the development of algorithms to enhance their quality. The
use of image enhancement algorithms on drones and satellites allows for the collection of
more data over longer distances. RS images have been utilized for various applications,
including updating maps [1], target detection [2–4], semantic segmentation [5], and seismic
performance evaluation [6].

Obtaining high-resolution images in aerial photography is a significant challenge due
to the limitations of imaging equipment [7]. Capturing high-resolution RS photographs
by drones and satellites often requires expensive and high-quality imaging equipment.
To address this issue, researchers have turned to SR technologies. SR techniques for RS
images can be divided into two categories: one in which RS images are processed and
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improved directly after being taken from the drone or satellite, but suffer from the use of
additional processing devices. Another approach is to take RS images and then send them
to a workstation for processing and optimization, but this suffers from communication
channel issues. A major challenge in the field of super-resolution for RS images is the
absence of clear and precise details in the reconstructed images.

A variety of SR algorithms exist, with traditional methods such as interpolation being
commonly used. However, interpolation solely relies on pixel information [8] and often
yields suboptimal results. Since the emergence of DL, it has been utilized extensively across
various fields [9–11]. Several SR algorithms that surpass traditional methods have been
proposed, including those in [12–15]. SR algorithms have greatly advanced with the advent
of DL techniques such as Convolutional Neural Networks (CNNs) and the Generative
Adversarial Networks (GAN) model [16,17]. GANs consist of a generative network and
a discriminant network. GAN models have also been applied to various tasks such as
image enhancement and disease diagnosis [18,19]. Despite the success of GANs, current
GAN-based SR methods often struggle to produce high-quality results when applied to RS
images due to issues such as pattern collapse, excessive smoothing, and artifacts. These
challenges are a result of the nature of RS images, which often lack texture details.

The diffusion model [20] was first introduced a decade ago but has not yet been
applied to practical use. Recently, the Denoising Diffusion Probabilistic Model (DDPM) [21]
was published and has demonstrated superior performance in tasks such as SR [22], image
generation [23,24], repair [25], segmentation [26,27], and deblurring [28]. Although several
generative models can be employed for SR, they may not be suitable for RS images due to
the requirement of accurately capturing fine details. Therefore, it is crucial to develop a
system that can effectively extract and reconstruct both global and fine details in RS images.

To achieve high-quality, detailed RS images, we propose a two-stage super-resolution
algorithm called TESR. Our algorithm combines the advantages of both micro- and macro-
feature clustering by integrating the ViT model with the DM. The ViT is efficient at produc-
ing high-resolution images and capturing global details with its self-attention mechanism,
but it needs a large dataset and cannot extract fine details from RS images. On the other
hand, the DM excels at creating images that are similar to the original with fine details but
struggles to capture global details and takes a long time to train. To address these issues, our
proposed TESR model combines the strengths of the transformer and DM while eliminating
their drawbacks. This study utilizes the UCMerced benchmark dataset [29] to evaluate
the performance of the proposed model. We employed deep tuning to the pre-trained
swinIR ViT model and iterative DM. To decrease diversity and randomness during training,
we applied the Charbonnier loss function to both the diffusion and transformer models.
Furthermore, we compared the results of our proposed model with the state-of-the-art
super-resolution models in RS images. The main contributions of this research are:

1. The development of a two-stage TESR architecture for enhancement and super-
resolution using a combination of the Vision Transformer and Diffusion models;

2. Proving that the Vision Transformer block was more appropriate for the super-
resolution stage (generation of global details), while the Diffusion Model was more
appropriate for the Enhancement stage (enhancement of fine details);

3. Outperforming other methods when tested on the super-resolution of RS images from
the UCMerced dataset;

4. Demonstrating the efficiency of using the Charbonnier loss in the training of the TESR
model, which emphasizes its usefulness in the super-resolution domain.

The paper is organized as follows. In Section 2, we provide an overview of previous
studies in the field of super-resolution and their limitations, as well as descriptions of the
vision transformer model and the diffusion model. In Section 3, we describe the TESR
algorithm and its components (i.e., the SiwnIR transformer model and the iterative diffusion
model), as well as the deep tuning and Charbonnier loss applied to the pre-trained models.
In Section 4, we evaluate the proposed model’s performance using various metrics (e.g.,
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Multi-Scale
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SSIM (MS-SSIM)) and compare it to the performance of previous studies. In Section 5, we
discuss future work and the limitations of the proposed model. Finally, we provide our
conclusions in Section 6.

2. Related Work

Based on the study of related work, the target issue of super-resolution of RS im-
ages has been found to be widely addressed using various architectures, including CNN,
GAN, ViT, and DM. ViTs have been found to be particularly adept at extracting global
features, which may be a challenge for CNNs. This is due to the utilization of self-attention
mechanisms and the use of large-scale datasets. Self-attention mechanisms are a modern
method for global feature extraction that is flexible in adapting to different data distri-
butions. However, it is important to note that while ViTs have the potential to provide
improved results, they also require a significant amount of training time and access to large
datasets. Additionally, it is worth noting that ViTs may not be able to extract fine details
from RS images as effectively. The DM is a widely recognized generative model that has
been shown to outperform other methods. However, it has also been noted that this model
may struggle to generate images that possess accurate global features. Additionally, it is
important to note that the diffusion model requires a large amount of training time and can
be computationally expensive.

