
Citation: Zaboli, M.; Rastiveis, H.;

Hosseiny, B.; Shokri, D.; Sarasua,

W.A.; Homayouni, S. D-Net: A

Density-Based Convolutional Neural

Network for Mobile LiDAR Point

Clouds Classification in Urban Areas.

Remote Sens. 2023, 15, 2317. https://

doi.org/10.3390/rs15092317

Academic Editors: Wei Yao,

John Trinder, Wenbing Tao

and Jie Shao

Received: 16 March 2023

Revised: 19 April 2023

Accepted: 26 April 2023

Published: 27 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

D-Net: A Density-Based Convolutional Neural Network for
Mobile LiDAR Point Clouds Classification in Urban Areas
Mahdiye Zaboli 1,*, Heidar Rastiveis 1,2 , Benyamin Hosseiny 1 , Danesh Shokri 1, Wayne A. Sarasua 3

and Saeid Homayouni 4

1 Department of Photogrammetry and Remote Sensing, School of Surveying and Geospatial Engineering,
College of Engineering, University of Tehran, Tehran 141663, Iran; hrasti@ut.ac.ir (H.R.);
ben.hosseiny@ut.ac.ir (B.H.); daneshshokri72@ut.ac.ir (D.S.)

2 Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA
3 Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634, USA; sarasua@clemson.edu
4 Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, 490 Rue de la Couronne,

Quebec City, QC G1K 9A9, Canada; saeid.homayouni@inrs.ca
* Correspondence: m_zaboli@ut.ac.ir

Abstract: The 3D semantic segmentation of a LiDAR point cloud is essential for various complex
infrastructure analyses such as roadway monitoring, digital twin, or even smart city development.
Different geometric and radiometric descriptors or diverse combinations of point descriptors can
extract objects from LiDAR data through classification. However, the irregular structure of the point
cloud is a typical descriptor learning problem—how to consider each point and its surroundings in
an appropriate structure for descriptor extraction? In recent years, convolutional neural networks
(CNNs) have received much attention for automatic segmentation and classification. Previous
studies demonstrated deep learning models’ high potential and robust performance for classifying
complicated point clouds and permutation invariance. Nevertheless, such algorithms still extract
descriptors from independent points without investigating the deep descriptor relationship between
the center point and its neighbors. This paper proposes a robust and efficient CNN-based framework
named D-Net for automatically classifying a mobile laser scanning (MLS) point cloud in urban areas.
Initially, the point cloud is converted into a regular voxelized structure during a preprocessing step.
This helps to overcome the challenge of irregularity and inhomogeneity. A density value is assigned
to each voxel that describes the point distribution within the voxel’s location. Then, by training the
designed CNN classifier, each point will receive the label of its corresponding voxel. The performance
of the proposed D-Net method was tested using a point cloud dataset in an urban area. Our results
demonstrated a relatively high level of performance with an overall accuracy (OA) of about 98% and
precision, recall, and F1 scores of over 92%.

Keywords: point cloud classification; deep learning; voxelization; automated object detection; mobile
laser scanning

1. Introduction

Mobile Laser Scanning (MLS) systems provide high-density three-dimensional spatial
data from nearby surroundings. They can provide reliable and accurate depth information
for object localization and structure characterization. MLS has been widely used for
collecting roadside assets; however, the manual processing of such huge point cloud data
can be time-consuming and tedious. Recently, several techniques have been proposed for
automatic and individual object extraction from MLS point clouds, including power lines,
traffic signs, building facades, trees, and pavement markings [1–3]. These applications are
highly specialized and utilized in urban management, making it cumbersome to classify
different objects simultaneously because a different classifier would be required to run for

Remote Sens. 2023, 15, 2317. https://doi.org/10.3390/rs15092317 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15092317
https://doi.org/10.3390/rs15092317
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-2767-3462
https://orcid.org/0000-0002-8212-2639
https://orcid.org/0000-0002-0214-5356
https://doi.org/10.3390/rs15092317
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15092317?type=check_update&version=3

Remote Sens. 2023, 15, 2317 2 of 22

each object. Thus, there is a need for a comprehensive object classifier for MLS point cloud
semantic segmentation.

Object diversity and LiDAR point distribution variations make classifying multiple
objects challenging [2,4]. In particular, MLS point clouds have significant properties which
must be considered, such as uneven point density, vacant holes caused by occlusions, and
complex structures (e.g., points of poles mixed with points of trees). Additionally, diverse
object sizes (e.g., small objects 1 m long, large ones with a length of up to hundreds of
meters) in urban environments are another noticeable characteristic of the point clouds.
Figure 1 illustrates the point clouds of different types of objects and incomplete or variable
point distributions.

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 22

cumbersome to classify different objects simultaneously because a different classifier
would be required to run for each object. Thus, there is a need for a comprehensive object
classifier for MLS point cloud semantic segmentation.

Object diversity and LiDAR point distribution variations make classifying multiple
objects challenging [2,4]. In particular, MLS point clouds have significant properties which
must be considered, such as uneven point density, vacant holes caused by occlusions, and
complex structures (e.g., points of poles mixed with points of trees). Additionally, diverse
object sizes (e.g., small objects 1 m long, large ones with a length of up to hundreds of
meters) in urban environments are another noticeable characteristic of the point clouds.
Figure 1 illustrates the point clouds of different types of objects and incomplete or variable
point distributions.

Figure 1. The MLS challenges: (a,b) imperfect objects, (c) mixed structures (poles and trees), and (d)
variable point densities.

Generally, MLS data classification algorithms are grouped into two categories. First
there are the descriptor-based classification methods that consist of two steps: hand-
crafted descriptors extraction from LiDAR data, and the classification of descriptors using
conventional machine learning (ML) algorithms. The second category contains deep
learning (DL)-based methods that generate many descriptors unsupervised and then au-
tomatically perform a neural network classification.

This paper focuses on MLS data classification through a fully automated deep neural
network architecture. The following background literature review of both descriptor-
based and deep learning classification methods provides context for the methodology,
implementation, and experimental results discussed later in the paper.

Figure 1. The MLS challenges: (a,b) imperfect objects, (c) mixed structures (poles and trees), and
(d) variable point densities.

Generally, MLS data classification algorithms are grouped into two categories. First
there are the descriptor-based classification methods that consist of two steps: hand-
crafted descriptors extraction from LiDAR data, and the classification of descriptors using
conventional machine learning (ML) algorithms. The second category contains deep
learning (DL)-based methods that generate many descriptors unsupervised and then
automatically perform a neural network classification.

This paper focuses on MLS data classification through a fully automated deep neural
network architecture. The following background literature review of both descriptor-
based and deep learning classification methods provides context for the methodology,
implementation, and experimental results discussed later in the paper.

Remote Sens. 2023, 15, 2317 3 of 22

2. Point Cloud Classification
2.1. Descriptor-Based Methods

Descriptor-based methods include two separate steps: descriptor extraction and se-
mantic classification [2,5]. In the descriptor extraction step, several geometric or radiometric
descriptors, e.g., eigenvalues, height, intensity, curvature, linearity, and planarity, are gen-
erated from the local neighborhood of each point [5,6]. These descriptors are commonly
used in ML-based classifiers such as Support Vector Machine (SVM), Random Forest (RF),
K Nearest Neighbor (K-NN), Multi-Layer Perceptron (MLP), and Gaussian Naive Bayes
(GNB). These methods predict the class of each object from user-extracted descriptors,
where ignoring label consistency is a drawback [3,4,7]. Thus, both noisy points and label
inconsistency may reduce the output accuracy of the classification process. Many research
studies have incorporated contextual information into the classification process to deal
with this issue. Conditional Random Fields, Non-Associative Markov Networks, and Asso-
ciative Markov Networks are three examples of contextual models for improving machine
learning classifiers [4,5]. Since these ML-based algorithms use hand-crafted descriptors
to classify point clouds, their applications for large-scale areas are a primary limitation of
these methods. Additionally, overfitting will result in the poor implementation of multi-
class classification due to insignificant model generalization to novel data. Consequently,
models are inaccurate when trying to predict outputs when noise or random fluctuations
are learned and picked up in the training data as concepts.

Various descriptor-based methods have been developed for object classification.
Lehtomäki et al. [2] divided non-ground points into segments using three sets of descriptors
and created local descriptor histograms (LDHs), point distributions, general shape, and
spin images. Sun et al. [8] presented an automated method for generating multi-scale
super voxels using point attributes such as intensity. Günen et al. [9] used detrended
geometric descriptors extracted from super voxel-based local contexts to classify point
clouds. Additionally, Zolanvari [10] introduced a new geometric descriptor set composed of
14 descriptors and an adaptive neighborhood size selection method to improve classification
accuracy.

In summary, descriptor-based classification methods can be sensitive to point cloud
noise, and the manual definition of optimal descriptors is time-consuming and labor-
intensive. Further, generalization in large-scale areas may result in the lower accuracy of
classification output.

2.2. Deep Learning Based Methods

Unlike a descriptor-based method, DL-based methods automatically extract high-level
descriptors without needing descriptor engineering. These high-level descriptors are then
used for 3D point cloud classification. DL algorithms have been used extensively in various
remote sensing applications for image and point cloud data classification [1,4,11].

