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Abstract: Interferometric synthetic aperture radar (InSAR) is a useful tool for monitoring surface
uplifts due to groundwater rebound in abandoned coal mines. However, INSAR-based prediction for
surface uplifts has rarely been focused on so far, hindering the scientifical assessment and controlling
of uplift-related geohazards in a wide area. In this study, we firstly revealed that the temporal
evolution of surface uplifts caused by groundwater rebound at a surface point approximately followed
an exponential distribution. Following the result, a varied cumulative distribution function (CDF)
of the Weibull distribution was then used to model the temporal evolution of surface uplifts on a
point-by-point basis. Finally, the parameters of the varied Weibull CDF were inverted from historical
InSAR observations of surface uplifts and were forward used to predict uplift trends. Two abandoned
coal mines in Beipiao city, China, were chosen to test the presented method. The results suggest that
the varied Weibull CDF is able to well describe the processing of time-series uplifts, and the root
mean square errors of the predicted uplifts were about 1.2 mm. The presented pointwise method
predicts surface uplifts based on historical uplift observations and a mathematical function (i.e., the
varied Weibull CDF), without the requirement of in situ geological and hydrological information
about the focused abandoned coal mines. Therefore, it offers a new tool for predicting surface uplifts
in abandoned mines, especially in case they lack in situ geological and hydrological information.

Keywords: abandoned coal mines; INSAR; exponential distribution; Weibull distribution; surface
uplifts

1. Introduction

The changes of the energy market and the increasing concern for global climate
changes have led to the closure of many deep coal mines worldwide [1,2]. After the closure
of a deep coal mine, the pumping of groundwater is generally halted. As a consequence,
surface water and/or overlying aquifer water may flood into the mined voids and sur-
rounding strata trough channels, such as fractures and faults, resulting in groundwater
rebound. Groundwater rebound in abandoned mines can cause ground surface uplift,
imposing damage threats on infrastructures (e.g., buildings, railway, pipes, communication
or electric towers, and so forth) [3]. Therefore, it is important to accurately monitor and
forward predict surface uplifts induced by groundwater rebound in abandoned coal mines.

Interferometric synthetic aperture radar (InSAR) is able to monitor ground surface
displacements in a wide area with high spatial resolution and low cost. In recent decades,
numerous time-series INSAR algorithms, such as the Stanford method for persistent scat-
terers [4], SqueeSAR [5], and small baseline subset INSAR (SBAS-InSAR) [6], have been
proposed to detect ground surface time-series displacements. Readers can refer to [7,8]
for a review on time-series INSAR techniques. INSAR is a promising tool to detect surface
displacements induced by natural landslide, earthquake and underground mining activi-
ties, and so forth [9-19]. Owing to the distinctive advantages of InNSAR, in 2013, InNSAR was
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applied to monitor surface uplift in the abandoned coal mines in Limburg, Netherlands, for
the first time [20]. Following that, INSAR has been widely used to detect historical surface
uplift in numerous abandoned mines in China, Germany, Poland, the United Kingdom, and
so forth [21-26]. Readers can refer to Zhao and Konietzky [27] for a review on this topic.

In fact, surface uplift monitoring in abandoned mines using InSAR is well-developed
and state-of-the-art. However, only a few studies have focused on surface uplift predic-
tion from InSAR observations. In 2020, Zhao and Konietzky [28] proposed an approach
for predicting groundwater rebound-induced surface uplift in abandoned mines with
elasto-plastic numerical modeling and InSAR uplift observations. The numerical approach
is theoretically able to consider the physical coupling behaviors of complex geological
and hydrological situations in abandoned mines. Since detailed information on mining
situations, geology, and hydrology are required by the numerical approach, it is difficult
to reliably predict surface uplift if the required information is lack or insufficient. In the
same year, Gee et al. [11] proposed an analytical approach to predict surface uplift by
incorporating InNSAR observations with the principle of effective stress. Compared with the
numerical approach proposed by Zhao and Konietzky, the analytical approach requires
less information about geology and hydrology. In this regard, the analytical approach can
be used in a wide area with relatively simple calculations [26]. Even so, some geological
and hydrological parameters (e.g., geostatic pressure, void ratio, and coefficient of volume
compressibility) and groundwater levels are still needed. This, to a large extent, limits the
practical applications of the analytical approach, especially over those abandoned mines
where the needed parameters are lacking.

To circumvent this, we proposed an empirical approach to predict surface uplift in
abandoned mines from InSAR uplift observations. Firstly, an exponential function was
selected to model the temporal evolution of surface uplift at a single point in abandoned
mines. The parameters of the selected exponential function were then inverted based on
InSAR observations of a historical time-series surface uplift. Thirdly, future surface uplift
was predicted with the inverted parameters and the exponential function. Compared to
the existing INSAR-based numerical and analytical approaches, the proposed mathematical
approach in this study relied on InNSAR observations alone. Therefore, it is able to work well
in a wide area without the requirement of geological and hydrological field parameters.