In the field of remote sensing image super-resolution, Wan et al. [30] proposed a
network that addresses this problem by utilizing an optical flow residual. This network
is composed of three branches: a motion compensation unit, an optical flow residual
estimation unit, and a super-resolution fusion unit. The method first extracts features from
the input image using a sub-pixel convolution layer before applying the super-resolution
process. González et al. [31] proposed a system for capturing low-resolution images using
drones, which are then sent to a smartphone for conversion to high-resolution images
using a lightweight SR architecture. Additionally, in ref. [32], Zhang et al. proposed a new
mixed attention-based network called MHAN, which consists of two feature extraction and
refinement networks. The extraction network uses weighted channel-wise concatenation
and skip connections to gather the most information, while the refinement network is based
on the High-Order Attention (HOA) mechanism to restore missing details.

Guo et al. [33] proposed a novel dense generative adversarial network called NDSR-
GAN for the SR reconstruction of real aerial imagery. The generator of this network is
composed of residual dense multi-level blocks that are connected by dense connections. In
addition, the network uses a matrix mean discriminator to speed up training and achieve
optimal results. The smooth l_1 loss is also utilized in this process. In contrast, Xiao
et al. [34] proposed a two-stage image quality improvement model that first employs
super-resolution using SRGAN, followed by correction and deblurring using a UNet-GAN
model. Similarly, Li et al. [35] suggested a super-resolution model based on a GAN to
improve UAV detection. To further enhance the edges of images and reduce weaknesses
caused by convolutional layers during training, they also used an ROI extraction model.
Their model incorporates edges and salient features into the convolution process through a
feedback mechanism.

On the other hand, some articles have used ViT for SR on RS images. Lei et al. [36]
proposed a SR framework called TransENet, which is based on a ViT. The core of this model
is designed to exploit features at multiple levels. TransENet has a multi-stage architecture
that can be used in conjunction with traditional SR frameworks to exploit both high- and
low-frequency features across multiple bands. Its architecture includes multiple encoders
to embed multi-level features and decoders to combine these features. In contrast, some
authors have combined ViT and GAN models, such as Tu et al. [37], who introduced a new
network called SWCGAN that combines a swin transformer [38] with convolutional layers
within a GAN. This model initially uses convolution layers to extract shallow features
and can adapt to different image sizes. It then uses residual swin transformer blocks to
extract deep features, which are used to generate high-resolution UAV images through
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enlargement. The lightweight swin transformer serves as the discriminator model for
adversarial training. Similarly, there are those who have used DM for super-resolution
of remote sensing images. For instance, Liu et al. [39] proposed a generative diffusion
model called DMDC, which includes a complement of details. They used the structure
of the SR3 model [22] to reconstruct images of generic scenes, but recognized that remote
sensing images often lack detailed information. To address this issue, they proposed a
detailed supplement task, which involves adding small, random black patches to the
images. They also introduced a novel loss function to improve the direction of inverse
diffusion in the diffusion model. There is also some research highlighting the importance
of image optimization in remote sensing applications. Xueyang et al. [40] proposed a
two-step approach to improving the quality of remote sensing images by using regularized
histogram equalization (HE) and the discrete cosine transform (DCT). The method first
improves the global contrast of the image through the use of a sigmoid function and
histogram to generate a distribution function, and then enhances the local details through
the adjustment of DCT coefficients. On the other hand, Ablin et al. [41] conducted a survey
of existing enhancement techniques in satellite images and concluded that fusion-based
enhancement techniques perform better than non-fusion-based techniques. These studies
demonstrate the significance of image enhancement in remote sensing and the need for
effective methods to improve the visual quality of remotely sensed images.

From the above, it can be seen that combining ViT and DM in one architecture is
particularly useful for the ability to reconstruct both global and contextual details through
the self-attention-based mechanism of the ViT, while DM is more suitable for reconstructing
harmonic contextual and fine details. In this research, we are the first to combine ViT and
DM in the task of remote sensing image super-resolution, and we apply a transfer learning
approach by using models (ViT and DM) that are pre-trained on large datasets.

Many previous and current methods rely on the availability of large datasets and long
training times to produce high-resolution remote-sensing images with fine details. How-
ever, these methods often fail to accurately capture the perceptual qualities of the original
images. In this research, we propose an integrated algorithm that uses transfer learning
with the vision transformer and diffusion model to reduce computational cost and training
time while still producing high-quality remote-sensing images using a small dataset.

