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Abstract: The frequency and intensity of fires are increasing because of warmer temperatures and
increased droughts, as well as climate-change induced fuel distribution changes. Vegetation in
environments, such as those in the mid-to-high latitudes and high elevations, moves to higher
latitudes or elevations in response to global warming. Over the past 40 years, the Mongolian Plateau
has been arid and semi-arid, with a decrease in growing season vegetation in the southwest and an
increase in growing season vegetation in the northeast. The northward movement of vegetation has
brought fires, especially in the Dornod, Sukhbaatar, and Kent provinces near the Kent Mountains,
and has become more obvious in the past 20 years. The occurrence of a dead fuel index (DFI) with
high probability is distributed in northern Mongolia, the border area between China and Mongolia,
and the forest-side meadow-steppe region of the Greater Khingan Mountains. These findings suggest
that vegetation is moving northward because of climate change and this presents a challenge of
future warming spreading fire northward, adding material to the study of the relationship between
the northward movement of global vegetation and fires.

Keywords: fuel; wildfire; vegetation movement; Mongolian Plateau

1. Introduction

Climate change influences the distribution of species and ecosystems [1,2]. Many
studies have found that vegetation and trees in high latitudes and high elevations are
moving upwards or downwards, owing to the rapid increase in temperature caused by
climate change [3]. Harsch et al. analyzed tree line dynamics at 166 locations worldwide
and found that tree lines advanced more than 52% forward, while only 1% declined [4].
Mekonnen et al. calculated shrub expansion in the Arctic tundra and concluded that
climate change has led to high-latitude tundra shrubification [5]. In addition, upward
(higher elevation), northward (higher latitude), and westward shifts of plants have been
found in mid-latitude mountainous regions [6,7]. Kelly et al. found that the predominant
plants in Southern California in 1977 and in 2006–2007 increased by 65 m of plant cover
along a gradient of 2314 m above sea level [6]. As the timescale was extended and the
study area expanded, Crimmins et al. observed that the slope of plant species in California
decreased in 1930–2005 [7]. Using 151 species of in the Hengduan Mountains Region and
modeling their distribution from the last glacial period to 2050, Liang et al. concluded
that, due to uneven terrain along the elevation gradient, plants are moving northward,
toward the west, and in other directions. Previous studies have demonstrated that global
warming affects vegetation distribution in cold environments, such as the North Pole and
mid-latitude mountains [8]. Under climate change, movement of vegetation belts appeared
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at mid-high-latitude and higher elevations. Combustibles (mainly vegetation) are key
factors in fire development [9,10] and carbon emissions because they determine where
fires are likely to occur, and the amount of carbon released. With global warming, the
diffusion and accumulation of vegetation may cause more fires, particularly when the risk
of lightning (the main source of fire) increases [11]. Therefore, the northward movement of
vegetation is closely related to fires [12].

There are three essential elements for a fire to occur: combustibles (vegetation in its
natural state), meteorological elements, and fire sources. Combustibles are the most basic
and complex elements. The combustible material used in this study was natural vegetation.
Combustibles are dangerous in environments that experience frequent disasters, such
as grassland fires. Environments that experience frequent disasters are key determining
factors in the occurrence and spread of grassland fires. Terrain, fuel, and weather are
the three factors that can create and sustain a fire, with fuel being the most complex and
important factor that drives fire behavior [13,14]. Grassland fire behavior refers to the
characteristics of the fire spread and development process after ignition, that is, the fire
process characteristics from ignition to development until the weakening and extinction
of the flames [15]. The amount of fuel on the ground and the continuity of vegetation
influences the spread and reach of fire [16–18]. The fuel influences the fire in many ways,
for example, spreading speed, fire behavior et al.