Several approaches have been identified in the literature that use DL processing of the
raw point cloud without converting into a regular representation such as grid images or
voxels. For example, Reference [12] designed a 3D CNN system for point cloud labeling that
does not need prior knowledge. Reference [4] designed a PointNet that consumes the point
cloud directly for various applications, including object classification and segmentation,
while respecting the input data’s permutation invariance. The PointNet++ structure was
introduced for learning multi-scale features, which is the main drawback of PointNet [13].
Wen et al. [14] proposed a direct point cloud processing architecture named OG-PointNet++,
which is based on PointNet and PointNet++ but improves the efficiency when dealing with
point cloud density that varies with location. This structure divides the point cloud before
inputting it into the network to reduce computation. Ref. [15] imported 3D coordinate
data directly from the XYZ coordinate space and the intensity as input data of a CNN
network named directionally constrained fully CNN (D-FCN). Their method introduced a
direct point cloud convolution module for extracting local descriptors from the projected
2D fields.

Remote Sens. 2023, 15, 2317 4 of 22

Wang et al. [16] defined a novel CNN via multi-scale occupancy to enable multi-scale
point descriptor learning. They proposed a training method for balancing several points
per class during each epoch. These achievements were realized by locally concentrating
on shapes and considering them in a multi-scale mode. Wang et al. [17] incorporated the
local and global constraints by designing a multi-scale convolutional network (MSNet) that
directly considers the position of the points.

To prevent the rasterization step, Li et al. [18] constructed a deep neural network with
spatial pooling (DNNSP), which extracted descriptors. Then, minimum distance spanning
tree-based pooling extracted spatial information. Point-based features were determined
by the Multi-Layer Perceptron (MLP) to ensure that the DNNSP was independent of
the sizes of the point clusters. Li et al. [19] developed a geometric graph convolution
network for exploring high-level geometric correlations. Their study proposed a fully
automated end-to-end graph neural network that they named the Taylor Gaussian Mixture
Model Network (TGNet). Employing a multi-scale hierarchical architecture based on a
Taylor Gaussian Convolution (TGConv) operation at several scales has improved the scale
invariance challenge. A geometry-attentional network was applied to an aerial LiDAR
scanning (ALS) point cloud for multi-scale classification by Boulch et al. [20]. They used
a dense end-to-end hierarchy and an elevation-oriented unit to improve classification
performance. Song [21] proposed continuous kernels and presented a generalization of
CNN for point cloud processing. Their presented formulation is simple and suitable for
designing neural networks and enabling various applications such as classification and
large-scale segmentation.

Geng et al. [22] designed a CNN-based method by transforming 3D point data into
Hough space. Then, the accumulator count of grids of the rasterized Hough space was
computed and used as an input for a CNN model for object classification. Hoang et al. [23]
proposed a Multi-Scale Attentive Aggregation Network (MSAAN) to acquire the consis-
tency of the descriptors. Aijazi et al. [24] developed a novel framework, GSV-NET, for
extracting and combining both global and regional descriptors using a 3D wide-inception
CNN structure.

Overall, a directly consuming LiDAR point cloud is a primary advantage of point-
based classification methods despite using intensity values as input data in some cases.
These methods have a drawback regarding multiscale descriptor representation for more
and better descriptor learning.

2.3. Summary of the Previous Works

Table 1 summarizes the reviewed methods based on their study area type, data,
method, and results. Some research studies generate 2D descriptor images from 3D
point clouds, resulting in lost spatial information. This requires prior knowledge with
a weak capability for more complex and varied structural segmentation. Others vox-
elized point clouds into regular grids for importing 3D data into a CNN for extract-
ing descriptors and carrying out classification. Some methods directly apply to the
3D point cloud for classification, but do not consider multiscale descriptors. They may
need to integrate manually defined descriptors to improve classification performance in
complicated tasks.

Remote Sens. 2023, 15, 2317 5 of 22

Table 1. Summary of related studies on point clouds classification.

Authors Area Type Size
(M pts.)

Point Cloud
Type Algorithm Details Semantic Classes Overall

Accuracy (%)

D
es

cr
ip

to
r-

Ba
se

d
M

et
ho

ds

Weinmann et al. [25] Urban Area 0.027~0.11 ALS and TLS Points, feature-based Building, Road, Tree,
Pole, Car

90.1~95.5
92.8~94.5

Lehtomäki et al. [2] Road
environment 9 MLS Points, feature-based

Tree, Car, Pedestrian,
Lamp post, Hoarding,

Traffic pole, Undefined
87.9

Yang et al. [26] Urban Area 0.2 MLS Supervoxels,
feature-based

Tree, Street lamp,
Building, Utility poles,
Enclosure, Car, Traffic

sign, Other

91.1, 92.3

Han et al. [6] Road
infrastructure - MLS Points, feature-based Pole, Street Lamp, Sign

Board, Direction Sign, 94.3, 93.3

Sun et al. [8] Urban Area ~50 MLS Points, feature-based

Buildings, Terrain,
Scanning artifacts,

Massive vegetation,
Hardscape, Natural

terrain, Cars

92

D
ee

p-
le

ar
ni

ng
M

et
ho

ds

Qi and Yi [12] Urban Area - ALS + MLS Voxels, deep learning
(CNN)

Plane, Tree, Building, Car,
Pole, Wire, Others 93

Boulch et al. [27] Urban Area ~0.75 ALS Points, deep learning
(CNN)

Car, Powerline, Façade,
Fence/Hedge, Low
vegetation, Shrub,

Impervious Surfaces, Tree,
Roof

82.3

Shukor et al. [28] Urban Area - ALS and TLS Points, deep learning
(CNN) (Snapnet)

Natural terrain, High
vegetation, Scanning
artifacts, Buildings,

Hardscape, Cars,
Man-made terrain, Low

vegetation,

88.6

Li et al. [18] Urban Area 7.5~8.1 ALS and TLS Points, deep learning
(DNNSP)

Building, Low vegetation,
Hardscape, Scanning

artifacts, High vegetation,
Cars, Natural Terrain,

98.2
97.4

Wang et al. [16] Urban Area 79.5
ALS and oblique

aerial
photogrammetry

Points, deep learning,
and machine learning

Natural terrain, Scanning
artifacts, Low vegetation,

Buildings, Hardscape,
Man-made terrain, High

vegetation, Cars

84.8

Li et al. [19] Urban Area 140 ALS and TLS Points, deep learning
(TGNet)

Ground, Pedestrian, Car,
Pole, Bollard, Barrier,

Building, Natural, Trash
can,

96.97

Wang et al. [1] Urban Area 1.36 MLS Points, deep learning
(CNN)

Vegetation, Wire, Pole,
Ground, Facade 94.75

Song [21] Urban Area 16 TLS Points, deep learning
(continuous CNN)

High veg, Low veg,
Natural, Man-made,

Buildings, Cars,
Hardscape, Artefacts

93.4

Geng et al. [22] Urban Area - LiDAR Sensors Rasters, deep learning
(CNN)

Wall, Bush, Pedestrian,
Tree 93.3

Reference [15] Urban Area 0.41 ALS Points, deep learning
(CNN)

Power, Car, Shrub, Roof,
Façade, Imp_surf,

Fence_hedge, Low_veg,
Tree

82.2

Yang et al. [7] Urban Area 80 MLS Points, deep learning
Natural, Building, Pole,

Road, Road Markings, Car,
Fence, Utility line,

93.6

Aijazi et al. [24] Computer and
Real-World Data - LiDAR Sensors Points, deep learning

Airplane, Chair, Bottle,
Bed, Bench, Bowl, Car,

Bookshelf, Bathtub, Cone
92.7

The considered methods have been evaluated regarding data type, proposed algo-
rithm, selected semantic classes, and acquisition of accuracies. The input data for all
cases were acquired with LiDAR sensors, but in Boulch et al. [4,6,18,20,21,28] several
datasets were used, including both indoor and outdoor data. Some methods, such as those
by [11,21,25,27], used a preprocessing step that involves voxelization or creating feature

Remote Sens. 2023, 15, 2317 6 of 22

images. Except [22], all methods have many considered classes for classification. Addition-
ally, in this comparison, all cases involved a similar type and number of outdoor objects
except [4], which included indoor datasets.

The related works have obtained acceptable outputs on different point cloud datasets.
However, we propose a density-based CNN-based framework (D-Net) that can predict
point labels for arbitrary point cloud sizes to address some of the issues with previous
methods. Compared with the proposed deep learning approaches for point cloud classifi-
cation, D-Net will take only raw 3D coordinates as the input and does not need additional,
manually defined descriptors. Accordingly, the main positive contributions of our work
are as follows:

A density-based voxelization procedure was implemented to handle the negative
effects of the sparse distribution and small size of objects. This strategy can even be
beneficial in the classification of high-density objects.

An efficient density-based CNN architecture is proposed to extract robust descriptors
through point density and classify all points despite the imbalance between majority and
minority classes.

3. Proposed D-Net Method

Figure 2 provides an overview of the proposed algorithm. In the first step, pre-
processing, 3D voxels were generated by considering a specified voxel size after removing
outliers from the point cloud. Then, deep nonlinear descriptors were extracted from the input
voxel network and imported into fully connected (FC) Layers to label points in each voxel.