2. Methods
2.1. Pointwise Modelling for Surface Uplifts with a Varied Weibull Distribution Function

Following the cessation of groundwater pumping in abandoned mines, the rising
curve of groundwater levels approximately follows an exponential distribution [20,29-31].
Previous studies have suggested that there is a linearly positive correlation between ground-
water level and surface uplift in abandoned mines [20,32]. Consequently, surface uplift
induced by groundwater rebound at a single surface point can be assumed to follow an ex-
ponential distribution. The cumulative distribution function of an exponential distribution
Fexp is given by the following:

Fop(tA)=1—e M t>0 1)

where t denotes time; A is the parameter of distribution (generally referred to as rate
parameter).

Equation (1) is a single-parameter function, which may not describe well enough the
temporal evolution of time-series uplift at a single surface point. Equation (2) shows the
cumulative distribution function (CDF) of a two-parameter Weibull distribution,

Fwei(tr 7, IB) =1- ei(t/ﬂ)ﬁ t>0 )

where 17 and B are the scale parameter and shape parameter, respectively. As is observed
from Equation(2), the exponential distribution is a special case of the Weibull distribution
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(i.e., B = 1). Therefore, the Weibull distribution is more flexible for describing surface
time-series uplift in abandoned mines compared to exponential distribution.

However, it is noted that the maximum value of the Weibull CDF is one, which
does not meet real scenarios in which the maximum surface uplift is varied in different
abandoned mines. To circumvent this, a parameter for describing the varied maximum
surface uplift should be included in Equation (2), and surface time-series uplift caused by
groundwater rebound at a single point (namely d,,()) can be described as a varied Weibull
CDF, as follows:

du(t, P) = Y Fuui (1,1, 8) = d3[1 = e /"], 1> 0 )

where P = [d) 5 p] is the parameter matrix of the varied Weibull CDF, with d9 being
the maximum uplift parameter.

It should be noted that a probabilistic approach for INSAR time-series postprocessing
was proposed in 2016 to model time-series INSAR observations [33]. In this approach, an
optimal function was selected from a function library to describe the kinematic evolution of
surface INSAR-measured displacements using multiple hypotheses testing. This approach
models surface displacements in a mathematical view, without taking the physical pro-
cessing of displacement events into account. The varied Weibull CDF is derived with the
consideration of the physical processing of surface uplifts in abandoned coal mines; that is,
the level change of groundwater rebound in abandoned coal mines follows an exponential
distribution, and there is a linearly positive correlation between groundwater level and
surface uplift. Therefore, this study offers a new view on modelling the kinematic evolution
of surface displacements from InNSAR observations.

2.2. Parameter Inversion of the Varied Weibull CDF
2.2.1. Retrieval of Surface Historical Uplift Using INSAR

In this section, the SBAS-InSAR algorithm is briefly reviewed. The SBAS-InSAR
algorithm was first proposed by Berardino et al. [6] in 2002. Unlike the persistent scatterer
InSAR (PS-InSAR) algorithm with an interferometric network of a single reference SAR
image, SBAS-INSAR constructs an interferometric network with small-baseline multiple-
reference SAR images by setting spatial and temporal baseline thresholds. Consequently,
the influence of decorrelation due to long spatiotemporal baselines can be mitigated [34].
Owing to this merit, the SBAS-InSAR algorithm was selected to monitor surface uplifts in
the following real data test.

The SBAS-InSAR algorithm is briefly reviewed below. Assuming that N co-registered
SAR images acquired on the dates of [to,t1,--- ,tn_1] over the region of interest were
firstly collected. M interferograms whose spatiotemporal baselines are both below a given
threshold were then generated. Thirdly, the M interferograms were processed with the
classical DInSAR procedure (e.g., topographic phase removal, filtering, phase unwrapping,
and so forth) to generate M unwrapped phase maps. The phase at any point (x, y) in the
i-th (i=1,2,... ,M) unwrapped phase map is approximately represented as follows:

47t 47T B
Agi(x,y) = ¢, — @1, = —dros(hy ) + - RS;G :

Az + Presi (4)

where Ag; is the i unwrapped phase; ¢;, and ¢, are the phases at the acquisition dates
t; and tp; B, is the perpendicular baseline; R is the slant distance; 0 is the incident angle;
A is the wavelength of SAR sensor; Az and d;pg denote height error and displacement,
respectively; @resi is the residual phase, possibly including atmospheric delay and noise, etc.

Following the removal or mitigation of the residual phase and height error phase
terms, displacements can be estimated based on Equation (4). More specifically, we
firstly assume that the displacement in the time-adjacent acquisitions can be expressed
as dros(ti, tir1) = v;- (ti, —tir1). Thus, the j-th unwrapped phase after the removal of
residual phase and height error phase terms can be expressed by the accumulation of the
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time-adjacent displacement phases during the acquisition period of the j-th interferogram.
Then, an equation system involving N—1 unknowns and M observation equations can be
constructed. If M > N, ground surface displacement dy os(t;, ti11) can be estimated by a
least-square sense (over-conditioned) or singular-value decomposition (under-conditioned)
algorithm.