Meanwhile, wildfire predictions and risk assessments are necessary. These wildfire
models use remote sensing and precise spatial combustible data, and can afford high
resolution spatial data for the region [19]. Temperature and burning area are positively
correlated depending on the vegetation available for burning [20]. Simulated fire models
can obtain the processes that control surface fuel’ finish time, and these models depend
on combustibles to lead fire behavior and spread [21]. Using combustible coverage and
height, the Mallee heath fire spread model derives the shape, unburned area, and extent
of the fire area within the fire range [19]. The extent to which the vegetation surface is
burned by fire each year is influenced by several factors, including climate, fuel available
type and human impacts. Before hominids evolved, the burn area was determined by
the climate, which directly affected vegetation, drought, and lightning [22]. The role of
current and future fuel restrictions on a regional scale remains unclear. Fuel availability
is the feedback of understudied wildfire trends on a regional scale and only modestly
reduces the predictions of climate- driven trends in fire areas [23]. In climate fire model
predictions, fuel availability has a certain effect on the fire region, which increased by 46%
to 90% from the 1991–2020 baseline to the 2020–2050 baseline under different intensities of
fuel fire feedback, compared to 107% in the constant fuel case [24]. Remote sensing and
models have played an important role of in wildfire fuel research. Eucalyptus globulus
has an increased chance of survival in future climate scenarios in the northern hemisphere,
particularly in mid-latitudes, verifying a northward expansion of vegetation under climate
change response [25]. Greater burning of the Arctic tundra would accelerate the northward
migrating of the boreal trees, potentially accelerating the positive feedback related to
permafrost carbon release [11]. Fires threaten the security of ecosystems and release lots of
carbon into the air through vegetation burning [26]. The intensity and frequency of fires
have risen owing to droughts and higher temperatures over the past several decades [25,27].
However, little research has been conducted on the effects of vegetation movement on fires
in the vulnerable area of the Mongolian Plateau. It is well known that vegetation movement
is directly related to future fire distribution, as the spread over vegetation confirms where
fires are likely to occur [28–30]. Combined with the increases in temperature and human
ignition [31,32], ecosystems in the northern hemisphere will be challenged by more fires
in the future. To better manage fires and reduce carbon emissions, focus must be on
the dynamics of fire and vegetation development. The relationship growth between fuel
dryness and fire region and future tendency in fire areas and extreme fire years increased
in all cases [23]. The fire and fuel relationship of the Mongolian Plateau is important in the
northern hemisphere ecosystem.
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Fires are particularly prominent in the densely populated temperate flammable forests
and sparsely populated flammable northern regions of Mongolia, leading to greenhouse
gas emissions [10]. In the Mongolian Plateau, under climate change, the vegetation changes
more obviously in the natural state [33,34], and the Mongolian Plateau also has more
occurrences of fires [35–38]; fires are more frequent in dead combustible areas with high
flammability and are higher risk. Carbon emissions from fires also increase with climate
change [39,40]. Additionally, vegetation belt changes are obvious in the Mongolian Plateau
in the arid and semi-arid regions [41]. The fire and increased carbon emissions were caused
by dead combustibles.

Under climate change over the past 40 years, changes in vegetation belts have become
obvious globally. With these changes, the vegetation withering period will also move
northward [42], thereby affecting the vegetation and coverage of withered grass, which in
turn affects the occurrence area of fires and the probability of fire occurrence. However,
some researches have concentrated on the relationships among vegetation movement,
distribution, and fire occurrence. The objective of this study is to determine the change
and movement of the vegetation belt with climate change over the past 40 years and its
influence on fire occurrence. Accurate estimation of vegetation dynamics, particularly the
relationship between fire occurrence and the movement of vegetation belts, is critical for
effective fire management and carbon emission reduction. To facilitate wildfire monitoring
and prevention, especially as global warming leads to increasing fires, it is necessary to
understand the distribution and changes in fire-prone vegetation in a changing climate
with better management and control policies. The study area has a high probability of fire
occurrence, regardless of fire management and human activities.

The objectives of this research are to: (1) study the change and movement of vegetation
belts on the Mongolian Plateau over the past 40 years, (2) study the relationship between
the movement of vegetation belts in the Mongolian Plateau and fires, and (3) study the
relationship between DFI and fires in Mongolian Plateau grasslands. This study investi-
gates the northward migration of vegetation due to climate change, and the challenge of
expanding fire northward in future warming and adds to the study on the relationship
between northward global vegetation movement and fire.