Remote Sens. 2023, 15, 2317 7 of 22

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 22

3. Proposed D-Net Method
Figure 2 provides an overview of the proposed algorithm. In the first step, pre-pro-

cessing, 3D voxels were generated by considering a specified voxel size after removing
outliers from the point cloud. Then, deep nonlinear descriptors were extracted from the
input voxel network and imported into fully connected (FC) Layers to label points in each
voxel.

Figure 2. The workflow of the proposed MLS point cloud classification method.

3.1. Pre-Processing
Raw 3D LiDAR point clouds are usually contaminated with noise and outliers due

to several factors, such as moving objects, changes in lighting, and sensor characteristics.
In this research, we used the proposed method by Shukor and Rushforth [29] for outlier
removal. Their framework generates a 3D histogram of point cloud data to count the num-
ber of acquired points in multiple projections. The noise data have lower frequencies in

Figure 2. The workflow of the proposed MLS point cloud classification method.

3.1. Pre-Processing

Raw 3D LiDAR point clouds are usually contaminated with noise and outliers due
to several factors, such as moving objects, changes in lighting, and sensor characteristics.
In this research, we used the proposed method by Shukor and Rushforth [29] for outlier
removal. Their framework generates a 3D histogram of point cloud data to count the
number of acquired points in multiple projections. The noise data have lower frequencies
in this histogram, with a sparser density than other recorded points, and these points can
be removed.

The filtered point cloud was then voxelized at specified intervals in 3D space to convert
an irregular point cloud to a regular structure. Different values can be considered for the
voxel dimensions to select the best value for implementation, considering object sizes
and point cloud density. For instance, using a 10 × 10 × 10 cm3 as the neighborhood
region increases the focus on details and retains sampling resolution. The point density
of MLS data can change by varying the distance between the laser scanner and scanned

Remote Sens. 2023, 15, 2317 8 of 22

objects. Due to occlusion, some objects may not be completely observed. In addition, some
voxels may be empty, and some may have a high point density depending on the selected
voxel sizes. Figure 3 illustrates the density-based voxelization process for several irregular
sample points. In the next step, the extracted density-based voxels are classified using the
designed D-Net classifier.

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 22

this histogram, with a sparser density than other recorded points, and these points can be
removed.

The filtered point cloud was then voxelized at specified intervals in 3D space to con-
vert an irregular point cloud to a regular structure. Different values can be considered for
the voxel dimensions to select the best value for implementation, considering object sizes
and point cloud density. For instance, using a 10 × 10 × 10 cm3 as the neighborhood region
increases the focus on details and retains sampling resolution. The point density of MLS
data can change by varying the distance between the laser scanner and scanned objects.
Due to occlusion, some objects may not be completely observed. In addition, some voxels
may be empty, and some may have a high point density depending on the selected voxel
sizes. Figure 3 illustrates the density-based voxelization process for several irregular sam-
ple points. In the next step, the extracted density-based voxels are classified using the de-
signed D-Net classifier.

(a)

(b)

Figure 3. Visualization of (a) density-based point cloud voxelization and (b) outlier points.

3.2. Network Architecture
Deep learning CNNs consist of multiple adaptive filters which provide the capability

of feature learning without needing prior knowledge [30]. Typically, each CNN layer in-
cludes three steps. First, a set of linear activations is produced by performing several par-
allel convolutions. In the second step, a nonlinear activation function such as the sigmoid

Figure 3. Visualization of (a) density-based point cloud voxelization and (b) outlier points.

3.2. Network Architecture

Deep learning CNNs consist of multiple adaptive filters which provide the capability
of feature learning without needing prior knowledge [30]. Typically, each CNN layer
includes three steps. First, a set of linear activations is produced by performing several
parallel convolutions. In the second step, a nonlinear activation function such as the
sigmoid function is employed for running each linear activation. In the third step, further
output modification is carried out using a pooling function [31,32].

The proposed CNN-based classifier consists of three main sections: input data, the
deep descriptor extractor, and the output discriminator (classifier) layer. In this study, the
input cube data are considered as 3D patches with r × c × d dimensions, where r, c, and d
correspond to the patch’s rows, columns, and depth (height) in the density-based voxel
format of the point cloud. In other words, around each candidate voxel, a cube patch with a
size of r × c × d voxels is considered the input patch of the designed CNN. In this research,
a cube patch with a size of 15 × 15× 11 cm3 was determined to be the optimum patch

Remote Sens. 2023, 15, 2317 9 of 22

size through a trial-and-error process. The corresponding patch of each voxel was passed
through the convolutional layers to measure deep features.

The next section of the D-Net framework is the deep descriptor extraction section,
where combining multiple convolutional layers can extract deep and nonlinear descriptors
at different levels. Convolutional layers transform the input data using a dot product
between the weights and the neurons. Filters, parameter sharing, activation, and hyper-
parameters are the major components of the convolutional layers. As shown in Figure 4,
each input patch was imported into the network. After three convolutional layers with
different filters (7 × 7, 5 × 5, and 3 × 3 kernels), deep descriptors were eventually achieved.
The designed network was adopted from the Visual Geometry Group (VGG) [33] as a
simpler version with a modified architecture for MLS point cloud classification and fewer
parameters to avoid overfitting when using a few training samples.

The obtained deep descriptors were imported into the classification section (FC layers)
to produce class predictions or scores. The classification section usually includes one
or more FC layers, which compute class scores as the output of the network with the
dimension of (1 × 1 × N), where N is the number of classes. In our proposed framework,
there are two FC layers with 100 neurons in each layer and an eight-neuron Softmax layer
to predict the class of each point (a total of eight semantic classes).

Table 2 summarizes the hyperparameters used for the proposed D-Net classifier. The
mini-batch Adam optimizer used a learning rate of 0.00005 and a batch size of 32 [34].
Categorical cross-entropy was the loss function used to measure the error rate in each epoch.
A 10% dropout at each layer and batch normalization were also considered to increase
the generalization and stability. It is worth mentioning that dropout by regularization
increased the learning independency between neurons.

Table 2. The considered parameters for implementing the proposed algorithm.

Optimizer Adam

Learning rate 0.00005

Epochs <500

Mini-batch size 32

Loss function Categorical Cross-Entropy

Conv. Filters 448 (64 + 128 + 256)

Dropout 10%

FC Neurons 200 (100 + 100)

Activation Function ReLU

Kernel size 7 × 7, 5 × 5, 3 × 3

Batch Normalization True

Remote Sens. 2023, 15, 2317 10 of 22

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 22

function is employed for running each linear activation. In the third step, further output
modification is carried out using a pooling function [31,32].

The proposed CNN-based classifier consists of three main sections: input data, the
deep descriptor extractor, and the output discriminator (classifier) layer. In this study, the
input cube data are considered as 3D patches with r × c × d dimensions, where r, c, and d
correspond to the patch’s rows, columns, and depth (height) in the density-based voxel
format of the point cloud. In other words, around each candidate voxel, a cube patch with
a size of r × c × d voxels is considered the input patch of the designed CNN. In this research,
a cube patch with a size of 15 × 15 × 11 cm3 was determined to be the optimum patch size
through a trial-and-error process. The corresponding patch of each voxel was passed
through the convolutional layers to measure deep features.

The next section of the D-Net framework is the deep descriptor extraction section,
where combining multiple convolutional layers can extract deep and nonlinear de-
scriptors at different levels. Convolutional layers transform the input data using a dot
product between the weights and the neurons. Filters, parameter sharing, activation, and
hyperparameters are the major components of the convolutional layers. As shown in Fig-
ure 4, each input patch was imported into the network. After three convolutional layers
with different filters (7 × 7, 5 × 5, and 3 × 3 kernels), deep descriptors were eventually
achieved. The designed network was adopted from the Visual Geometry Group (VGG)
[33] as a simpler version with a modified architecture for MLS point cloud classification
and fewer parameters to avoid overfitting when using a few training samples.

Figure 4. Structure of CNN-based classifier used for the MLS point cloud classification.

4. Experiments and Results
4.1. MLS Dataset

An MLS dataset of a 600 m section of US Highway Route 76 (Clemson Blvd) in
Anderson, South Carolina, USA, was used to evaluate the proposed D-Net. This four-
lane urban arterial begins at Forest Hill Drive and ends at the intersection with East West
Parkway. The setting contains various objects, such as powerlines, poles, buildings, and
vegetation. Although each dataset point included various properties such as intensity,
position, and GPS time, only the 3D coordinates were utilized as inputs in the examination.
Additionally, to evaluate the generalization of the designed D-Net classifier framework,
the data were initially divided into three subsections, and the training sample data were
only selected from the first subsection. Figure 5 shows an overview of the dataset used in
this research.

4.2. Training Data Collection

Collecting sample data for training classifiers is inevitable in every supervised classi-
fication algorithm. This study manually classified all the points in the first subsection to
create a training and test dataset. The classified point cloud was then voxelized based on
density to create a voxelized point cloud. The label of each voxel of the training data was
selected based on the most common semantic class available in the voxel. Around each
voxel, a cube patch was considered as sample data for the corresponding class label of that

Remote Sens. 2023, 15, 2317 11 of 22

voxel. This paper considered eight classes (buildings, cars, powerlines, vegetation, asphalt
road, poles, billboards, and sidewalk). For each class, 70%, 5%, and 25% of the voxels were
chosen randomly and considered as the training, validation, and test data, respectively.
Additionally, all points of Sections 2 and 3 were used to estimate the generalization of
the algorithm. Table 3 summarizes the number of sample points for each class in the
first section.