Note that the displacements measured by InSAR techniques are along the line-of-sight
(LOS) direction of the radar sensor, rather than the vertical direction (e.g., uplift in this
study), due to the side-looking configuration of SAR sensors; that is, INSAR-measured LOS
displacement (namely d} og) is the projection of the three-dimensional components of a real
displacement vector in vertical, easting, and northing directions [35,36]:

dros = dy cosa + (dn sing — de sin¢) sinw (5)

where d, dn, and d. represent the three-dimensional displacement components in the
vertical, northing, and easting directions, respectively; ¢ and a« denote the flighting angle
and incidence angle of the SAR sensor.

Equation (5) indicates that it is an ill-posed problem to accurately decompose the
vertical component (i.e., subsidence or uplift) of a real displacement vector from single-
track InNSAR observations. Therefore, two options can be considered to estimate surface
uplift in abandoned mines under the near-polar flighting configuration of the current
InSAR satellites. The first one is assuming that only ground surface moves in the vertical
direction only, and surface uplift can thus be estimated by:

dy = dyos/cosu (6)

When single-track INSAR observations are available for abandoned mines of interest.
The second one is the fact that INSAR-measured LOS displacement is insensitive to the
north displacement component under the near-polar flighting configuration of the current
InSAR satellites. Consequently, under the assumption that the contribution of the north dis-
placement component to LOS displacement is negligible, surface lift can thus be estimated
by the following:

_ SiNPges * COS Hges * (ALOS) ase — SIN Pasc * COS Aase * (ALOS) ges @)
W=

SIN Peg - COS A es - COS Wase — SIN Pasc - COS Aage * COS A es

where InNSAR-measured LOS displacements from ascending (denoted by the subscript of
asc) and descending (denoted by the subscript of des) are both available for abandoned
mines of interest.

2.2.2. Parameter Inversion with InNSAR Observations of Surface Historical Uplifts

Having obtained the InNSAR observations of surface historical uplift, the parameters of
the two-parameter exponential distribution function can be inverted on a pixel-by-pixel
basis. More specifically, Equation(3) is firstly transformed to be a linear function by a twice
logarithmic operation, as follows:

y=px—¢o (8)
1-dy (1)

withy = log{log[ ry } }, x =logt and ¢o = Blogn. Lett = [t t; --- t,] bethe
n dates of SAR acquisitions over the region of interest, and d,(¢) be the time-series INSAR
observations of historical uplift at a single surface point. The estimates of the parameters
of the varied Weibull distribution (namely P = [d) 7 f]) are finally estimated with a
linear regression using Equation (8) on a pixel-by-pixel basis.

2.3. Prediction for Surface Uplift Using the Varied Weibull CDF

Having obtained the estimates of the varied Weibull distribution function at each
highly coherent pixel in INSAR-measured uplift maps, future surface uplift can be predicted
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using Equation (3) on a pixel-by-pixel basis. The presented empirical method is capable
of predicting surface uplift in abandoned mines based on InSAR observations and the
varied Weibull distribution function only. Therefore, it is independent of geological and
hydrological parameters relating to regions of interest, offering a new option to predict
surface uplift induced by groundwater rebound in a wide area.

3. Study Area and SAR Data
3.1. Study Area

Two abandoned coal mines (i.e., Taiji and Guanshan) in Beipiao city (marked by a
red circle in Figure 1a), China, were selected to test the presented INSAR-based empirical
approach for predicting surface uplift. As is shown in Figure 1b, the Taiji coal mine is
located in the south-west part of Beipiao city, and the normally mechanizing extraction
there was started in the year of 1966, with a maximum mining depth over 800 m. The
Guanshan coal mine is located in the north-east region of Beipiao city, whose normally
mechanizing extraction was started in the 1950s at a maximum mining depth of 1059 m.
The angles of the dip slope of coal seams in these two coal mines are about 35-67° to the
horizontal direction, with a mean strike direction of around 78° from the north clockwise.

120 km

118.00°E 120.00°E 122.00°E 124.00°E

41.78 41.8 41.82 41.84 41.86

41.76

120.64 120.66 120.68 120.7 120.72 120.74 120.76 120.78 120.8 120.82
Figure 1. (a) Geological location of Beipiao city; (b) extraction regions of the Taiji (T]) and Guanshan

(GS) coal mines. The red and blue rectangles in (a) represent the footprints of the collected ascending
and descending Sentinel-1 SAR images.
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The focused Taiji and Guanshan coal mines were both closed in the year of 2014. Fol-
lowing the closure of the deep underground extraction, ground surface water and surface
water and/or overlying aquifer water flooded into the mined-out voids and surrounding
strata, causing ground surface uplift. The caused uplift imposes damage threats to surface
buildings, roads, and other infrastructures in Beipiao city. Therefore, it is crucial to predict
surface uplift induced by groundwater rebound there for assessing and controlling the
potential damage threats.