2. Materials and Methods
2.1. Study Area

The Mongolian Plateau (Inner Mongolia Autonomous Region of China and Mon-
golia) is a unique arid and semi-arid region, and various economic activities affect its
ecosystem [43–46]. Under global climate change, the natural ecological environment is
fragile and sensitive [47]. Among the grassland ecosystems worldwide it is one of the
largest, upping to 2.76 million square kilometers areas, with unique natural and climate
characteristics [48]. The Inner Mongolia Autonomous Region accounts for 68% of the
total length of the China-Mongolia border, with a length of 3193 km [35]. The long-term
changes in biomass in the Mongolian Plateau indicate great geographic differences, with
non-significant changes in vegetation, which accounted for 35% in Inner Mongolia and
44% in Mongolia [49,50]. The Mongolian Plateau is located from the Gobi Desert in Central
Asia to the Siberian taiga forest [51,52]. There is a typical continental climate characteristic
with hot summers and cold winters. Under the influence of climate differentiation, the
vegetation showed obvious horizontal and vertical zonation. Many vegetation types in
arid and semi-arid regions, such as forests, meadows, shrubs, typical desert steppes, Gobi
vegetation, and grasslands, account for approximately 70% of the plateau [34,53]. The
study area comprises the Mongolian Plateau (a), elevation (b), vegetation type (c), and the
same-level administrative divisions in League (City) (d) (Figure 1). With a population of
2.2 per square kilometer, Mongolia is a country with a low population density, and because
of long-term nomadism, humans have less impact on the ecosystem (http://1212.mn/2021
accessed on 9 September 2022).

http://1212.mn/2021
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2.2. Data

Our study employed both the Advanced Very High-Resolution Radiometer (AVHRR)
Global Inventory Monitoring and Modelling Studies (GIMMS) NDVI and Moderate-
Resolution Imaging Spectroradiometer (MODIS) NDVI products. Specifically, AVHRR
GIMMS NDVI data (https://ecocast.arc.nasa.gov/ (accessed on 23 December 2022)), with
a temporal resolution of 15-days and spatial resolution of 8 km, from 1982 to 2015, and
MOD13A2 NDVI, which had a spatial resolution of 500 m and 16-day intervals from 2001
to 2020. NDVI is typically used to detect vegetation [31,38]. GIMMS NDVI was used to
analyzed vegetation coverage, desertification, and phenology [41]. The NDVI data were
analyzed with a minimum temporal resolution of months, so it was necessary to synthesize
the monthly GIMMS NDVI values with a 15-day temporal resolution. In this study, the
monthly maximum value composite (MVC) method was used to synthesize the AVHRR
GIMMS NDVI and MODIS NDVI data; that is, the maximum value of the two 15-day NDVI
datasets of a month were selected as the NDVI value for the month. The time resolution
of MODIS NDVI is 16 days; therefore, monthly data synthesis was also required, using
a method consistent with GIMMS AVHRR NDVI [54]. The NDVI values were calculated
from April to October averaged to obtain the mean NDVI, and it is belonged to the growing
season. Python3.6 was used for data processing.

Precipitation and temperature that were used in this paper were obtained from the
fifth generation of the European Center for Medium-Range Weather Forecasts Interim
Re-Analysis (ERA5) (https://cds.climate.copernicus.eu/ (accessed on 23 December 2022)).
ERA5 is a spatial resolution of 0.25◦ × 0.25◦ and provides the hourly data of many atmo-
spheric, terrestrial, and oceanic climate variables. In this paper, we used the ERA5 data of
the monthly mean air temperature 2 m above the surface and precipitation data from 1982
to 2020. The vegetation data of spatial resolution were 0.083◦ (8 km), and the ERA5 data
were resampled by the ArcGIS10.5 software.