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 22

Figure 5. The chosen test section (70% of Section 1 for complete training and other points for vali-
dation and test). (a) MLS data; (b) sample route of the test area (Google Maps, 2023).

4.2. Training Data Collection
Collecting sample data for training classifiers is inevitable in every supervised clas-

sification algorithm. This study manually classified all the points in the first subsection to
create a training and test dataset. The classified point cloud was then voxelized based on
density to create a voxelized point cloud. The label of each voxel of the training data was
selected based on the most common semantic class available in the voxel. Around each
voxel, a cube patch was considered as sample data for the corresponding class label of
that voxel. This paper considered eight classes (buildings, cars, powerlines, vegetation,
asphalt road, poles, billboards, and sidewalk). For each class, 70%, 5%, and 25% of the
voxels were chosen randomly and considered as the training, validation, and test data,
respectively. Additionally, all points of Sections 2 and 3 were used to estimate the gener-
alization of the algorithm. Table 3 summarizes the number of sample points for each class
in the first section.

Table 3. Quantity of considered sample points in the first section.

C
la

ss

Po
in

ts

C
ar

s

Ve
ge

ta
ti

on

Po
le

s

Po
w

er
lin

es

A
sp

ha
lt

 ro
ad

Si
de

w
al

k

Bu
ild

in
gs

Bi
llb

oa
rd

s

To
ta

l

Training 24,722 46,337 24,153 21,200 1,614,692 546,699 125,033 49,952 2,452,788
Validation 1766 3310 1725 1514 115,335 39,050 8931 3,568 175,200

Test 79,463 148,941 77,634 68,141 5,190,082 1,757,248 401,893 160,560 7,873,961

Figure 5. The chosen test section (70% of Section 1 for complete training and other points for
validation and test). (a) MLS data; (b) sample route of the test area (Google Maps, 2023).

Table 3. Quantity of considered sample points in the first section.

C
la

ss
P

oi
nt

s

C
ar

s

Ve
ge

ta
ti

on

P
ol

es

P
ow

er
li

ne
s

A
sp

ha
lt

ro
ad

Si
de

w
al

k

B
ui

ld
in

gs

B
il

lb
oa

rd
s

To
ta

l

Training 24,722 46,337 24,153 21,200 1,614,692 546,699 125,033 49,952 2,452,788
Validation 1766 3310 1725 1514 115,335 39,050 8931 3568 175,200

Test 79,463 148,941 77,634 68,141 5,190,082 1,757,248 401,893 160,560 7,873,961
All 105,951 198,588 103,512 90,855 6,920,109 2,342,997 535,857 214,080 10,501,949

4.3. Parameter Tuning

Choosing the optimum neighborhood size is essential for accurately identifying the
class of points using the D-Net method. This is carried out in two steps: (1) using different
patch sizes to find the most optimal classification results; and (2) the optimal selection of

Remote Sens. 2023, 15, 2317 12 of 22

voxel dimensions to regulate the used point cloud. It is worth mentioning that exploiting
the optimal optimizer in the CNN will dramatically increase the calculation speed and
accuracy. Selecting the optimal structure for the network is one of the vital essential stages
in the deep-learning-based classification method. The following section discusses the voxel
network size, the 3D sliding patch size, the optimizer used, and their influence on the
resulting classified data.

4.3.1. Voxel Size

In this research, five different input voxel sizes with 1000 training samples were tested
within the D-Net, and the outputs are demonstrated in Table 4. The processing time per
epoch was the same for all voxel sizes. The voxel size equal to 10 cm achieved the best
accuracy and seemed to be the most optimal value.

Table 4. Comparison of different input voxel sizes.

Voxel Size (cm) Processing Time Per Epoch (s) Test Accuracy (%)

5 3 88.35
8 3 90.23
10 3 93.82
15 3 92.49
20 3 92.40

4.3.2. Input Patch Size

Three input patch sizes of 13 × 13 × 11, 15 × 15 × 11, and 17 × 17 × 11 were tested
with 70% of the dataset and three convolution layers, and two FC layers. The reason for
choosing various patch size values was to investigate the effect of considering the various
neighbor samples in correctly identifying the labels. Choosing a constant value of 11 in
the z-direction was due to the computational efficiency in the classification. The provided
results in Figure 6 indicate a direct relationship between the accuracy and patch dimensions.
Therefore, by modifying the patch size, the classification accuracy improves, which may
be because the network’s receptive field is increased; however, considering a larger patch
size may result in more noise and disturbance and a higher computational time of the
classifier. Table 5 compares the procedure time and efficiency of the designed classifier for
several input patch sizes. In Table 5, the OA of the test data increased from 97.96% for a
patch size of 13 × 13 × 11 to 98.49% for 17 × 17 × 11. A patch size of 15 × 15 × 11 was
also considered. Increasing the input patch size increased the processing time, and the
evaluation parameters’ values changed from 15 to 17. Figure 6 also indicates that precision
values improved from 97.50% to 98% by changing input patch sizes.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 22

Figure 6. Accuracy assessment of the D-Net method for MLS point cloud classification in the urban
area.

Table 5. Comparison of different patch sizes.

Patch Size Processing Time Per Epoch (min) Test Accuracy (%)
13 × 13 × 11 1.33 97.96
15 × 15 × 11 1.5 98.31
17 × 17 × 11 1.66 98.49

The evaluation parameters of all classes for the three selected patch sizes are shown
in Table 6. A comparison of recall and F1-score in the considered patch sizes shows that
the highest recall value occurs with a patch size of 15 × 15 × 11, and F1-score values are
equal in sizes 15 × 15 × 11 and 17 × 17 × 11. Thus, selecting the 15 × 15 × 11 patch size is
optimal for performing calculations.

Table 6. Evaluating the outputs of the presented algorithm with different patch sizes (section one
from the MLS dataset).

Pa
tc

h
si

ze
s

M
ea

su
re

s

Classes (%)

C
ar

s

V
eg

et
at

io
n

Po
le

s

Po
w

er
lin

es

A
sp

ha
lt

ro
ad

Si
de

w
al

k

Bu
ild

in
gs

Bi
llb

oa
rd

s

13
 ×

 1
3

×
11

 Precision 98.3 99.1 99.6 97.4 100.0 90.4 98.3 99.7
Recall 90.8 99.3 97.3 99.6 98.4 98.9 99.4 99.4

F1-score 94.4 99.2 98.4 98.5 99.2 94.5 98.8 99.6

15
 ×

 1
5

×
11

Precision 98.6 98.4 100.0 95.8 100.0 92.3 99.6 100.0
Recall 95.3 100.0 95.7 100.0 98.2 99.7 99.6 99.3

F1-score 96.9 99.2 97.8 97.9 99.1 95.9 99.6 99.7

17
 ×

 1
7

×
11

Precision 99.4 98.4 100.0 95.7 99.3 95.3 99.4 99.4
Recall 94.8 98.9 95.4 100.0 99.7 96.4 100.0 99.5

F1-score 97.0 99.5 97.7 97.9 99.5 95.8 99.7 99.5

0.95

0.955

0.96

0.965

0.97
0.975

0.98

0.985

(13×13×11) (15×15×11) (17×17×11)
precision recall f1 overall

Figure 6. Accuracy assessment of the D-Net method for MLS point cloud classification in the
urban area.

Remote Sens. 2023, 15, 2317 13 of 22

Table 5. Comparison of different patch sizes.

Patch Size Processing Time Per Epoch (min) Test Accuracy (%)

13 × 13 × 11 1.33 97.96
15 × 15 × 11 1.5 98.31
17 × 17 × 11 1.66 98.49

The evaluation parameters of all classes for the three selected patch sizes are shown
in Table 6. A comparison of recall and F1-score in the considered patch sizes shows that
the highest recall value occurs with a patch size of 15 × 15 × 11, and F1-score values are
equal in sizes 15 × 15 × 11 and 17 × 17 × 11. Thus, selecting the 15 × 15 × 11 patch size is
optimal for performing calculations.

Table 6. Evaluating the outputs of the presented algorithm with different patch sizes (section one
from the MLS dataset).

Pa
tc

h
Si

ze
s

M
ea

su
re

s

Classes (%)

C
ar

s

V
eg

et
at

io
n

Po
le

s

Po
w

er
li

ne
s

A
sp

ha
lt

R
oa

d

Si
de

w
al

k

B
ui

ld
in

gs

B
il

lb
oa

rd
s

13
×

13
×

11 Precision 98.3 99.1 99.6 97.4 100.0 90.4 98.3 99.7

Recall 90.8 99.3 97.3 99.6 98.4 98.9 99.4 99.4

F1-score 94.4 99.2 98.4 98.5 99.2 94.5 98.8 99.6

15
×

15
×

11 Precision 98.6 98.4 100.0 95.8 100.0 92.3 99.6 100.0

Recall 95.3 100.0 95.7 100.0 98.2 99.7 99.6 99.3

F1-score 96.9 99.2 97.8 97.9 99.1 95.9 99.6 99.7

17
×

17
×

11 Precision 99.4 98.4 100.0 95.7 99.3 95.3 99.4 99.4

Recall 94.8 98.9 95.4 100.0 99.7 96.4 100.0 99.5

F1-score 97.0 99.5 97.7 97.9 99.5 95.8 99.7 99.5

4.3.3. Optimizing Methods

The optimizer computes and applies loss gradients to variables [35]. In this study, five
different optimizers were evaluated for the proposed D-Net method, and the convergence
diagram of the network in each case is shown in Figure 7.