3. Proposed Methodology

The TESR methodology is based on different stages, as shown in Figure 1. In the first
stage (the super-resolution stage), the SwinIR model is introduced for the super-resolution
of RS images. The SwinIR model is one of the most popular ViT models in generic image
restoration, which is applied to enlarge the remote sensing images and restore global details.
In the second stage (enhancement stage), the DM is utilized, which is typically used for
image generation and noise removal. The DM is applied after the SwinIR model to enhance
and restore fine details of remote sensing images. TESR combines the advantages of both
micro- and macro-feature clustering by integrating the SwinIR model with the DM. These
stages are explained in detail below.
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3.1. TESR Architecture

The frameworks for super-resolution algorithms can be divided into two categories in
the literature: pre-upsampling and post-upsampling.

Pre-upsampling, as shown in Figure 2a, was initially used in deep learning-based
super-resolution algorithms. In this approach, the bicubic interpolation method is first used
to enlarge the low-resolution (LR) images to the same size as the original high-resolution
(HR) images. The super-resolution (SR) model is then used to restore the HR images
from the interpolated LR images. As a result, the SR model learns the non-linear feature
mapping easily between the interpolated LR images and the original HR images. However,
this approach suffers from high computational costs due to the need to perform feature
extraction operations on high-dimensional image sizes.
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In contrast, post-upsampling, as shown in Figure 2b, is more common because it can
reduce computational costs to a minimum. In this approach, feature extraction operations
are performed on low-dimensional image space, and learnable enlarged layers such as
deconvolution [42] and subpixel convolution [43] are used at the end of the model. While
this architecture significantly speeds up the feed-forward process, it suffers from the fact
that the HR image is restored immediately after the upsampling process without any
enhancements, which makes training difficult and limits the accuracy of the reconstruction.
In order to achieve the best perceptual quality with the lowest computational cost, we
propose a model consisting of two stages in this paper, as shown in Figure 1. The first
stage enlarges the input image and extracts global details by using the ViT model, while
the second stage uses DM to deeply extract fine details and generate images that are highly
similar to the original images while reducing computational cost and training time.

3.1.1. Super-Resolution Stage

Vision transformers have two merits over other deep learning models. The first merit
is the mechanism of self-attention, and the second is self-pre-training. The self-attention
mechanism is the process of estimating the weight of an element in relation to the rest of
the other elements in the same space. The images are divided into several patches, and then
each patch is converted into a sequence. Then self-attention evaluates the weight of a given
sequence over the rest of the sequences via dot-product. Therefore, vision transformers
can extract global features from all over the image space. The SwinIR model is considered
the best vision transformer in terms of its stability and learning speed. SwinIR consists
of three stages, as shown in Figure 3. The first stage is called shallow feature extraction
and consists of a single convolutional layer. The second stage is deep feature extraction,
which consists of six Residual Swin Transformer Blocks (RSTB) and each block consists of
six Swin Transformer Layers (STL). Swin Layer is a quantum leap in vision transformers
due to the reduction in computational cost resulting from the use of Window Multi-head
Self-Attention (W-MSA). The window technique is as simple as dividing the image into
a set of patches and calculating attention only within each window. The third stage is to
reconstruct the images by accumulating and merging the deep and shallow features. We
can express the SwinIR model mathematically by:

fs f = hs f (iLR), (1)

where fs f is the output features from the shallow features stage, hs f is the transfer function
of the shallow features stage, and iLR is the input low-resolution image. Further, we can
express the deep features stage through:

fd f = hd f

(
fs f

)
, (2)

where fd f is the output features from the deep features stage and hd f is the transfer function
of the deep features stage. Furthermore, we can express the RSTB in the deep features
stage through:

fi,j = hswin i,j
(

fi,j−1
)
, (3)

where fi,j is the output feature from each RSTB block, hswin i,j is the transfer function of the
swin layer, i is the number of RSTB blocks, and j = 1, 2, . . . , L. L is the number of swin
layers. The self-attention mechanism is based on training three learnable weight matrices.
The input image is converted into three similar projection matrices. The weight matrices
are multiplied by the projection matrices to form the query, key, and value matrices.

q = x.pq, k = x.pk, v = x.pv, (4)
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where q, k, and v are query, key, and value matrices, respectively. Then the query is
multiplied by the key to calculate the SoftMax for the output. We can express the whole
process by:

Attention map(q, k, v) = so f tmax

(
qkT√
dq + B

)
V, (5)

where dq is the dimension of the query vector, and kT is the transpose key matrix. B is
the learnable positional encoding. Attention in each window is calculated individually
and then aggregated. SwinIR is distinguished from other ViTs by its rapid adaptation to
different datasets and attention to global details. However, it suffers from negligence in
estimating the fine details in RS images. Therefore, to address the drawbacks of the SwinIR
transformer with RS images, we propose to use iterative DM to generate high-resolution
RS images with fine details in the next sub-section.
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3.1.2. Enhancement Stage