MOD09A1 16-Day L3 Global 1 km SIN Grid data from 2000 to 2020 were used to
calculate DFI, and MCD64A1 had a spatial resolution of 500 m and 16-day intervals from
2001–2020 for burned area data.

https://ecocast.arc.nasa.gov/
https://cds.climate.copernicus.eu/
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2.3. Method
2.3.1. Integration and Validation with AVHRR GIMMS and MODIS NDVI Data

To implement the use of data time series length, the two NDVI datasets were integrated
using a corresponding pixel linear regression model. The two datasets overlap from 2001
to 2015. The linear regression model was established from the two NDVI products from
2001–2010, and the remaining datasets from 2011–2015 were used for cross-validation. To
avoid mismatches between these two datasets, the MODIS NDVI datasets at 500 m × 500
m were resampled to an 8 km × 8 km resolution. The detailed regression model formula is
as follows [42]:

Gi = aMi + b + σi (1)

a =
∑n

i=1
(
Gi − M

)(
Gi − G

)
∑n

i=1
(

Mi − M
)2 (2)

b = G − aM (3)

where Gi and Mi represent the AVHRR and MODIS NDVI (8 km × 8 km) in the ith month; σi
is the error value; G and M are the mean values of Gi and Mi from 2001–2009, respectively;
n is the regression model of the number years (n is equal with 10 in this paper); and a and b
are the regression model slope and intercept, respectively, 1.03 and 0.0037.

Cross-validation was used to assess the regression model quality. Regression coeffi-
cients (a and b) were used to calculate the MODIS NDVI data from 2010–2015 to get the
extended GIMMS NDVI data, and they were evaluated using the extended GIMMS NDVI
and raw GIMMS NDVI data. Raw GIMMS NDVI and extended GIMMS NDVI data from
2010 to 2015, for which the R of value was 0.95, demonstrated the application of the inte-
grated method in the study area. The GIMMS NDVI can be extended to apply to the new
regression model from the MODIS NDVI from 2016–2020. The long-term series lengthened
GIMMS NDVI from 1982 to 2020 and was applied to calculate this study’s NDVI.

2.3.2. Emerging Hot Spot Analysis

Emerging hot spot analysis (EHSA) is analysis to explore data over space and time di-
mensions, especially incorporating the temporal information into the conventional method,
based on Getis-Ord Gi* statistics [55] and the Mann-Kendall trend tests [56]. EHSA creates
a raster pixel of maps to express the statistically significant clusters of specific elements,
using overlays of the temporal and spatial patterns of each corresponding geographical in
each year. This method applies to calculating the spatial non-stationarities of precipitation,
temperature, NDVI, and DFI. Their long-term change allows us to be known of the locations
and extent of past variations. To calculate EHSA, we used the ArcGIS pro2.8 tool and,
Create Space Time Cube, to establish spacetime cubes that show the spatial and temporal
gridded dataset of the research elements in a network common data form (NetCDF) format.
The spacetime cubes of the spatial grid were decided by the spatial resolution, whereas
the temporal grid was revealed each year. To create new multi-dimensional raster data
for each feature from 1982 to 2020 (the coordinate system is set to the Albers projection,
the unit is meters, and the distance unit is calculated more accurately than the geographic
coordinates), we added the fields variable (text), dimensions (text) and stdtime (date). Then,
a space-time cube (NC format) was created, followed by an analysis of emerging space-time
hotspots. Thus, precipitation, temperature, NDVI, and DFI in each temporal and spatial
interval were aggregated in these cubes. There were 17 pattern classes of spatial–temporal
modes, which are the hot spots and cold spots of new, consecutive, intensifying, persistent,
diminishing, sporadic, oscillating, or historical, respectively [57].

2.3.3. Gravity Center Change Mode

Over the last several years, the principle of the population gravity centers has been
used to research the moving process of the desertification gravity center [58]. In this
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research, the gravity center change model was applied to obtain the NDVI with no detected
hotspot gravity center distribution for every month according to Equations (4) and (5) [59]:

Xt = ∑m
i=1(Cti × Ai)/ ∑m

i=1(Cti) (4)

Yt = ∑m
i=1(Cti × Bi)/ ∑m

i=1(Cti) (5)

where Xt and Yt represents the latitude and longitude coordinates of the non- detected
hotspot distribution in year t, respectively; Cti is the area of the ith non-detected hotspot in
year t; and Ai and Bi are the longitude and latitude of the gravity plaque center in the ith
non-detected hotspot.