3.2. SAR Data

To analyze the surface deformation status after the closure of the mining area in
Beipiao City, this article used free and publicly available Sentinel-1 data and extracted
the deformation information based on SBAS-INSAR technology. Sentinel-1 is an earth
observation satellite developed by the European Space Agency. It is mainly equipped with
C-band synthetic aperture radar. The system consists of two satellites, Sentinel-1A and
Sentinel-1B (end of mission in August 2022 due to power issue). The repeated period of a
single Sentinel-1 satellite is 12 days, which can be increased to 6 days with two Sentinel-1
satellites. In this study, 252 Sentinel-1A and 1B SAR images spanning from April 2017
to October 2021 over Beipiao city were collected. These SAR images were acquired by
Sentinel-1 sensors in the Terrain Observation with Progressive Scans (TOPS) mode with
ascending and descending orbits, respectively. The imaging parameters are shown in
Table 1.

Table 1. Parameters of the collected Sentinel-1 SAR images.

Track Observed Time Number of Images Heading Incidence Angle
Ascending 4 April 2017—4 October 2021 130 -9.139 43.734
Descending 3 April 2017-3 October 2021 122 —169.886 39.184
4. Results

4.1. InSAR-Based Detection of Ground Surface Uplift

These collected ascending and descending Sentinel-1 SAR images were then processed
with the SBAS-InSAR algorithm [6], in which a multi-look operation of 5:1 in the range
and azimuth was firstly carried out in order to reduce interferometric noises. Secondly, a
spatiotemporal baseline threshold of 150 m and 180 days was given, generating 257 and 241
small baseline interferograms from the ascending and descending Sentinel-1 SAR datasets.
The spatiotemporal baseline networks of the generated small baseline interferograms are
shown in Figure 2.

The generated small baseline interferograms were processed with a differential pro-
cedure, in which a non-local algorithm called block-matching and 3D filter for interfer-
ograms [37] was used to filter differential interferograms. The minimum cost flow algo-
rithm [38] was chosen to unwrap phases. Then, high coherent pixels were selected with
a minimum coherence of 0.3, and time-series LOS displacements were estimated using
the classical processing of the SBAS-InSAR algorithm (e.g., linear displacement rate and
height residual estimation, atmospheric delay mitigation, non-linear displacement com-
ponent estimation). Having obtained time-series LOS displacements with the collected
ascending and descending Sentinel-1 SAR acquisitions, respectively, surface uplifts in
the two focused abandoned coal mines were finally estimated using Equation (7). The
InSAR-measured rates and accumulative vertical displacements in the Taiji and Guanshan
coal mines between April 2017 and October 2021 are shown in Figures 3 and 4, respectively.



Remote Sens. 2023, 15, 2337

7 of 18

Perpendicular Baseline (m)

Perpendicular Baseline (m)

Bperp min:

Delta_T min:1
A
e 2
P v
% %
% 9

Bperp min: 0.7 max: 200.2
Delta_T min: 12.0 ‘max: 132.0
A A N A

< < <% 2
s & % =
% % % %
> 2 »

kK

Figure 2. Spatiotemporal baseline networks for the generated ascending (a) and descending (b) small

baseline interferograms.
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Figure 3. INSAR-measured rates of vertical displacements in the Taiji and Guanshan abandoned coal
mines between April 2017 and November 2021. P1-P4 indicates four surface points with significant
uplifts in the period of the collected SAR acquisitions.
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Figure 4. InNSAR-measured (a,d,g,j,m) and Weibull-fitted (b,e,hk,n) accumulative surface uplifts
in the Taiji and Guanshan abandoned coal mines in December 2017, December 2018, December
2019, December 2020, and December 2021. (c,f,i,1,0) Residuals between the INSAR-measured and
Weibull-fitted surface uplifts.

4.2. Pointwise Modelling for Surface Time-Series Uplifts

As is observed from Figure 4, the temporal evolution of time-series uplifts along the
profile AA’ (marked by rose red dashed line in Figure 3) was non-linear. In this section, four
surface points with significant uplifts in the period of the collected SAR acquisitions (named
P1-P4 and marked by red triangles in Figure 3) were selected as samples to intuitively
demonstrate the dynamic process of time-series uplift induced by groundwater rebound, in
which the P1 and P2 points were situated in the Taiji abandoned coal mine, and the P3 and
P4 points were located in the Guanshan coal mine. The InNSAR-measured surface uplifts in
these four points are shown in Figure 5.
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Figure 5. The performance comparison of fitting INSAR-measured surface uplift at point (P1-
P4) (whose locations are marked by red triangles in Figure 3) with the varied exponential CDF
and the varied Weibull CDF, respectively.