The Adam optimizer was computationally effective and requires little memory [34].
This optimizer approached its optimal value in a shorter time but was accompanied by
small fluctuations during convergence, achieving an accuracy of 93.38%. The stochastic
gradient descent (SGD) optimizer [36] took more epochs than Adam to converge to its
optimal value. It has been associated with small fluctuations during convergence with an
accuracy of 93.81%. Although the root means square proportion (RMSprop) optimizer [35]
was associated with more fluctuations than the Adam and SGD optimizers, it had an
acceptable speed to reach its optimal value with an accuracy of 91.00%. Adadelta is a
stochastic gradient descent method based on a per-dimension adaptive learning rate [35].
It converged with the least number of epochs compared to other optimizers but had severe
fluctuations, and its resulting accuracy was 91.75%. Adamax, a variant of Adam [34], was
associated with the least amount of fluctuation in convergence and an accuracy of 93.94%,
but approached its desired value at a slower pace speed than Adam and RMSprop. It
is noteworthy that all optimizers had the same processing time in each epoch, but with

Remote Sens. 2023, 15, 2317 14 of 22

different fluctuations. To conclude, Adam, SGD, and Adamax obtained similar results
while the Adamax optimizer had the highest accuracy. Adam had the fastest convergence
to its optimal value. Thus, in the present study, because of the numerous training samples,
Adam optimizer was preferable due to its suitable accuracy with high convergence speed.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 22

4.3.3. Optimizing Methods
The optimizer computes and applies loss gradients to variables [35]. In this study,

five different optimizers were evaluated for the proposed D-Net method, and the conver-
gence diagram of the network in each case is shown in Figure 7.

Figure 7. Comparisons of different settings (s = 1000, p = 15 × 15 × 11): (a) Adam, (b) SGD, (c)
RMSprop, (d) Adadelta, (e) Adamax.

The Adam optimizer was computationally effective and requires little memory [34].
This optimizer approached its optimal value in a shorter time but was accompanied by
small fluctuations during convergence, achieving an accuracy of 93.38%. The stochastic
gradient descent (SGD) optimizer [36] took more epochs than Adam to converge to its
optimal value. It has been associated with small fluctuations during convergence with an
accuracy of 93.81%. Although the root means square proportion (RMSprop) optimizer [35]
was associated with more fluctuations than the Adam and SGD optimizers, it had an ac-
ceptable speed to reach its optimal value with an accuracy of 91.00%. Adadelta is a sto-
chastic gradient descent method based on a per-dimension adaptive learning rate [35]. It
converged with the least number of epochs compared to other optimizers but had severe
fluctuations, and its resulting accuracy was 91.75%. Adamax, a variant of Adam [34], was
associated with the least amount of fluctuation in convergence and an accuracy of 93.94%,
but approached its desired value at a slower pace speed than Adam and RMSprop. It is
noteworthy that all optimizers had the same processing time in each epoch, but with dif-
ferent fluctuations. To conclude, Adam, SGD, and Adamax obtained similar results while
the Adamax optimizer had the highest accuracy. Adam had the fastest convergence to its
optimal value. Thus, in the present study, because of the numerous training samples,
Adam optimizer was preferable due to its suitable accuracy with high convergence speed.

Figure 7. Comparisons of different settings (s = 1000, p = 15 × 15 × 11): (a) Adam, (b) SGD,
(c) RMSprop, (d) Adadelta, (e) Adamax.

4.4. Classification Results

Figure 8 shows the ground truth and the classification output with the D-Net method
by considering 70% of Section 1 as the training data. Figure 8 shows that vegetation, build-
ings, cars, asphalt road, sidewalks, billboards, powerlines, and poles were all segmented
well, despite their various dimensions. The objects’ spatial context in Figure 8 was well
characterized due to the optimum voxelization and the proposed method’s deep descriptor
extraction capability. As shown in Figure 9, objects such as vegetation, cars, and sidewalks
with rough shapes were also correctly classified, and objects such as poles, powerlines, and
billboards were labeled with high precision. Almost all the points were consistent with the
ground truth. However, the unclassified points were excluded due to the lack of separation
in the training step.

4.5. Accuracy Assessment

To evaluate the results, the dataset was labeled manually and several accuracy as-
sessment measures were evaluated, including precision (Pr), recall (R.), and F1-score (F1).
These parameters were measured with true positive (TP), true negative (TN), false positive
(FP), and false-negative (FN) from the confusion matrix according to equations in [37].
The quantitative results of the conducted experiments for the test samples of Section 1
are gathered in Figure 10. The results showed that the D-Net method classified all points

Remote Sens. 2023, 15, 2317 15 of 22

in the eight considered classes with precision, recall, and F1 values higher than 0.9. The
input patch size of 15 × 15 × 11 was considered. The assessment results indicate that the
D-Net method exhibited satisfactory classification results with high precision and recall for
most classes.

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 22

4.4. Classification Results
Figure 8 shows the ground truth and the classification output with the D-Net method

by considering 70% of Section 1 as the training data. Figure 8 shows that vegetation, build-
ings, cars, asphalt road, sidewalks, billboards, powerlines, and poles were all segmented
well, despite their various dimensions. The objects’ spatial context in Figure 8 was well
characterized due to the optimum voxelization and the proposed method’s deep de-
scriptor extraction capability. As shown in Figure 9, objects such as vegetation, cars, and
sidewalks with rough shapes were also correctly classified, and objects such as poles,
powerlines, and billboards were labeled with high precision. Almost all the points were
consistent with the ground truth. However, the unclassified points were excluded due to
the lack of separation in the training step.

Figure 8. Ground truth data and classification results of Sections 1, 2, and 3. Figure 8. Ground truth data and classification results of Sections 1, 2, and 3.

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 22

Figure 9. Part of the obtained outputs of the presented algorithm: (a) vegetation; (b) powerlines; (c)
billboards; (d) poles; (e) building; (f) car; (g) asphalt road; (h) sidewalk.

4.5. Accuracy Assessment
To evaluate the results, the dataset was labeled manually and several accuracy as-

sessment measures were evaluated, including precision (Pr), recall (R.), and F1-score (F1).
These parameters were measured with true positive (TP), true negative (TN), false posi-
tive (FP), and false-negative (FN) from the confusion matrix according to equations in [37].
The quantitative results of the conducted experiments for the test samples of Section 1 are
gathered in Figure 10. The results showed that the D-Net method classified all points in
the eight considered classes with precision, recall, and F1 values higher than 0.9. The input
patch size of 15 × 15 × 11 was considered. The assessment results indicate that the D-Net

Figure 9. Cont.

Remote Sens. 2023, 15, 2317 16 of 22

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 22

Figure 9. Part of the obtained outputs of the presented algorithm: (a) vegetation; (b) powerlines; (c)
billboards; (d) poles; (e) building; (f) car; (g) asphalt road; (h) sidewalk.

4.5. Accuracy Assessment
To evaluate the results, the dataset was labeled manually and several accuracy as-

sessment measures were evaluated, including precision (Pr), recall (R.), and F1-score (F1).
These parameters were measured with true positive (TP), true negative (TN), false posi-
tive (FP), and false-negative (FN) from the confusion matrix according to equations in [37].
The quantitative results of the conducted experiments for the test samples of Section 1 are
gathered in Figure 10. The results showed that the D-Net method classified all points in
the eight considered classes with precision, recall, and F1 values higher than 0.9. The input
patch size of 15 × 15 × 11 was considered. The assessment results indicate that the D-Net

Figure 9. Part of the obtained outputs of the presented algorithm: (a) vegetation; (b) powerlines;
(c) billboards; (d) poles; (e) building; (f) car; (g) asphalt road; (h) sidewalk.

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 22

method exhibited satisfactory classification results with high precision and recall for most
classes.

Figure 10. Evaluation of the D-Net method on the test samples of Section 1 for considered semantic
classes with 15 × 15 × 11 input patch size.

The generalization of the D-Net method was evaluated by classifying the other two
sections, which were not used in the training process. Table 7 shows the accuracy of the
results of each section. The outputs indicate that vegetation, powerlines, and asphalt road
classes were separated with high precision, recall, and F1-score values. Additionally, the
D-Net method achieved acceptable performance in extracting poles, sidewalks, and bill-
board classes. The extraction and classification of buildings and cars in these sections were
less accurate than in other classes.

Table 7. Evaluation of the D-Net method for Sections 2 and 3 of MLS point cloud classification with
15 × 15 × 11.

Pa
tc

h
si

ze
s

A
cc

ur
ac

y

Classes (%)

C
ar

s

V
eg

et
at

io
n

Po
le

s

Po
w

er
lin

es

A
sp

ha
lt

ro
ad

Si
de

w
al

k

Bu
ild

in
gs

Bi
llb

oa
rd

s

Se
ct

io
n

2 Precision 34.5 93.6 71.4 90.6 90.5 68.9 51.2 83.7
Recall 43.8 69.3 72.2 91.3 93.2 67.4 77.3 60.2

F1-score 38.6 79.6 71.8 90.9 91.8 68.1 61.6 70.0

Se
ct

io
n

3 Precision 36.6 97.8 60.3 80.2 92.9 67.6 55.6 56.3
Recall 43.2 74.6 85.3 87.3 91.6 73.3 82.7 60.4

F1-score 39.6 84.6 70.7 83.6 92.2 70.3 66.5 58.3

Figure 10. Evaluation of the D-Net method on the test samples of Section 1 for considered semantic
classes with 15 × 15 × 11 input patch size.