2.3.4. DFI

The DFI was summarized according to the MODIS band range and the spectral
characteristics of PV, DF, and soil. The formula used is as follows:

DFI = 100 ×
(

1 − SWIR2
SWIR1

)
× Red

NIR
(6)

where SWIR1, SWIR2, Red, and NIR represent bands 6 (SWIR: 1628–1652 nm), 7 (SWIR:
2105–2155 nm), 1 (Red: 620–670 nm), and 2 (NIR: 841–876 nm) of the MODIS, respectively.
The DFI has good potential for estimating DF coverage in grassland regions [60].

The above data and methods were used to analyze the impact of vegetation belt
movement on wildfires in the Mongolian Plateau over the last 40 years (Figure 2).
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Figure 2. Processing flowchart.

3. Result
3.1. Analysis of the Variation Patterns of Hydrothermal Conditions over the Mongolian Plateau in
the Last 40 Years

The overall precipitation trend was decreasing; in winter, there was a small increase in
western Mongolia, and in summer, the eastern sections of the Mongolian Plateau revealed
an unsustained increasing trend. Southwest precipitation resulted in a persistent cold spot.
The southwest overall was a consecutive cold spot. Oscillating cold spots and hot spots
were widely distributed. Persistent hot spots in the northern region were sporadically
distributed (Figure 3).



Remote Sens. 2023, 15, 2341 7 of 25Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 27 
 

 

 

Figure 3. Monthly precipitation hotspot map from 1982 to 2020. 

The overall temperature trend was upward; and latitudinal zonal changes were evi-

dent. The distribution of hot spots at low latitudes, cold spots in the northern Mongolian 

Plateau, persistent cold spots in the northern portion of the Mongolian Plateau in winter, 

and a persistent hotspot in the southern portion of the Mongolian Plateau. Overall distri-

bution of hot spots in the southern Mongolian Plateau throughout the year. Overall dis-

tribution of cold spots on the northern Mongolian Plateau. The distribution of cold and 

hot spots in winter latitudes was more obvious (Figure 4). 

Figure 3. Monthly precipitation hotspot map from 1982 to 2020.

The overall temperature trend was upward; and latitudinal zonal changes were evi-
dent. The distribution of hot spots at low latitudes, cold spots in the northern Mongolian
Plateau, persistent cold spots in the northern portion of the Mongolian Plateau in win-
ter, and a persistent hotspot in the southern portion of the Mongolian Plateau. Overall
distribution of hot spots in the southern Mongolian Plateau throughout the year. Overall
distribution of cold spots on the northern Mongolian Plateau. The distribution of cold and
hot spots in winter latitudes was more obvious (Figure 4).
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3.2. NDVI Change Patterns and Shifting Characteristics of Vegetation Zones in the Mongolian
Plateau in the Last 40 Years
3.2.1. Analysis of NDVI Change Patterns in Mongolia Plateau in the Last 40 Years

The Mongolian Plateau NDVI is the dividing line between the arid and semi-arid areas
during the growing season from April to October. It was a hotspot in the northeast, with
growth of vegetation decreasing in the southwest and increasing in the northeast, whereas
the southwest was a cold spot where vegetation was reduced. An obvious transitional
band was observed between the cold spot and the hot spots. The variation in the vegetation
index at the regional scale was not significantly related to hydrothermal conditions. This is
coincided well to the distribution of hydrothermal conditions (Figure 5).
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In the past 40 years, the NDVI movement has varied over the months and the boundary
between the hotspot and coldspot NDVI moved. It was more southerly in April, July, and
August, southwesterly in April, and was in the northern section of the Mongolian Plateau
in May, June, September, and October. The fluctuation in May was large, and in the far
northeast, June had the next largest fluctuation. The precipitation was heavy in July and
August, and it was close to the southwest desert, and in September and October, it was
close to the northeast vegetation area (Figure 6). In terms of longitude, except for May, the
longitude decreased with an increase in the month and moved to the western desert area
(Figure 7).
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3.2.2. Vegetation Belt Movement Features