It can be seen from Figure 5 that the curve of time-series uplift at a single surface point
approximately follows a CDF of exponential distribution; that is, ground surface uplifted
exponentially increased following the closure of coal mines, and then the increasing rate
was declined until zero (i.e., surface uplift remained stable). It was observed that the
maximum uplifts of surface points in different locations were different; thus, the standard
CDF of the exponential distribution (i.e., Equation (1) with a maximum of one) cannot
describe the evolution processes of these four points well. This result proves that it is
necessary to modify the CDF of the standard exponential distribution to be suitable to
describe time-series surface uplifts caused by groundwater rebound at a single point.

To intuitively demonstrate the performance of the presented varied Weibull CDF
on describing the temporal evolution of time-series uplift at a single surface point, we
inverted the model parameters of the varied Weibull CDF based on Equation (8) using
InSAR time-series uplifts at the four selected surface points, P1-P4. The time-series uplifts
fitted by the varied Weibull CDF and its inverted model parameters at these four points are
shown in Figure 5. R-squares, a widely-used indicator for evaluating the goodness of fit
(the higher the better, and vice-versa), at these four points are listed in Table 2. As can be
seen from Figure 5 and Table 2, the varied Weibull CDF can describe the temporal evolution
of surface uplifts at a single point very well, with a mean R-square of about 0.99 for the
four points. In addition, Akaike information criterion (AIC) scores, a measure for optimal
model selection by weighting model performance and complexity (the lower the better,
and vice-versa), are listed in Table 2. As is shown, the AIC scores of the varied Weibull CDF
at these four points were much lower than the varied exponential function. This means
that the varied Weibull CDF is better than the varied exponential function for describing
the temporal evolution of surface uplifts in abandoned coal mines.
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Table 2. Comparison of R-squares and AIC for fitting InNSAR-measured surface uplift at points P1 to
P4 with the varied exponential CDF and the varied Weibull CDF, respectively.

R? AIC
Point Exponential Weibull Exponential Weibull
P1 0.92 0.99 244 17
P2 0.93 0.99 161 58
P3 0.89 099 313 119
P4 0.74 0.98 323 61
Mean 0.87 0.99 260 64

Figure 6 plots the histograms of the residuals between the INSAR-measured and
Weibull-fitted surface uplifts from December 2017 to December 2021 (Figure 6). It can be
seen from Figure 6 that the residuals approximately followed normal distributions, with a
mean of about zero and a standard deviation (STD) ranging from 0.8 mm to 1.7 mm. These
results indicate that the varied CDF is able to describe the kinematic evolution of surface
uplifts at a single point.

5000

4500

4000

3500

3000

2500

Frequency

2000

1500

1000

500

[
-0.05

(a)

STD=0.0008

0 0.05
Residuals (m)

5000

4500

4000

3500

3000

2500

Frequency

2000

1500

1000

500

(c)

SAT=0.0014

Residuals (m)

5000

4500

4000

3500

3000

2500

quency

Te

= 2000
1500
1000

500

0
-0.05

(e)

STD=0.0017

0.05

0
Residuals (m)

Frequency

Residuals (m)

0

(b)

STD=0.0014

Frequency

0
Residuals (m)

(d)

STD=0.0016

Figure 6. Histograms of the residuals between the INSAR-measured and Weibull-fitted surface uplifts
in December 2017 (a), December 2018 (b), December 2019 (c), December 2020 (d), and December

2021 (e).
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4.3. Prediction for Surface Uplift Induced by Groundwater Rebound

The varied Weibull CDF was selected to predict surface uplift induced by ground-
water rebound in the Taiji and Guanshan abandoned mines. More specifically, the model
parameters of the varied Weibull CDF were estimated using Equation (8) in a least-square
sense based on INSAR-measured historical uplifts on a point-to-point basis. The potential
future surface uplifts were point-wisely predicted based on the varied Weibull CDF and its
inverted parameters. Figure 7 plots the potential surface uplift in the Taiji and Guanshan
abandoned coal mines predicted by the varied Weibull CDF in December of 2022, 2023, and
2024, respectively. As is shown in Figure 7, the maximum uplift will increase up to 0.16 m
and 0.125 m in the Taiji and Guanshan abandoned coal mines.
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Figure 7. Predicted surface uplifts in the Taiji and Guanshan coal mines in December of (a) 2022,
(b) 2023, and (c) 2024, respectively. P1-P4 indicates four surface points with significant uplifts in the
period of the collected SAR acquisitions.