The Diffusion Model consists of two processes, the first process is called the forward
process and the second process is called the backward (reverse) process. Noise is added in
the forward process, and the noise in the backward process is removed by the U-Net model,
as shown in Figure 4. Diffusion models destroy some input, such as an image, by gradually
adding Gaussian noise. The input is then restored from the noise in a reverse process also
called denoising. This process is also called a Markov chain because it is a sequence of
stochastic events where each time step depends on the previous time step. The forward
process is fairly easy because it requires no training. All this process does is gradually add
noise to the images. The forward process is referred to as a Markov chain q. The noise is
added in sequential steps t to get the noisy samples. The prediction of the noise density at a
given time t depends on the noise density at time t− 1, so the noise conditional probability
density can be represented as follows:

q(xt/xt−1) = N
(

xt;
√

1− βtxt−1, βt I
)

, (6)

where
√

1− βtxt−1 is the mean of the normal distribution, βt I is the variance of the
normal distribution, xt is the noisy output image, xt−1 is the previous less noisy image,
and N is the normal distribution. The sequence of

√
1− βtxt−1 is a so-called variance

schedule that describes how much noise we want to add in each of the time steps, which
indicates that the amount of noise that is added is constant at each time step. The dilemma
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in the forward-process stage is determining the noise value at a specific time step or
determining the signal value at a specific time step. This dilemma is significant in the
backward processing stage. So, we can define a signal at any time step according to the
reparameterization technique [44] by defining αt = 1− βt, and the cumulative products αt
of all α as αt = ∏t

s=0 αs, where αt is a signal at a certain time step. The reformulation of the
above equation then becomes:

q(xt/x0) = N
(

xt;
√

αtx0, (αt − 1)I
)

(7)
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In the backward process, we use U-Net with the self-attention mechanism that was
referred to in the previous sub-section. U-Net is a special neural network that has a structure
that is similar to the one used in an autoencoder. U-Nets are a popular model for image
segmentation, and their output has the same shape as the inputs, the input passes a series
of convolutional and down-sampling layers. Then input passes through a bottleneck that
contains self-attention and residual connections. Finally, input passes through up-sampling
layers to reach the same dimensions. The probability density of a sample at a specific time
step is estimated based on its sample at the previous time step. This means reshaping for
q(xt−1/xt). Therefore, a noisy image t− 1 is input into the U-Net entry, and the previous
image t is used as a target. The previous state is estimated from the current state by
knowing the previous gradients, which require a trainable model, which is U-Net. So, an
estimate of a past state from a current state can be defined by pθ(xt−1/xt) and is as follows:

pθ(xt−1/xt) = N
(

xt−1; µθ(xt, t), ∑θ
(xt, t)

)
, (8)

the backward process formula for all timesteps is as follows:

pθ(x0:T) = p(xT)
T

∏
t=1

pθ(xt−1/xt), (9)

where pθ means neural network model or backward process. The purpose of this formula
is to train the model to predict Gaussian parameters (the mean µθ(xt, t) and the covariance
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matrix ∑θ(xt, t)) for each timestep. Therefore, the mean µθ(xt, t) can be expressed in the
formula from Ho et al. [21]:

µθ(xt, t) =
1√
αt

(
xt −

βt√
1− αt

εθ(xt, t)
)

, (10)

where εθ(xt, t) is an approximate function used for predicting ε from xt. So, the backward
process uses a neural network to predict the added noise from a previous state based on
the current state, as shown in Figure 4. Then the predicted noise is subtracted from the
current state to produce a noise-free state.

3.2. The Training Algorithm of TESR

To train TESR, we follow the three steps, including the preprocessing phase, the pre-
train phase, and the transfer learning phase, as shown in Figure 5. In the preprocessing
phase, we used the UCMerced dataset [29], which contains 21 categories of remote sensing
images. Moreover, the interpolation technique was applied to resize the RS images to match
the size of the input images and the size of the target images to train the proposed TESR
model on several different scales.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 20 
 

 

𝜇 (𝑥 , 𝑡) =  1𝛼 𝑥 − 𝛽1 − 𝛼 𝜀 (𝑥 , 𝑡) , (10)

where 𝜀 (𝑥 , 𝑡) is an approximate function used for predicting 𝜀 from 𝑥 . So, the back-
ward process uses a neural network to predict the added noise from a previous state based 
on the current state, as shown in Figure 4. Then the predicted noise is subtracted from the 
current state to produce a noise-free state. 

3.2. The Training Algorithm of TESR 
To train TESR, we follow the three steps, including the preprocessing phase, the pre-

train phase, and the transfer learning phase, as shown in Figure 5. In the preprocessing 
phase, we used the UCMerced dataset [29], which contains 21 categories of remote sensing 
images. Moreover, the interpolation technique was applied to resize the RS images to 
match the size of the input images and the size of the target images to train the proposed 
TESR model on several different scales. 

 
Figure 5. The three main steps to train the TESR architecture. 