From 1982–1991 to 1992–2001, 1992–2001 to 2002–2011, and 2012–2020 to 2002–2011,
except for the general trend of downward trend–upward trend–upward trend in October,
the other growing season months showed an overall trend of upward trend–downward
trend–upward trend. (Figure 8).
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Figure 8. (a) NDVI change for the 1982–1991 period and the 1992–2001 period, (b) NDVI change for
the 1992–2001 period and the 2002–2011 period, (c) NDVI change for the 2002–2011 period and the
2012–2020 period.
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3.3. Effects of Vegetation Belt Movement Characteristics on Wildfire in the Last 40 Years
3.3.1. Analysis of DFI Change Patterns in the Mongolian Plateau from 2000 to 2020

The meadow steppe area had more oscillating hot spots and oscillating cold spots
during the withering period, which is also consistent with the volatility of the period. In
March, April, May, and June, the oscillating hotspot on the China–Mongolia border area
provided favorable conditions for fire occurrence. The distribution regularity of DFI in the
withering period was consistent with that of typical grasslands. Hotspots were distributed
in the DFI of the northern Mongolian Plateau and the eastern China–Mongolia border area.
The northeastern part of Mongolia was characterized by persistent hotspots in April, May,
June, and September. The China–Mongolia border areas had persistent hotspots in April,
June, September, and October (Figure 9). These months are consistent with fire occurrence
in border areas [61].

3.3.2. Relationship between NDVI and Wildfire with Vegetation Zone Change

The withering period in the Mongolian Plateau started in September, and the spatial
distribution pattern of the plateau at the end of the growing season (EOS) showed a gradual
delay from southwest to northeast and from south to north, which was highly correlated
with spatial vegetation productivity [48]. In Central Asia, the withering period is from
October to December, but the withering period occurs earlier [62]. From 2002–2011 to
2012–2020 in September, the NDVI increased in the northern Kent Mountains, fires also
increased in the northern Kent Mountains from 2011 to 2020, and the fire area expanded
(Figure 10). During the withering period from to 2002–2011 to 2012–2020 in October, the
NDVI in the northern Kent Mountain region increased more than in September, the fires also
increased from 2011–2020, and the fire area expanded. Vegetation belts moved northwards;
therefore, fires in September and October during the withering period moved northward
(Figure 11). This is consistent with the northward shift of the vegetation withering period
in September and October [42].

From 2001 to 2015, there were 213 random points in April, May, June, September, and
October in the average overlap of the NDVI and DFI, with a total of 1160 sample points.
The correlation between NDVI and DFI was significant at the 0.01 level. Therefore, NDVI
and DFI were correlated (Figure 12 and Table 1).

3.3.3. Relationship between DFI and wildfire with Vegetation Zone Change

DFI also increased in NDVI-increasing regions and decreased in NDVI-decreasing
regions (Figures 8 and 13). However, DFI is more representative of the flammability of
a fire [63,64]. From 2001 to 2010, each month the DFI was mainly distributed in northern and
central Mongolia, the China–Mongolia border area, the forest-edge meadow grassland area of the
Greater Khingan Mountains, and the southern steppe marginal area. Except for November, the
DFI distribution area in 2011–2020 was larger than that in 2001–2010, mainly in northern and
central Mongolia, the Kent Mountains, the China–Mongolia border area, and the southern steppe
marginal area.

The probability of occurrence of a high fire DFI value was between 10 and 30 (Figure 14).
Summaries of the DFI and the area of fires had a good linear fitting relationship, and R2

is 0.9964 (Figure 15), using the 33 number of burned area cases. To study hotspots, a
symmetrical value of 20–30 was assigned to between 20 and 10, and the probability of
fire between 10 and 20 increased. The fire area and DFI trended to be between 10 and 20
(Figure 16).
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Figure 12. Relationship between NDVI and DFI.

Table 1. Correlation between NDVI and DFI.