The generalization of the D-Net method was evaluated by classifying the other two
sections, which were not used in the training process. Table 7 shows the accuracy of the
results of each section. The outputs indicate that vegetation, powerlines, and asphalt
road classes were separated with high precision, recall, and F1-score values. Additionally,
the D-Net method achieved acceptable performance in extracting poles, sidewalks, and
billboard classes. The extraction and classification of buildings and cars in these sections
were less accurate than in other classes.

Remote Sens. 2023, 15, 2317 17 of 22

Table 7. Evaluation of the D-Net method for Sections 2 and 3 of MLS point cloud classification with
15 × 15 × 11.

Pa
tc

h
Si

ze
s

A
cc

ur
ac

y

Classes (%)

C
ar

s

V
eg

et
at

io
n

Po
le

s

Po
w

er
li

ne
s

A
sp

ha
lt

R
oa

d

Si
de

w
al

k

B
ui

ld
in

gs

B
il

lb
oa

rd
s

Se
ct

io
n

2 Precision 34.5 93.6 71.4 90.6 90.5 68.9 51.2 83.7
Recall 43.8 69.3 72.2 91.3 93.2 67.4 77.3 60.2

F1-score 38.6 79.6 71.8 90.9 91.8 68.1 61.6 70.0

Se
ct

io
n

3 Precision 36.6 97.8 60.3 80.2 92.9 67.6 55.6 56.3
Recall 43.2 74.6 85.3 87.3 91.6 73.3 82.7 60.4

F1-score 39.6 84.6 70.7 83.6 92.2 70.3 66.5 58.3

5. Discussion
5.1. Dataset

This paper proposed a deep learning procedure using density information named
D-Net to classify roadside objects in MLS data. This method evaluated the classification of
challenging items ranging from lengthy power lines to tall trees and efficiently achieved a
98% accuracy. This high precision was obtained when both near and midrange objects in
proximity to the MLS vehicle were classified correctly. It is noteworthy that objects further
from the MLS system have a lower point density. This indicates that the algorithm may
work adequately on point clouds collected by MLS systems with lower sampling rates and,
more importantly, ALS LiDAR point clouds that are typically lower in density. Further,
the algorithm does not need additional information such as intensity or trajectory. Thus, it
should be suitable for classifying objects from 3D point cloud datasets acquired from other
remote sensing technologies.

5.2. Network Structure

A comparison was made of the different numbers of convolution and hidden layers
based on accuracy and computation speed to investigate the efficiency of the aggregating
approach. Figure 11 shows the results of considering two comparative aspects: accuracy
and timely processing. The figure shows that the D-Net method takes more than 20 to 30 s
just by increasing one and two hidden layers. Additionally, this method requires 25 s to
exploit four convolution layers. Concerning average accuracy, the proposed D-Net method
achieved a high performance considering low hidden and convolution layers. Considering
both efficiency and effectiveness, three convolutional and two hidden layers were chosen
for implementation.

5.3. Comparison with Descriptor-Based Methods

Feature-based methods are frequently used for separating objects in urban areas. This
section compares the acquired results from the D-Net framework with descriptor-based
methods. This study implemented five popular machine learning techniques (k-NN, GNB,
SVM, MLP, and RF) using the presented features in [37], and the outputs are demonstrated
in Table 8. It should be noted that the primary data sizes in the training step for these five
methods were the same as for the D-Net method for adequate evaluation. Figure 12 shows
the visual outputs of the considered methods.

Remote Sens. 2023, 15, 2317 18 of 22

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 22

5. Discussion
5.1. Dataset

This paper proposed a deep learning procedure using density information named D-
Net to classify roadside objects in MLS data. This method evaluated the classification of
challenging items ranging from lengthy power lines to tall trees and efficiently achieved
a 98% accuracy. This high precision was obtained when both near and midrange objects
in proximity to the MLS vehicle were classified correctly. It is noteworthy that objects fur-
ther from the MLS system have a lower point density. This indicates that the algorithm
may work adequately on point clouds collected by MLS systems with lower sampling
rates and, more importantly, ALS LiDAR point clouds that are typically lower in density.
Further, the algorithm does not need additional information such as intensity or trajec-
tory. Thus, it should be suitable for classifying objects from 3D point cloud datasets ac-
quired from other remote sensing technologies.

5.2. Network Structure
A comparison was made of the different numbers of convolution and hidden layers

based on accuracy and computation speed to investigate the efficiency of the aggregating
approach. Figure 11 shows the results of considering two comparative aspects: accuracy
and timely processing. The figure shows that the D-Net method takes more than 20 to 30
s just by increasing one and two hidden layers. Additionally, this method requires 25 s to
exploit four convolution layers. Concerning average accuracy, the proposed D-Net
method achieved a high performance considering low hidden and convolution layers.
Considering both efficiency and effectiveness, three convolutional and two hidden layers
were chosen for implementation.

Figure 11. Evaluation of the implemented deep learning network with the number of layers: (a) and
(b) accuracy and time cost assessment for FC layers, (c,d) accuracy and time cost assessment for
Convolution Layers.

5.3. Comparison with Descriptor-Based Methods
Feature-based methods are frequently used for separating objects in urban areas. This

section compares the acquired results from the D-Net framework with descriptor-based
methods. This study implemented five popular machine learning techniques (k-NN,

Figure 11. Evaluation of the implemented deep learning network with the number of layers:
(a,b) accuracy and time cost assessment for FC layers, (c,d) accuracy and time cost assessment
for Convolution Layers.

Table 8. Accuracy comparison between our proposed algorithm and other common deep neural
network structures.

Measures

Methods mIOU OA (%) Pr. (%) R. (%) F1(%)

PointNet++ 47.2 90.8 91.5 91.9 92.8

PointConv 48.3 91.3 91.9 91.4 92.5

PointSeg 39.9 92.1 92.3 93.5 92.7

TGNet 58.5 91.4 92.32 92.1 91.3

MS-TGNet 61.2 93.3 94.69 93.2 92.9

RangeNet++ 58.3 93 92.9 92.3 94.5

FPS-Net 69.1 97.6 98.2 96.66 97.7

D-Net 69.7 98 98.125 97.5 97.625
Remote Sens. 2023, 15, x FOR PEER REVIEW 19 of 22

Figure 12. The outputs of the classification methods: (a) k-NN; (b) GNB; (c) SVM; (d) MLP; (e) RF;
(f) D-Net.

Figure 13 compares the implemented descriptor-based and D-Net methods’ accura-
cies. The figure shows that the D-Net method gave each measure the best average accu-
racy. The method achieved an accuracy of over 97%, while the highest-performing de-
scriptor-based method was the RF, with the accuracy value ranging from 82% to 90%.

Figure 12. Cont.

Remote Sens. 2023, 15, 2317 19 of 22

Remote Sens. 2023, 15, x FOR PEER REVIEW 19 of 22

Figure 12. The outputs of the classification methods: (a) k-NN; (b) GNB; (c) SVM; (d) MLP; (e) RF;
(f) D-Net.

Figure 13 compares the implemented descriptor-based and D-Net methods’ accura-
cies. The figure shows that the D-Net method gave each measure the best average accu-
racy. The method achieved an accuracy of over 97%, while the highest-performing de-
scriptor-based method was the RF, with the accuracy value ranging from 82% to 90%.

Figure 12. The outputs of the classification methods: (a) k-NN; (b) GNB; (c) SVM; (d) MLP; (e) RF;
(f) D-Net.

Figure 13 compares the implemented descriptor-based and D-Net methods’ accuracies.
The figure shows that the D-Net method gave each measure the best average accuracy. The
method achieved an accuracy of over 97%, while the highest-performing descriptor-based
method was the RF, with the accuracy value ranging from 82% to 90%.

Remote Sens. 2023, 15, x FOR PEER REVIEW 20 of 22

Figure 13. Accuracy comparison between the proposed D-net algorithm and common machine
learning procedures.

5.4. Comparison with DL-Based Methods
The D-Net method was also compared with other DL-based methods. Seven widely-

used DL networks were selected for performance evaluation (PointNet++ [13], PointConv
[38], PointSeg [39], TGNet [19], MS-TGNet [40], RangeNet++ [41], FPS-Net [40]). Table 8
gives these results based on the mean intersection over union (mIoU) [33], F1-score, pre-
cision, recall, and OA. The results indicate that the D-Net algorithm obtains better mean
IoU (69.7%) and OA (98%). It also outperforms other models in detecting asphalt roads,
poles, sidewalks, and man-made objects. Among the evaluated DL-based methods, the
MS-TGNet, RangeNet++, and FPS-Net acquired OA and mIOU over 93% and 58%, respec-
tively. The TGNet performed modestly and achieved an OA of 87.59%. On the other hand,
PointNet had the lowest performance in object classification, at around 90%. Noticeably,
our D-Net algorithm accomplished encouraging outputs on the considered regions.