Transfer learning is a relatively recent strategy used for the first time on CNN mod-
els, which means transferring the knowledge and features learned by the deep learning 
model from a specific task and then using the trained parameters on another task or an-
other dataset. The transfer learning strategy saves training time and is adaptable to most 
tasks and datasets. RS images contain fine details that are difficult to recover using con-
ventional CNN models. Moreover, training a new model requires a huge number of RS 
images with high computational time and cost. In the pre-train phase, the SwinIR trans-
former was trained on two datasets: DIV2K and Flickr2K, which contain generic images, 
as well as using pixel loss 𝑙 . Iterative DM was also trained on two datasets, Flickr-Faces-

Figure 5. The three main steps to train the TESR architecture.

Transfer learning is a relatively recent strategy used for the first time on CNN models,
which means transferring the knowledge and features learned by the deep learning model
from a specific task and then using the trained parameters on another task or another
dataset. The transfer learning strategy saves training time and is adaptable to most tasks
and datasets. RS images contain fine details that are difficult to recover using conventional
CNN models. Moreover, training a new model requires a huge number of RS images
with high computational time and cost. In the pre-train phase, the SwinIR transformer
was trained on two datasets: DIV2K and Flickr2K, which contain generic images, as well
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as using pixel loss l1. Iterative DM was also trained on two datasets, Flickr-Faces-HQ
(FFHQ) [45] and CelebA-HQ [46], containing faces images and generic images, and using
pixel loss l1. In the last phase, we applied a deep tuning strategy to both SwinIR and
iterative DM. Deep tuning refers to the process of applying a pre-trained deep neural
network to a new task or dataset. This means using the weights of a pre-trained network as
a starting point and then continuing to train the network for a new task or dataset. The main
advantage of deep tuning is that it allows a network to take advantage of the knowledge
and features learned during the pre-training process, which can greatly reduce the time
and computational cost required to train the network from scratch. Furthermore, we have
replaced the pixel loss, l1 with Charbonnier loss, which performs better as demonstrated in
the experimental section and can be expressed mathematically as follows:

`char
(
ip, igt

)
=

√
‖ir − io‖2 + ε2 (11)

where ip is the predicted image and igt is the ground truth image, and the constant ε
in the experiments was set to 10−3 through empirical methods. The Charbonnier loss
has been widely used in image reconstruction. The advantage of the Charbonnier loss is
that it is less sensitive to outliers compared to the mean squared error (MSE) loss. The
Charbonnier loss is a combination of the MSE loss and the mean absolute error (MAE) loss
and therefore strikes a balance between being robust to outliers and having a good gradient
for optimization. Additionally, it has a continuous and smooth gradient, which makes it
easier to optimize using gradient-based optimization algorithms.

3.3. Description of the Training Algorithm

Having discussed the formulations and the training details of TESR, the steps of TESR
are summarized in Algorithm 1.

Algorithm 1: TESR

1. Procedure:

• Input: low-resolution image (LR), high-resolution image (HR), a pre-trained SwinIR, and Diffusion Model (DM);
• output: Enhanced Super-Resolved Image (ESRI).

2. Stage I. Image Super-Resolution:

i. Load and initialize weights of the pre-trained SwinIR model;
ii. Add Charbonnier loss (CL) to the training loop;
iii. For each epoch in the range of (1, epochs), do the following:

a. Apply LR image to the pre-trained SwinIR model;
b. Generate SR image by SwinIR model;
c. Compare the generated image with the HR image using CL;
d. Adjust and optimize the weights of the pre-trained (deep tuning) SwinIR model;

iv. Repeat step (iii) for the different scale factors.

3. Stage II. Image Enhancement:

i. Generate FirstSR (FSR) images by the SwinIR model;
ii. Load and initialize weights of pre-trained DM;
iii. Add CL to the training loop;
iv. For each epoch in the range of (1, epochs), do the following:

a. Apply FSR image to pre-trained DM;
b. Generate ESRI image by DM;
c. Compare the generated ESRI with the HR image by using CL;
d. Adjust and optimize the weights of the pre-trained (deep tuning) DM;

v. Repeat step (iv) for the different scale factors.

4. Return the ESRI images as the output of the algorithm.
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4. Results and Analysis

This section presents and discusses the experimental details and results of integrating
the SwinIR model with the iterative diffusion model to enlarge and enhance the RS images
from the UCMerced benchmark dataset. The UCMerced dataset is diverse, consisting
of 21 classes and a total of 2100 images, which is considered a relatively small number.
Its average resolution makes it a convenient dataset for conducting experiments and
optimizing the proposed model. The source code of TESR is shared with the community at
this link: https://github.com/AnasHXH/TESR.

4.1. Experimental and Analysis Details

The UCMerced dataset [29] was employed to train and evaluate the TESR model,
which comprises 2100 images from 21 categories. The dataset was divided into 2000 images
for training and 100 for testing. To reduce computational complexity, we applied normal-
ization to all images so that they ranged from −1 to 1, and we also applied resizing to the
dataset so that the input images had a size of 64 × 64 × 3 and the target images had sizes
of [128 × 128 × 3, 192 × 192 × 3, 256 × 256 × 3]. To further improve the performance, we
applied a deep tuning strategy to the SwinIR transformer to enlarge the LR images. We
used weights trained on two datasets: DIV2K, which contains 900 images, and Flickr2K,
which contains 2,650 images, in a generic image super-resolution task. The deep tuning
strategy was employed because the SwinIR model had not previously been applied to
images containing many details in RS images. Furthermore, without deep tuning the model,
we would lose the most important element that distinguishes SwinIR, which is the dynamic
attention (window multi-head self-attention) mechanism.