NDVI
DFI Number of Samples Person Correlation

1160 0.193 **
**. Significant correlation at the 0.01 level (two-tailed).
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4. Discussion
4.1. NDVI and Hydrothermal Conditions

The boundary between arid and semi-arid regions is consistent with an average
annual precipitation of approximately 200 mm, which is also a no-detection line. NDVI
increased northeast of the no-detection line and decreased in the southwest. This is because
the northern Mongolian Plateau is influenced by Arctic Ocean water vapor, the eastern
part is affected by Pacific Ocean water vapor, and water vapor from the Indian Ocean
encounters the Himalayas. The annual total precipitation is about 300–400 mm, and
with the increase in the distance from the ocean, the precipitation decreases from east to
west and from north to south by degrees. Therefore, the hygrometric conditions in the
southwestern Mongolian Plateau decrease and are less humid as it is difficult for ocean
surface water vapor to reach that far, and has a minimum precipitation of approximately
100 mm. The distribution of air temperature corresponds to the amount of precipitation,
with relatively low temperatures in the northern and eastern humid regions, and relatively
high temperatures in the southwestern arid regions. This zonal distribution of dryness
and humidity coincided with the transitional area shape detected by the NDVI hotspots
in this study (Figure 6). Precipitation increased in the northeast and decreased in the
southwest during the growing season, and the air temperature decreased in the northeast
and increased in the southwest (Figures 3 and 4).
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The correlation of precipitation on the Mongolian Plateau from May to August was
higher than that of the temperature, and the correlation of temperatures in March, April,
September, and October was higher than that of the precipitation (Figures 3–5, 17 and 18).
This shows that during the plant growth period, the influence of precipitation on vegeta-
tion growth is greater than the effect of temperature [42,65], thus providing unfavorable
conditions for fire occurrence. It is consistent with the plant growth period fire occurrence
being less than the withering period fire occurrence. More precipitation will lead to more
soil moisture, and vegetation moisture, providing unfavorable conditions for fires. Precipi-
tation in May, June, and July exhibited a significant positive correlation with temperature
in the northeast (Figures 17 and 18). As a result, the vegetation in the northeast increased.
Between precipitation and NDVI had higher correlation than that between NDVI and
temperature in arid and semi-arid regions [66].
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4.2. NDVI and DFI Movement Distribution

The increase in NDVI occurred near the Kent Mountains in northern Mongolia
(Figure 5). Against the background of climate warming over the past 40 years, the tem-
perature and precipitation increased in the northern region during the growing season
from April to October (Figures 3 and 4). The Dornod, Sukbaatar, Hentiy, and Dornogovi
provinces near the Kent Mountains in northern Mongolia have more national reserves
and less population distribution, largely confined to the Dornod Mongol Strictly Protected
Areas of the Eastern Mongolian Grassland Nature Reserve in Mongolia, mainly on hills
and plains [67]. The Daur National Nature Reserve in Haorotu Sumu of Dornod Province
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is sparsely populated [68,69], and its natural and geographical environment has not been
polluted or damaged by human activities. It has maintained its original natural appearance
and abundant pasture resources. Other protected areas include the Nomrog strictly pro-
tected area, Daguuriin Mongol—a strictly protected area, Daguuriin Mongol—b strictly
protected area, and Nomrog Mnt. strictly protected areas, as well as the Ugtam Mnt. Nature
Reserves, Toson Khulstai Nature Reserves, and Lkhachinvandad Mnt. Nature Reserves.
The NDVI-DFI response spaces of the image are basically triangles, which conforms to the
basic assumption of the linear unmixing model [70,71].

The DFI also increased in northern Mongolia, the China-Mongolia border area, and the
forest-edge meadow steppe region of the Great Khingan Mountains. Because of the increase
in northern Mongolia, there are more national protected areas [68,69], and the DFI increases
due to policy management and less population and livestock in the China-Mongolia border
area. The forest margin meadows in the Greater Khingan Mountains are mainly distributed
on higher terrain, mostly at an elevation of 700–1500 m, with a relative mountain height
difference of 200–300 m [72]. In the Hulunbuir forest-edge meadows of the Greater Khingan
Mountains, a forage base was established on the retired farmland with a small slope, a
thick soil layer, and good soil [73]. Therefore, the increase in the meadow steppe area of
the Greater Khingan Mountains means that grassland protection in the forest edge areas at
higher elevations is better.