In fact, it can be observed from Figures 6 and 7 that, except for the T] Fourth and GS
Third mining regions, the surface uplifts in the remaining mining regions in the Taiji and
Guanshan abandoned coal mines has kept approximately stable since the spring of 2019.
As the temporal evolution of surface uplifts is linearly proportional to the level changes of
groundwater recovery in abandoned mines, we inferred that the groundwater levels in these
mining regions have been roughly stable as well since the spring of 2019. Unfortunately, the
guess cannot be undoubtably proven due to the lack of in situ observations of groundwater
levels in these two abandoned coal mines. As recorded by the official administrator of these
two abandoned coal mines, water flowed out of the vertical mine shafts in the GS Second
and TJ East mining regions, respectively, in January 2019. This record, to some extent,
suggests that the groundwater levels in these two abandoned coal mines approximately
remained stable after January 2019.

4.4. Accuracy Evaluation of the Predicted Surface Uplifts

A total of 704 field points were deployed in the Taiji and Guanshan abandoned coal
mines in the year of 2021 (their locations are marked by black circles in Figure 7), which
were monitored by levelling in October 2021 and April 2022, respectively. These leveling
measurements of surface vertical displacements during October 2021 and April 2022 were
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used to validate the accuracy of the predicted surface uplifts with the varied Weibull
CDF in the same period. Figure 8 shows a scatter plot of the leveling-monitored and
Weibull-predicted surface uplifts. As is shown in Figure 8, ground surface uplifts in the
Taiji and Guanshan abandoned coal mines were roughly stable since October 2021, because
leveling observations of vertical displacements in the following six months were mainly
within £3 mm. In addition, as observed from Figure 8, the surface uplifts predicted by the
varied Weibull CDF at the 704 points demonstrated a stable pattern as well, with the uplift
magnitudes ranging from 0 to 2 mm. Hence, the predicted uplifts are in good agreement
with the leveling observations (serving as reference), with a root mean square error (RMSE)
of 1.2 mm. This result suggests that the surface uplifts predicted by the varied Weibull CDF
in these two coal mines are reliable.

3 T T T T T T

25¢

2 b

1.5

1+ *

Predicted uplifts (mm)

-4 -3 -2 =1 0 1 2 3
In situ uplifts (mm)
Figure 8. Scatter plot of surface uplifts monitored by leveling (i.e., in situ uplifts) and predicted by
the varied Weibull CDF at the 704 field points.

5. Discussions
5.1. Analysis on the Spatial Pattern of Ground Surface Uplifts

As is seen in Figure 3, significant surface uplift occurred in the west and east mining
regions of the Taiji abandoned coal mine (denoted by T] West and TJ East in Figure 3,
respectively), whereas surface uplift in the fourth mining region (denoted by TJ Fourth)
was insignificant. This phenomenon is highly related to closure history in these three
mining regions. More specifically, the fourth mining region was closed in about 2005, and
the main phase of surface uplift caused by groundwater rebound was most likely to be
completed by April 2017, since the rising curve of groundwater recovery in abandoned
mines approximately follows an exponential distribution. The west and east mining regions
of the Taiji coal mine were closed in 2014, and parts of the main phase of groundwater
rebound-induced surface uplift there were captured by the collected Sentinel-1 SAR images
in the period from 2017 to 2021.

A similar spatial pattern of surface uplift can also be observed in the Guanshan
abandoned coal mine as well. The third mining region in the Guanshan coal mine (denoted
by GS Third in Figure 3) was closed in 2001, and the main phase of surface uplift should
have been missed by the collected Sentinel-1 SAR images from 2017 to 2021. However, the
first and second mining regions in the Guanshan coal mine (denoted by GS First and GS
Second, respectively in Figure 3) were closed in 2014. The surface uplift associated with
groundwater rebound could also be detected by the collected Sentienel-1 acquisitions.

Figure 9 plots the kinematic vertical displacements in the Taiji and Guanshan aban-
doned coal mines along the AA’ profile. Noting this, the missed vertical displacements
along the AA’ profile due to low interferometric coherence were interpolated by a Kriging
interpolation algorithm, for the sake of visual analyses. As is observed in Figure 9, ground
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surface along the AA’ profile in the T] Fourth mining region deformed insignificantly. How-
ever, ground surface uplifted exponentially with a cumulative uplift from about 20 mm
to a maximum one of around 100 in October 2021, when the AA’ profile went through
the T] West region. When the AA’ profile went from the T] West to the TJ East regions,
the maximum surface uplifts roughly remained stable, although oscillation occurred. Fol-
lowing that, a V-shaped uplift curve was observed, for which the bottom of the V-shaped
curve was on the boundary between the Taiji and Guanshan coal mines. Finally, the surface
uplifts kept approximately stable with oscillation in the GS Second and GS First mining
regions, and then they declined rapidly in the GS Third mining region.

150
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20201008
20211003
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wn
S

TJ Fourth TJ West TJ East GS Second, GS First] GS Third
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distance(m)

Figure 9. Time-series surface uplifts along the AA’ profile, whose location is marked by a purple
dashed line in Figure 3. In which, the legend “20170403” means 3 April 2014.