The diffusion model is based on gradually adding noise in the forward process, then
removing it through the use of a U-Net model with residual self-attention in the backward
process. The U-Net model is trained to remove noise in small, varying amounts. Noise is
added at many time steps until the image becomes pure noise. However, in the backward
process, the U-Net model is trained for some, but not all, of the time steps in order to speed
up the training process. The remote sensing image super-resolution problem depends on
filling in and adjusting the features affected by the degradation process by adding noise
and then removing it. There are several advantages to using the iterative scattering model
for improving the quality of remote-sensing images:

1. Effectively recovering high-frequency (fine) details in the image, such as edges
and texture;

2. Preserving structural information in the image, such as the overall shape and layout
of objects;

3. Enhancing images with complex structures and noise as it adapts to the local charac-
teristics of the image;

4. Handling images with missing or corrupted pixels by filling in missing data based on
the surrounding pixels.

A deep tuning strategy was used by diffusion model weights that were trained on
two Flickr-Faces-HQ (FFHQ) [43] and CelebA-HQ [44] datasets, taking 600,000 iterations
to finish their training. We trained the diffusion model with 15,000 iterations on remote-
sensing images in each scale factor (×2, ×3, and ×4). We also applied the weight-sharing
strategy. The diffusion model is trained on a scale factor of ×2, then the trained weights are
used to train the model on a scale factor of ×3, and so on. In the end, our proposed TESR
model was able to extract both detailed features and global features, and TESR was able to
generate remote sensing images that are very close to the original images after a relatively
short training period, compared to the state-of-the-art methods.

The TESR model was trained and evaluated on an NVIDIA Quadro RTX 8000 GPU.
The dimensions of the original images in the benchmark UCMerced dataset are 256 × 256.
So, two copies of each image were created at each enlargement scale, one as an LR image
and the other as an HR image. We cropped the images to 64 × 64 to be LR images. Images
were cropped to 64 × 64 to serve as LR images. HR images were cropped from the original

https://github.com/AnasHXH/TESR
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images to 128× 128, 192× 192, and 256× 256 for the×2,×3, and×4 scales, respectively. In
the SwinIR model, the Charbonnier loss function was used, which is particularly well-suited
for reconstruction tasks. The SwinIR model was trained for 32,000 steps using a batch size
of four. A fixed learning rate of 0.0002 was used with the Adam optimizer. To improve
the durability and stability of the model, a series of operations were applied to the data
augmentation, such as rotation, but at different angles, including 5, 10, and 15 degrees. In
the iterative DM stage, we followed the model structure proposed in [22] by changing the
loss function to Charbonnier loss. A 2000-time step was used. The iterative DM was trained
on 20,000 iterations. The Adam optimizer was used with a fixed learning rate of 0.0001.

4.2. Performance Evaluation

Image quality assessment is the process of evaluating the visual quality of an image. It
involves evaluating various aspects of the image, such as sharpness, noise, color accuracy,
and overall visual appeal. There are several methods and metrics that can be used to assess
the quality of an image. Some common methods include:

1. Human evaluation: this involves presenting the image to a panel of human judges,
who then rate the image based on various subjective criteria;

2. Objective quality metrics: These are algorithms that analyze the image and calculate a
score based on various objective criteria, such as sharpness, noise, and color accuracy.
Some examples of objective quality metrics include the SSIM [47], the PSNR [48], and
the MS-SSIM [49].

We used PSNR, SSIM, and MS-SSIM and the histogram to evaluate the proposed
model, and the mathematical expressions are as follows:

SSIM
(
igt, ip

)
=

(2µigt µip + c1)(2σigtip + c2)

(µ2
igt
+µ2

ip
+ c1)(σ

2
igt
+σ2

ip
+ c2)

, (12)

MSE(igt, ip) =
1
t

t

∑
k=1

(
igt(k)− ip(k)

)2, (13)

PSNR(igt, ip) = 10log10

(
max2

MSE

)
, (14)

MSSIM
(
igt, ip

)
=

1
nm

n−1

∑
p=0

m−1

∑
j=0

SSIM
(
igt, ip

)
, (15)

where ip and igt are the predicted and ground truth images, µip and µigt are the local means
of the images ip and igt, respectively, σip and σigt are the local standard deviations of the
images ip and igt, respectively, σigtip is the local covariance of the images ip and igt, c1
and c2 are constants used to stabilize the division with a weak denominator; max is the
maximum possible pixel value of the image; t is the number of pixels of the image; and n
and m are the number of rows and columns in the image, respectively. SSIM and MS-SSIM
were used as evaluation indicators because they provide complementary information about
image quality. SSIM provides a measure of the overall similarity between the original and
reconstructed images, while MS-SSIM provides a measure of the similarity at multiple
scales. A more complete understanding of the performance of our proposed method is
obtained using both metrics.