4.3. NDVI and DFI Movement Distribution and the Relationship between Fires

Combustibles are the basic factors in the formation and spread of grassland fires [36].
The areas where NDVI and DFI increased movement also increased in fire area
(Figures 10, 11, 15 and 16). In the absence of meteorological factors and fire sources, the
basis of fires was combustibles, and the number of combustibles increased. Thus, fire
occurrences were more likely. NDVI can reflect surface vegetation coverage and growth
conditions, and DFI is the DF index, which expresses flammable withered grass and is
closely related to fire occurrence [74–76]. The fire intensity increases with the ground fuel
load [30]. The fuel spatial and variability characterization of the fuel density influences
simulated fire behavior [76,77]. Lots of fuel drought as a result of climate change increases
fuel availability, as responded to the exponential relationship between fuel dryness and the
fire area [23]. From June to August, the NDVI increased more near the Kent Mountains in
northern Mongolia (Figure 8c), and the fire area also increased during the dry and withering
periods in September and October.

NDVI movement affects fires, with a high NDVI value and fire rate, and can replace
combustibles, fuel, weather, and terrain to express the grassland fire basic environment.
The fuel load is an elementary factor for the component and spread of grassland fires. For
large area of grasslands fire, NDVI can describe fuel load. Many researchers have reflected
that field survey and NDVI can be used to create a relationship with fuel load and satellite
data [78], as figured up by the following functions [79]: when the value is between 0~0.1, it
shows rocks, soil, or aging vegetation; when the value is above 0.1, it represents the existing
biomass; when the value is above 0.9, it expresses that the vegetation has a high fuel load
and continuity. The closer, approximately the NDVI index value is to 1, the greater the fuel
load and continuity [36,75]. Hernandez-Leal defined the Fire Risk Dynamic Index using
AVHRR data and the NDVI [80].

Fire protection is difficult in the border areas of China and Mongolia, and grass-
lands are widely distributed, Khalkgol, Erdenetsagaan, and Matad in Mongolia and East
Ujumqin Banner in China have the highest occurrence rate of grassland fires, and there
is more ground fuel [35]. The growing season NDVI in the border areas of China and
Mongolia increased, and the growing season NDVIs in Inner Mongolia and Mongolia were
0.0018/a and 0.0021/a, respectively [67]. It is consistent with the increase in NDVI and
DFI, which caused the occurrence of fire in the border area of China and Mongolia. Fires
decreased after sheep grazing in the Navajo-Ponderosa pine forest [81]. Between the 30 and
40 latitudes, the withering period was earlier [82], moved northward, and yellowed earlier,
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while the amount of dry grass increased, and the yellowing period in North America was
prolonged [83]. In most areas of Asia south of 55◦ N, the EOS is often delayed by more than
0.25 days /year [84]. The above conclusion is consistent with this study’s point that the
withering period has been prolonged, and the amount of dry grass increased. Therefore,
the probability of fire is also high. More fires happen in October (Figures 11 and 16). The
relationship between the DFI and the area of the fire area is consistent (Figure 16), and fire
occurrence is accidental. The environment (meteorological elements, terrain, etc.) interacts
with the fire occurrence and area, but the fire source is accidental, and the acquisition
of a fire environment is relatively simple; however, combustibles are more complicated
factors [85–87]. This study only examined the impact of DFI on fire from one side, and not
the combustibles, meteorological elements, and fire sources when a fire occurs to explain
fire probability.

5. Conclusions

Vegetation in cold environments, such as those in the mid-to-high latitudes and high
elevations, moves to higher latitudes or elevations in response to global warming. The fuel
distribution changes with climate change. The Mongolian Plateau is bound by arid and
semi-arid regions. Over the past 40 years, the vegetation in the southwest has decreased,
and the vegetation in the northeast has increased. With the northward movement of
vegetation on the Mongolian Plateau, fire occurrence has also moved northward, especially
in the nearby Kent Mountains and concentrated in Dornod, Sukhbaatar, and Kent provinces,
which has become more obvious in the past 20 years. The probability of DFI fires is high
in northern Mongolia, the border areas between China and Mongolia, and the forest-edge
meadow steppe region of the Greater Khingan Mountains. These findings suggest that
vegetation is migrating northward because of climate change and presents a challenge of
future warming spreading fire northward, adding material to the study of the relationship
between the northward movement of global vegetation and fires.
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