6. Conclusions
This study proposed a novel method, i.e., the D-Net framework, for classifying MLS

point clouds in an urban area based on density information. This method applied the pre-
processing step to the raw LiDAR point cloud to remove the noisy points. Furthermore, a
voxelization stage converted the irregular LiDAR point cloud into a regular format. Then,
the density of each voxel was calculated, and after extracting deep descriptors the class of
each voxel was detected using the trained D-Net framework. Finally, all points received
the same label as their corresponding voxel.

The proposed D-Net framework was evaluated on an MLS dataset in an urban area
with a length of 182 m. It included numerous objects such as tall buildings, vehicles, veg-
etation, pole-shaped objects, roadway infrastructure, sidewalk, powerlines, roads, and
billboards. Reported precision, recall, and F1-scores of over 92% and OA of over 98% were
achieved. The method was highly accurate for all classes. However, it struggled with com-
plex structures attached to other objects due to ambiguous category definitions.

The study’s results show that using the D-Net method for urban area point cloud
classification is feasible with promising results. Obtaining sufficient data for each class in
a dataset may be problematic when considering that a certain percentage is needed for
training. The investigation of the D-Net method for other datasets, the size of training
data, and the CNN structure may be studied in the future. The direct use of a point cloud
for importing into the three-dimensional CNN is also suggested.

Figure 13. Accuracy comparison between the proposed D-net algorithm and common machine
learning procedures.

Remote Sens. 2023, 15, 2317 20 of 22

5.4. Comparison with DL-Based Methods

The D-Net method was also compared with other DL-based methods. Seven widely-
used DL networks were selected for performance evaluation (PointNet++ [13], Point-
Conv [38], PointSeg [39], TGNet [19], MS-TGNet [40], RangeNet++ [41], FPS-Net [40]).
Table 8 gives these results based on the mean intersection over union (mIoU) [33], F1-score,
precision, recall, and OA. The results indicate that the D-Net algorithm obtains better mean
IoU (69.7%) and OA (98%). It also outperforms other models in detecting asphalt roads,
poles, sidewalks, and man-made objects. Among the evaluated DL-based methods, the
MS-TGNet, RangeNet++, and FPS-Net acquired OA and mIOU over 93% and 58%, respec-
tively. The TGNet performed modestly and achieved an OA of 87.59%. On the other hand,
PointNet had the lowest performance in object classification, at around 90%. Noticeably,
our D-Net algorithm accomplished encouraging outputs on the considered regions.

6. Conclusions

This study proposed a novel method, i.e., the D-Net framework, for classifying MLS
point clouds in an urban area based on density information. This method applied the
pre-processing step to the raw LiDAR point cloud to remove the noisy points. Furthermore,
a voxelization stage converted the irregular LiDAR point cloud into a regular format. Then,
the density of each voxel was calculated, and after extracting deep descriptors the class of
each voxel was detected using the trained D-Net framework. Finally, all points received
the same label as their corresponding voxel.

The proposed D-Net framework was evaluated on an MLS dataset in an urban area
with a length of 182 m. It included numerous objects such as tall buildings, vehicles,
vegetation, pole-shaped objects, roadway infrastructure, sidewalk, powerlines, roads, and
billboards. Reported precision, recall, and F1-scores of over 92% and OA of over 98% were
achieved. The method was highly accurate for all classes. However, it struggled with
complex structures attached to other objects due to ambiguous category definitions.

The study’s results show that using the D-Net method for urban area point cloud
classification is feasible with promising results. Obtaining sufficient data for each class in
a dataset may be problematic when considering that a certain percentage is needed for
training. The investigation of the D-Net method for other datasets, the size of training data,
and the CNN structure may be studied in the future. The direct use of a point cloud for
importing into the three-dimensional CNN is also suggested.

Author Contributions: Conceptualization, M.Z. and H.R.; methodology, M.Z., B.H. and H.R.; soft-
ware, M.Z., B.H. and D.S.; validation, M.Z., H.R. and B.H.; formal analysis, H.R.; investigation, D.S.,
M.Z., B.H., W.A.S. and S.H; resources, M.Z. and H.R.; data curation, M.Z.; writing—original draft
preparation, M.Z.; writing—review and editing, D.S., B.H., H.R., W.A.S. and S.H.; visualization, M.Z.
and H.R.; supervision, H.R. and S.H.; project administration, H.R. and S.H. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing is not applicable to this paper.

Acknowledgments: We would like to thank Alireza Shams for providing us with the data used in
this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, L.; Meng, W.; Xi, R.; Zhang, Y.; Ma, C.; Lu, L.; Zhang, X. 3D Point Cloud Analysis and Classification in Large-Scale Scene

Based on Deep Learning. IEEE Access 2019, 7, 55649–55658. [CrossRef]
2. Lehtomäki, M.; Jaakkola, A.; Hyyppä, J.; Lampinen, J.; Kaartinen, H.; Kukko, A.; Puttonen, E.; Hyyppä, H. Object Classification

and Recognition from Mobile Laser Scanning Point Clouds in a Road Environment. IEEE Trans. Geosci. Remote Sens. 2016, 54,
1226–1239. [CrossRef]

https://doi.org/10.1109/ACCESS.2019.2909742
https://doi.org/10.1109/TGRS.2015.2476502

Remote Sens. 2023, 15, 2317 21 of 22

3. Shokri, D.; Rastiveis, H.; Sarasua, W.A.; Shams, A.; Homayouni, S. A Robust and Efficient Method for Power Lines Extraction
from Mobile LiDAR Point Clouds. PFG J. Photogramm. Remote Sens. Geoinform. Sci. 2021, 89, 209–232. [CrossRef]

4. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation; IEEE: New York,
NY, USA, 2017; pp. 652–660.

5. Li, X.; Wang, L.; Wang, M.; Wen, C.; Fang, Y. DANCE-NET: Density-aware convolution networks with context encoding for
airborne LiDAR point cloud classification. ISPRS J. Photogramm. Remote Sens. 2020, 166, 128–139. [CrossRef]

6. Han, X.; Dong, Z.; Yang, B. A Point-Based Deep Learning Network for Semantic Segmentation of MLS Point Clouds. ISPRS J.
Photogramm. Remote Sens. 2021, 175, 199–214. [CrossRef]

7. Yang, B.; Dong, Z.; Zhao, G.; Dai, W. Hierarchical Extraction of Urban Objects from Mobile Laser Scanning Data. ISPRS J.
Photogramm. Remote Sens. 2015, 99, 45–57. [CrossRef]

8. Sun, Z.; Xu, Y.; Hoegner, L.; Stilla, U. Classification of mls point clouds in urban scenes using detrended geometric features from
supervoxel-based local contexts. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, IV-2, 271–278. [CrossRef]

9. Günen, M.A. Adaptive Neighborhood Size and Effective Geometric Features Selection for 3D Scattered Point Cloud Classification.
Appl. Soft Comput. 2022, 115, 108196. [CrossRef]

10. Zolanvari, S.I.; Laefer, D.F.; Natanzi, A.S. Three-dimensional building façade segmentation and opening area detection from
point clouds. ISPRS J. Photogramm. Remote Sens. 2018, 143, 134–149. [CrossRef]

11. Huang, J.; You, S. Point Cloud Labeling Using 3D Convolutional Neural Network. In Proceedings of the 2016 23rd International
Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 2670–2675.

12. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Proceedings
of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates, Inc.:
New York, NY, USA, 2017; Volume 30.

13. Yao, X.; Guo, J.; Hu, J.; Cao, Q. Using Deep Learning in Semantic Classification for Point Cloud Data. IEEE Access 2019, 7,
37121–37130. [CrossRef]

14. Wen, C.; Yang, L.; Li, X.; Peng, L.; Chi, T. Directionally Constrained Fully Convolutional Neural Network for Airborne LiDAR
Point Cloud Classification. ISPRS J. Photogramm. Remote Sens. 2020, 162, 50–62. [CrossRef]

15. Classification of Point Cloud for Road Scene Understanding with Multiscale Voxel Deep Network—Archive Ouverte HAL.
Available online: https://hal.science/hal-01763469/ (accessed on 11 April 2023).

16. Wang, L.; Huang, Y.; Shan, J.; He, L. MSNet: Multi-Scale Convolutional Network for Point Cloud Classification. Remote Sens.
2018, 10, 612. [CrossRef]

17. Wang, Z.; Zhang, L.; Zhang, L.; Li, R.; Zheng, Y.; Zhu, Z. A Deep Neural Network With Spatial Pooling (DNNSP) for 3-D Point
Cloud Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4594–4604. [CrossRef]

18. Li, Y.; Ma, L.; Zhong, Z.; Cao, D.; Li, J. TGNet: Geometric Graph CNN on 3-D Point Cloud Segmentation. IEEE Trans. Geosci.
Remote Sens. 2020, 58, 3588–3600. [CrossRef]

19. Li, W.; Wang, F.-D.; Xia, G.-S. A Geometry-Attentional Network for ALS Point Cloud Classification. ISPRS J. Photogramm. Remote
Sens. 2020, 164, 26–40. [CrossRef]

20. Boulch, A. ConvPoint: Continuous Convolutions for Point Cloud Processing. Comput. Graph. 2020, 88, 24–34. [CrossRef]
21. Song, W.; Zhang, L.; Tian, Y.; Fong, S.; Liu, J.; Gozho, A. CNN-Based 3D Object Classification Using Hough Space of LiDAR Point

Clouds. Hum. Cent. Comput. Inf. Sci. 2020, 10, 19. [CrossRef]
22. Geng, X.; Ji, S.; Lu, M.; Zhao, L. Multi-Scale Attentive Aggregation for LiDAR Point Cloud Segmentation. Remote Sens. 2021,

13, 691. [CrossRef]
23. Hoang, L.; Lee, S.-H.; Lee, E.-J.; Kwon, K.-R. GSV-NET: A Multi-Modal Deep Learning Network for 3D Point Cloud Classification.