4.3. Results Analysis

The goal of this paper was to improve the resolution of RS images at different scale
factors by means of a TESR algorithm that combines the merits of SwinIR and iterative
DM. To achieve this, the UCMerced dataset was divided into 2000 training images and
100 test images, and the images were normalized from−1 to 1 to reduce computational cost.
We chose 100 images in the test set because of the prohibitively expensive computations
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needed for testing the Diffusion Model in the Enhancement stage. The TESR algorithm
was then applied to the images with scale factors of ×2, ×3, and ×4 to improve their
resolution. The super-resolution images were compared with the ground truth images
using measures of visual quality, including PSNR, SSIM, MS-SSIM, and histograms. Figure 6
shows a comparison of the visual results of each stage of the TESR model with the bicubic
interpolation method.
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In this section, we will present the results obtained using our proposed model after
testing it on four enlarging scales ×2, ×3, and ×4. Figure 7 shows ground-truth images,
low-resolution images, and high-resolution images for each stage. Super-resolution images
after the second stage (the Diffusion Model) have more details and improved visual quality
compared to lower-resolution and ground-truth images. In addition, the improvement in
resolution is particularly evident in fine details, such as lines of farmland and individual
branches of trees. RS images are enlarged in ×2 scale from 64 × 64 to 128 × 128, in ×3 scale
from 64 × 64 to 192 × 192, and in ×4 scale from 64 × 64 to 256 × 256.
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With the aim of demonstrating the efficacy of combining the SwinIR and DM models
into a single algorithm, a separate evaluation of each model was performed after they were
trained on the UCMerced dataset. As shown in Table 1, both models individually exhibited
a high level of efficiency; however, neither of them was able to match the efficiency of the
proposed TESR model at a scale of ×2.
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Table 1. SwinIR and DM model evaluation separately after training on the UCMerced dataset.

Scale Factor
Deep-Tuning SwinIR Deep-Tuning Iterative DM

PSNR SSIM PSNR SSIM

×2 34.938 0.9232 30.256 0.90742

Table 2 shows the average values of the PSNR, SSIM, and MS-SSIM tests on 100 RS
images at each up-sample scale factor. The results showed that the TESR algorithm was
effective in improving the resolution of RS images, with an average PSNR improvement
of 35.367 dB for ×2 scale factor, 32.311 dB for ×3 scale factor, and 31.951 dB for ×4 scale
factor. The improvement in PSNR indicates that super-resolution images have much lower
noise levels and higher signal-to-noise ratios than SOTA. The improvement in SSIM was
similarly significant, ranging from a mean improvement of 0.9449, 0.91143, and 0.90456
for scale factors ×2, ×3, and ×4, respectively. The optimization in SSIM indicates that
the super-resolution images have very close structural similarity to the high-resolution
reference images. The improvement in MS-SSIM was significant in terms of its relative
stability across different measurement factors.

Table 2. The evaluation of the TESR model on different scale factors.

Scale Factor
Deep-Tuning SwinIR Stage 1 Deep-Tuning Iterative DM Stage 2

PSNR SSIM MS-SSIM PSNR SSIM MS-SSIM

×2 34.938 0.9232 0.9738 35.367 0.9449 0.9892
×3 30.813 0.8784 0.9385 32.311 0.91143 0.9731
×4 27.424 0.8201 0.9278 31.951 0.90456 0.9748

Figure 8 shows samples of iterative DM training images on RS images, showing
forward-process and backward-process training steps. We can observe that DM is able to
increase the details of the RS images from the features it learned in the first stage by adding
and removing Gaussian noise at several different levels. The first image from the left
(shown above) represents the output of the first stage (SwinIR). The last image (shown in
the bottom right) represents the output of the second stage (DM). The images between the
first and last images represent a sequence of adding noise to the images and then removing
it in order to increase the fine details. Table 3 demonstrates the improved performance of
the TESR algorithm compared to bicubic interpolation, SC [50], SRCNN [51], FSRCNN [52],
LGCNet [53], DCM [54], DGANet-ISE [55], and TransENet [36] algorithms in terms of
PSNR and SSIM metrics on the UCMerced dataset.

Table 3. The evaluation of the TESR model and SOTA, with the highest performance in bold type.