Such a spatial pattern of surface uplifts along the AA’ profile is possibly due to a
hydraulic connection between different mine goafs (referred to ponds). Theoretically,
mining coal seams likely results in cracks in overlying rock strata with a wider range than
the width of the extracted underground mine goaf [39]. In addition, the goafs in the same
coal mining region are generally close to each other or are even connected by tunnels to
each other for the maximization of coal production. Consequently, it is possible that cracks
in the overlying rock strata due to the extraction of multiple underground mine goafs are
connective. In this case, the rising level of groundwater rebound would be nearly the same
in the mining region (see the sketch diagram in Figure 10a) due to the influence of hydraulic
connection between different ponds [27]. The hydraulic connection is possibly the main
reason for the spatial patterns of surface uplift in the T] West, T] East, GS First, and GS
Second mining regions, respectively.

(@) (®)

]

Pond 1 Pond 2 Pond 1 Pond 2

Figure 10. Sketch diagram hydraulic conditions between two connective (a) and isolated (b) ponds
in the abandoned coal mine [27].
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However, as is shown in Figure 10b, when mining-induced rock cracks or other water
flow courses do not cross rock strata overlying different mine ponds, the ponds are spatially
isolated. In this case, the rising level of groundwater rebound of different ponds would be
independent, and surface uplift due to groundwater rebound in two isolated ponds would
possibly be smaller than that in two connective ponds [27]. Since the Taiji and Guanshan
coal mines belonged to two companies, safety pillars were formed on the boundary of these
two coal mines. Hence, the ponds in these two abandoned coal mines are theoretically
isolated. This is the main reason for the V-shaped uplift curve that occurred along the AA’
profile in the boundary between two focused abandoned mines.

5.2. Modelling Comparison between the Varied Weibull CDF and a Varied Exponential CDF

Theoretically, there are a set of candidate models that can be potentially selected to
model the time-series surface uplift induced by groundwater rebound in abandoned mines
on a point-by-point basis, in which a varied exponential CDF includes a parameter of the
maximum surface uplift (namely d9):

du(t,P) = dY - Foxp(t,A) = d© (1 - e_)‘t), t>0 )

which is a typical candidate model, since it is a classical exponential CDF with a variable
maximum value. Therefore, we compared the fitting performance between the varied expo-
nential CDF and the varied Weibull CDF used in this study based on the time-series uplifts
at the selected points P1-P4. The results are shown in Figure 8, and the corresponding
R-squares for the goodness of fit are listed in Table 2 for comparison.

As can be seen from Figure 5, the varied exponential CDF with two parameters is able
to roughly describe the temporal processing of time-series surface uplifts by visualization.
This conclusion, to a large extent, can be proven by the quantitative indicator of R-squares,
whose values range from 0.74 (for point P4) to 0.94 (for point P2), with a mean of 0.74
at these four points. However, Figure 5 also shows that the mis-fitting between InSAR-
detected uplifts and the fitted uplifts with the varied exponential CDF (blue lines) is larger
than that for the varied Weibull CDF (red lines) used in this study. The mean R-square at
these four points for the varied exponential CDF was smaller (0.12) than that for the varied
Weibull CDE.

The main reason for the different performance on fitting was due to the parameter
numbers in these two models. The varied exponential CDF (i.e., Equation (9)) involved
two model parameters (i.e., d) and )), whereas the varied Weibull CDF (i.e., Equation (3))
included three model parameters (i.e., dg, 1, and B). In fact, the varied exponential CDF
is a specific case of the varied Weibull CDF, where f = 1. Owing to the involved extra
parameter of § in the varied Weibull CDF, it is more flexible to model time-series surface
uplift and further attribute to a smaller misfitting than the varied exponential CDF.

However, it was noted that adding the extra parameter possibly increased the likeli-
hood to result in overfitting. To test the likelihood, Akaike’s information criterion (AIC) was
used in this section. AIC is a well-known model selection criterion that penalizes models
that use too many parameters to describe the data [40]. Therefore, a model with lower
AIC is generally preferred among model candidates, since it can make a better trade-off
between model complexity and fitting performance on the given dataset. Table 2 lists the
AIC values on the surface uplifts at the points P1-P4 fitted by the varied exponential CDF
and the varied Weibull CDE, respectively. As is shown in Table 2, the AIC values for the
varied exponential CDF are these four points ranging from 161 to 323 (with a mean of 260),
which are about four times the AIC values for the varied Weibull CDF (ranging from 17
to 119, with a mean of 64). This result indicates that, compared to the varied exponential
CDE, the varied Weibull CDF is preferred since it takes a better trade-off between model
complexity and model fitting performance.
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5.3. Influence of InSAR Observations on the Parameter Inversion of the Varied Weibull CDF