Appl. Sci. 2022, 12, 483. [CrossRef]
24. Aijazi, A.K.; Checchin, P.; Trassoudaine, L. Segmentation Based Classification of 3D Urban Point Clouds: A Super-Voxel Based

Approach with Evaluation. Remote Sens. 2013, 5, 1624–1650. [CrossRef]
25. Weinmann, M.; Jutzi, B.; Mallet, C. Feature Relevance Assessment for the Semantic Interpretation of 3D Point Cloud Data. ISPRS

Ann. Photogramm. Remote Sens. Spatial Inform. Sci. 2013, II-5/W2, 313–318. [CrossRef]
26. Yang, Z.; Jiang, W.; Xu, B.; Zhu, Q.; Jiang, S.; Huang, W. A Convolutional Neural Network-Based 3D Semantic Labeling Method

for ALS Point Clouds. Remote Sens. 2017, 9, 936. [CrossRef]
27. Boulch, A.; Guerry, J.; Le Saux, B.; Audebert, N. SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks.

Comput. Graph. 2018, 71, 189–198. [CrossRef]
28. Shukor, S.A.A.; Rushforth, E.J. Adapting Histogram for Automatic Noise Data Removal in Building Interior Point Cloud Data.

AIP Conf. Proc. 2015, 1660, 070074. [CrossRef]
29. Griffiths, D.; Boehm, J. A Review on Deep Learning Techniques for 3D Sensed Data Classification. Remote Sens. 2019, 11, 1499.

[CrossRef]
30. Deep Learning—Ian Goodfellow, Yoshua Bengio, Aaron Courville—Google Books. Available online: https://books.google.com/

books?hl=en&lr=&id=omivDQAAQBAJ&oi=fnd&pg=PR5&dq=Goodfellow,+I.%3B+Bengio,+Y.%3B+Courville,+A.+Deep+
learning%3B+MIT+press,+Cambridge,+Massachusetts,+London,+England:+2016&ots=MNU-bvmEQT&sig=0U23Gi-E3iJ8
2UHyrchZqKwto7s#v=onepage&q&f=false (accessed on 11 April 2023).

https://doi.org/10.1007/s41064-021-00155-y
https://doi.org/10.1016/j.isprsjprs.2020.05.023
https://doi.org/10.1016/j.isprsjprs.2021.03.001
https://doi.org/10.1016/j.isprsjprs.2014.10.005
https://doi.org/10.5194/isprs-annals-IV-2-271-2018
https://doi.org/10.1016/j.asoc.2021.108196
https://doi.org/10.1016/j.isprsjprs.2018.04.004
https://doi.org/10.1109/ACCESS.2019.2905546
https://doi.org/10.1016/j.isprsjprs.2020.02.004
https://hal.science/hal-01763469/
https://doi.org/10.3390/rs10040612
https://doi.org/10.1109/TGRS.2018.2829625
https://doi.org/10.1109/TGRS.2019.2958517
https://doi.org/10.1016/j.isprsjprs.2020.03.016
https://doi.org/10.1016/j.cag.2020.02.005
https://doi.org/10.1186/s13673-020-00228-8
https://doi.org/10.3390/rs13040691
https://doi.org/10.3390/app12010483
https://doi.org/10.3390/rs5041624
https://doi.org/10.5194/isprsannals-II-5-W2-313-2013
https://doi.org/10.3390/rs9090936
https://doi.org/10.1016/j.cag.2017.11.010
https://doi.org/10.1063/1.4915792
https://doi.org/10.3390/rs11121499
https://books.google.com/books?hl=en&lr=&id=omivDQAAQBAJ&oi=fnd&pg=PR5&dq=Goodfellow,+I.%3B+Bengio,+Y.%3B+Courville,+A.+Deep+learning%3B+MIT+press,+Cambridge,+Massachusetts,+London,+England:+2016&ots=MNU-bvmEQT&sig=0U23Gi-E3iJ82UHyrchZqKwto7s#v=onepage&q&f=false
https://books.google.com/books?hl=en&lr=&id=omivDQAAQBAJ&oi=fnd&pg=PR5&dq=Goodfellow,+I.%3B+Bengio,+Y.%3B+Courville,+A.+Deep+learning%3B+MIT+press,+Cambridge,+Massachusetts,+London,+England:+2016&ots=MNU-bvmEQT&sig=0U23Gi-E3iJ82UHyrchZqKwto7s#v=onepage&q&f=false
https://books.google.com/books?hl=en&lr=&id=omivDQAAQBAJ&oi=fnd&pg=PR5&dq=Goodfellow,+I.%3B+Bengio,+Y.%3B+Courville,+A.+Deep+learning%3B+MIT+press,+Cambridge,+Massachusetts,+London,+England:+2016&ots=MNU-bvmEQT&sig=0U23Gi-E3iJ82UHyrchZqKwto7s#v=onepage&q&f=false
https://books.google.com/books?hl=en&lr=&id=omivDQAAQBAJ&oi=fnd&pg=PR5&dq=Goodfellow,+I.%3B+Bengio,+Y.%3B+Courville,+A.+Deep+learning%3B+MIT+press,+Cambridge,+Massachusetts,+London,+England:+2016&ots=MNU-bvmEQT&sig=0U23Gi-E3iJ82UHyrchZqKwto7s#v=onepage&q&f=false

Remote Sens. 2023, 15, 2317 22 of 22

31. Wichrowska, O.; Maheswaranathan, N.; Hoffman, M.W.; Colmenarejo, S.G.; Denil, M.; Freitas, N.; Sohl-Dickstein, J. Learned
Optimizers That Scale and Generalize. In Proceedings of the 34th International Conference on Machine Learning; PMLR, Sydney,
NSW, Australia, 6–11 August 2017; pp. 3751–3760.

32. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
33. PointPAVGG: An Incremental Algorithm for Extraction of Points’ Positional Feature Using VGG on Point Clouds. SpringerLink.

Available online: https://link.springer.com/chapter/10.1007/978-3-030-84529-2_60 (accessed on 11 April 2023).
34. Girija, S.S. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467v2.
35. Zhang, M.; Lucas, J.; Ba, J.; Hinton, G.E. Lookahead Optimizer: K Steps Forward, 1 Step Back. In Proceedings of the Advances in

Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Curran Associates, Inc.: New York, NY,
USA, 2019; Volume 32.

36. Zaboli, M.; Rastiveis, H.; Shams, A.; Hosseiny, B.; Sarasua, W. Classification Of Mobile Terrestrial Lidar Point Cloud in Urban
Area Using Local Descriptors. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, XLII-4/W18, 1117–1122. [CrossRef]

37. Wu, W.; Qi, Z.; Fuxin, L. PointConv: Deep Convolutional Networks on 3D Point Clouds. arXiv 2019, arXiv:1811.07246v3.
38. Wang, Y.; Shi, T.; Yun, P.; Tai, L.; Liu, M. PointSeg: Real-Time Semantic Segmentation Based on 3D LiDAR Point Cloud. arXiv

2018, arXiv:1807.06288.
39. Tan, W.; Qin, N.; Ma, L.; Li, Y.; Du, J.; Cai, G.; Yang, K.; Li, J. Toronto-3D: A Large-Scale Mobile LiDAR Dataset for Semantic

Segmentation of Urban Roadways. arXiv 2020, arXiv:2003.08284v3.
40. Milioto, A.; Vizzo, I.; Behley, J.; Stachniss, C. RangeNet++: Fast and Accurate LiDAR Semantic Segmentation. In Proceed-

ings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), The Venetian Macao, Macau,
4–8 November 2019.

41. Xiao, A.; Yang, X.; Lu, S.; Guan, D.; Huang, J. FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud
segmentation. ISPRS J. Photogramm. Remote Sens. 2021, 176, 237–249. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://link.springer.com/chapter/10.1007/978-3-030-84529-2_60
https://doi.org/10.5194/isprs-archives-XLII-4-W18-1117-2019
https://doi.org/10.1016/j.isprsjprs.2021.04.011

	Introduction
	Point Cloud Classification
	Descriptor-Based Methods
	Deep Learning Based Methods
	Summary of the Previous Works

	Proposed D-Net Method
	Pre-Processing
	Network Architecture

	Experiments and Results
	MLS Dataset
	Training Data Collection
	Parameter Tuning
	Voxel Size
	Input Patch Size
	Optimizing Methods

	Classification Results
	Accuracy Assessment

	Discussion
	Dataset
	Network Structure
	Comparison with Descriptor-Based Methods
	Comparison with DL-Based Methods

	Conclusions
	References