Model
×2 ×3 ×4

PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic 32.76/0.879 27.46/0.7631 25.65/0.6725
SC [50] 32.77/0.9166 28.26/0.7971 26.51/0.7152

SRCNN [51] 32.84/0.9152 28.66/0.8038 26.78/0.7219
FSRCNN [52] 33.18/0.9196 29.09/0.8167 26.93/0.7267
LGCNet [53] 33.48/0.9235 29.28/0.8238 27.02/0.7333

DCM [54] 33.65/0.9274 29.52/0.8394 27.22/0.7528
DGANet-ISE [55] 33.68/0.9344 -/- 27.31/0.7665

TransENet [36] 34.03/0.9301 29.92/0.8408 27.77/0.7630
TESR (our) 35.367/0.9449 32.311/0.91143 31.951/0.90456
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The histogram of the LR image showed a skewed distribution, with a majority of the
pixels concentrated at low intensity values, as shown in Figure 9. This is indicative of poor
image quality and a lack of detail in the shadows and highlights. After applying TESR, the
histogram showed a more balanced distribution, with a wider range of intensity values
represented. This indicates that TESR was able to recover more detail and improve the
overall image quality. The increased contrast and dynamic range in the TESR-enhanced
image are also apparent in the histogram, which shows a higher concentration of pixels
at the extremes of the intensity range. Overall, the histogram results demonstrate the
effectiveness of TESR in improving the quality and detail of the original image.
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A comprehensive investigation into the performance of various loss functions, includ-
ing MSE, Edge, Perceptual [56], and Charbonnier, on the TESR model was carried out at a
scale factor of ×2. The objective was to determine the most suitable loss function for both
the ViT and iterative DM. The results, as presented in Table 4, indicate that the Charbonnier
loss function exhibited a significant advantage over the other loss indices at the scale factor
of ×2.

Table 4. Investigative comparison of loss functions of the TESR model with a scale factor of ×2.

Scale Factor
MSE Loss Edge Loss Perceptual Loss Charbonnier Loss

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2 27.662/0.78535 22.667/0.60635 27.761/0.80892 35.367/0.9449

5. Discussion

RS images are characterized by the importance of fine details in object recognition
applications, and many existing algorithms struggle to recover these details accurately. In
order to overcome this challenge, we propose a two-stage approach for the super-resolution
of RS images. The first stage involves using the SwinIR model to enlarge the image while
preserving as much global detail as possible. The second stage involves applying the
iterative DM to correct and enhance the image, allowing for the restoration of missing
context (fine) details and ultimately resulting in a more accurate reconstruction of the
high-resolution image. Moreover, transfer learning was used to increase the efficiency
of the proposed model and speed up the training process. The results of our proposed
TESR model show promising performance on the UCMerced dataset in terms of both
visual perception and quantitative measurements. Overall, the use of a two-stage approach
for super-resolution of remote sensing images appears to be a promising approach, and
our proposed model demonstrates improved performance compared to other state-of-
the-art methods. The Charbonnier loss function was employed in both the SwinIR and
iterative DM models. The selection of the Charbonnier loss was based on a comprehensive
evaluation of various loss functions on the TESR model.

There are a few limitations to this work that should be noted. Firstly, the proposed
algorithm is specifically designed for use with remote sensing images and may not perform
as well on other types of images. Secondly, the iterative DM requires a significant amount
of training time, so we employed transfer learning to reduce the training time. However,
the DM also requires a considerable amount of time for each test image, approximately
two minutes per image. As a result, we only tested the DM on a limited number of images.
It should be noted that this testing period is an obstacle to the widespread use of the DM
in practical applications. Finally, it should be noted that using the DM in the first stage
of the TESR algorithm may introduce some noise to the reconstructed image. This could
potentially be a limitation for certain applications. Therefore, we decided to use the DM in
the second stage of the TESR algorithm instead.

6. Conclusions

In conclusion, the proposed two-stage TESR algorithm for remote sensing super-
resolution has demonstrated promising results in terms of both visual perception and
quantitative measurements. The use of SwinIR in the first stage allows for the enhancement
of global details and the enlargement of the low-resolution image, while in the second stage,
the iterative DM further enhances the fine-detail quality of the reconstructed image by
adding and removing noise. However, there are still opportunities for further optimization
and development of the TESR algorithm, particularly in terms of addressing the limitations
of the DM and exploring the potential for incorporating additional techniques. Overall, the
TESR algorithm represents a promising approach for improving the resolution and quality
of RS images and has the potential to be a valuable tool for various applications in the field
of RS.
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There are several potential directions for future work on the proposed two-stage
remote sensing super-resolution algorithm, TESR. One area of focus would be to apply the
algorithm to a larger and more diverse dataset in order to further validate its performance.
Additionally, exploring the use of the algorithm for the super-resolution of other types of
images (such as medical images or microscopy images) could be an interesting direction for
future research. Additionally, further research could be conducted to address the limitations
of the current TESR algorithm. For example, the DM has a relatively high computational
cost. Developing methods to address these issues could improve the practicality and
usability of the TESR algorithm. Overall, there are many opportunities for continued
development and improvement of the TESR algorithm to better meet the needs of various
remote sensing applications. Furthermore, in order to assess the applicability of our
proposed model, we plan to evaluate its performance using real data acquired from multiple
satellites with varying spatial resolutions. This will enable us to examine the effectiveness
of our method in processing images obtained from different sources with varying degrees
of accuracy and to demonstrate its robustness and adaptability to various scenarios in
remote sensing applications.
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