Besides the model uncertainties, the accuracy of the predicted surface uplifts in aban-
doned coal mines using the presented method primarily depends on the reliability of the
inverted parameters of the varied Weibull CDEF In this study, the parameters of the varied
Weibull CDF were estimated from InSAR observations in an LS sense. Mathematically,
the accurate parameter inversion of a nonlinear function usually requires observations
covering the key features of the function curve. For instance, Figure 11 shows an uplift
curve simulated by the varied Weibull CDF with parameters of 4} = 100 mm, 7 = 0.8, and
B = 2.5. The main shape of the curve theoretically depends on two uplifts at two special
epochs where the maximum uplift velocity and the minimum uplift acceleration occur
(namely tax vel and tmin acc, Marked by red circles). This implies that the parameters of
the varied Weibull CDF can be uniquely inverted if time-series INSAR observations at these
two special epochs are available.
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Figure 11. Time-series uplift curve simulated by the varied Weibull CDF under d = 100 mm, 7 = 0.8,
and = 2.5.

A simulation analysis was conducted to validate the hypothesis. Firstly, we cropped
21 time-series uplifts from £y (i.e., the initial date of surface uplifts) to ty,x ve from the
simulated uplift curve, with a time separation of 12 days (the same as the repeated cycle of
a single Sentinel-1 satellite). Gaussian noises with a mean of zero and deviation of 5 mm
were then added to the cropped uplifts to simulate time-series INSAR observations. Thirdly,
the parameters of the varied Weibull CDF were inverted from the simulated time-series
InSAR observations. In order to reduce the randomness of the parameter inversion, we
repeated the above inversion procedure 2000 times. For the sake of comparison, time-series
InSAR observations from #y to fin_acc Were simulated with the same procedure and noise
levels, and the parameters of the varied Weibull CDF were inverted 2000 times as well.

Figure 12 plots the histograms of the parameters of the varied Weibull CDF in-
verted with the InNSAR observations from fy to fy.x vel (marked by green) and from £
to tmin_acc(marked by red), respectively. As is shown in Figure 12, the Gaussian errors
caused a significant uncertainty in the inverted parameters, on one hand, when InSAR
observations in the period from t( to i,y vel Were used. The mean standard deviation
occurred for 19.8% of the inverted parameters. On the other hand, the same level of
Gaussian noise caused a much smaller uncertainty in the inverted parameters (the mean
standard deviation occupied 2.2%) when time-series INSAR observations between ty and
tmin_acc Were used. This result suggests that INSAR observations spanning a longer period
of surface uplifts are beneficial to enhance the robustness of the parameter inversion.
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Figure 12. Histograms of the inverted parameters of the varied Weibull CDF with time-series INSAR
observations from fg to tpy,y vel(marked by green) and from fg to tmin_acc(marked by red), respectively.

Figure 13 plots the mean and uncertainties of the uplifts predicted by the 2000 sets of
inverted parameters using different INSAR observation datasets, in which the red circles
represent the error-free INSAR observations. As is seen in Figure 13a, the mean uplifts
(green dashed line) agreed well with the simulated ones (blue line), which indicates that
the inversion strategy used in this study is able to reliably invert the parameters of the
varied Weibull CDE. However, it was observed from Figure 13b that the STDs of the
predicted uplifts gradually increased from 0.1 mm to 5 mm (nearly equal to the STD of the
added Gaussian noises). When the InNSAR observations between ty and tmin_acc Were used
(see Figure 13b), the STDs of the predicted surface uplifts decreased dramatically (with a
maximum STD of 0.9 mm). These results suggest that: (i) the accuracy of the predicted
uplifts using the proposed method would decrease with the increase of the predicted
periods; (ii) it is beneficial to increase the accuracy of the predicted uplifts using updated
InSAR observations.
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Figure 13. Influences of INSAR time-series observations between tg and f;,,,x vel (a) and between tg
and tpmin_acc (b), respectively, on the predicted uplifts.

6. Conclusions

In this study, the temporal evolution of surface uplifts in abandoned mines was
analyzed and further modelled by a varied Weibull CDF on a point-by-point basis. Then,
the parameters of the varied Weibull CDF were inverted based on InNSAR observations and
were used to predict uplift trends. The real data tests in two abandoned mines in Beipiao
city, China, suggest that the varied Weibull CDF is able to well describe the processing of
surface uplifts caused by groundwater rebound. The comparison between the predicted
uplifts and the levelling uplift observations at 704 points showed an RMSE of about 1.19 mm.
Compared to the existing INSAR-based numerical analysis methods, in-site geological and
hydrological information of the focused abandoned coal mines are not necessary for the
presented method. Consequently, the presented method can work well in a wide area
without requiring collecting in situ geological and hydrological parameters. However, it
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should be pointed out that, due to the influence of INSAR observation errors, the accuracy
of the predicted uplifts would decrease with an increase of prediction periods. Therefore,
in the future, we will attempt to improve the prediction robustness by updating time-series
InSAR observations. In addition, we are aware that it is insufficient to validate the feasibility
and applicability of the presented method with just two abandoned coal mines in Beipiao
city. Therefore, we will test the presented method with more real cases.
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