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Abstract: The widely spread alpine grassland ecosystem in the Three River Headwaters Region
(TRHR) plays an essential ecological role in carbon sequestration and soil and water conservation. In
this study, we test the latest high spatial resolution hyperspectral (Zhuhai-1 OHS) remote sensing
imagery to examine different alpine grassland coverage levels using Multiple Endmember Spectral
Mixture Analysis (MESMA). Our results suggest that the 3-endmember (3-EM) MESMA model can
provide the highest image pixel unmixing percentage, with a percentage exceeding 97% and 96%
for pixel scale and landscape scale, respectively. The overall accuracy shows that Zhuhai-1 OHS
imagery obtained the highest overall accuracy (83.7%, k = 0.77) in the landscape scale, but in the pixel
scale, it is not as good as Landsat 8 OLI imagery. Overall, we can conclude that the hyperspectral
imagery combined 3-EM MESMA model performs better in both pixel scale and landscape scale
alpine grassland coverage mapping, while the multispectral imagery with the 3-EM MESMA model
can satisfy requirements of alpine grassland coverage mapping at the pixel scale. The approaches and
workflow to mapping alpine grassland in this study can help monitor alpine grassland degradation;
not only in the Qinghai–Tibetan Plateau (QTP), but also in other grassland ecosystems.

Keywords: Zhuhai-1 OHS imagery; grassland fraction coverage; alpine grassland ecosystem; Three
River Headwaters Region

1. Introduction

Grassland ecosystem is one of the most critical and widespread terrestrial ecosystems
worldwide [1–3], covering 20–40% of the Earth’s ice-free land surface [4–6]. The Qinghai–
Tibetan Plateau (QTP) holds the largest alpine grassland ecosystem in the world [7,8],
sheltering a rich diversity of flora and fauna [9]. However, research suggests that up to
90% of the grasslands on the QTP have been degraded [10] due to human activities and
climate change [4,11,12]. Therefore, monitoring the status of QTP’s grasslands, especially
the alpine grasslands, under current global climate change is particularly important.

Traditionally, a grassland coverage assessment relies heavily on field investigation [13];
but field studies primarily focus more on small-scale areas and short-term periods, and are
labor and time consuming and expensive; furthermore, due to the enormous spatial extent,
remoteness, high elevation, and harsh environment on the QTP, it is inefficient for large-
scale alpine grassland coverage mapping and monitoring [12]., Remote sensing techniques
offer an effective and economical alternative approach for gathering spatial time-series data
for monitoring and mapping the alpine grassland coverage in this area [7,9,14,15].
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Previous studies to map the alpine grassland coverage on the QTP have relied on coarse
resolution and multispectral remote sensing data, to generate contextual information such
as the Vegetation Index (VI) derived from MODIS and AVHRR-NDVI data. The study
in [12] utilized the MODIS MCD 43A4 product to explore the grassland degradation on
the Qinghai–Tibetan Plateau, and found that high spatial heterogeneity is better to indicate
grassland degradation than that of low vegetation cover; another study [16] used every-
10-day AVHRR-NDVI and every-10-day MODIS-NDVI data to assess the alpine grassland
degradation index in Northern Tibet, and captured a very serious degradation situation in
this area; the study in [17] use MODIS VI products (MOD13Q1) to model alpine grassland
cover in the headwater region of the Huanghe River, and the result showed that MODIS
NDVI data outperforms MODIS EVI data for modeling grassland cover in this area. These
studies successfully obtained the appropriate result in grassland cover mapping; however,
the coarse resolution and fee bands of these datasets (AVHRR-NDVI with a 8 km × 8 km
spatial resolution, MCD43A4 with 500 m, and MOD13Q1 with 250 m spatial resolution) can
only provide a coarse resolution and general cover information in a very large scale (such as
whole QTP), but are inferior in exploring more finer grassland cover in a more specific area.

Some image analysis techniques such as Linear Spectral Unmixing (LSU) and Spectral
Angle Mapper (SAM) [7,18], and machine-learning techniques such as Random Forest
Regression (RF), Support Vector Machine Regression (SVMR), and Partial Least Squares
Regression (PLSR) have also been used to derive plant coverage from finer resolution
remotely sensed images in previous studies and achieved high accuracy [19–21]. However,
the results based on these methods were established on the use of extensive training
samples [22] or the use of single hyperspectral and multispectral data; however, collecting
adequate ground validation samples in the QTP area is unfeasible and multispectral data
are unable to match the combined advantages of high-resolution and hyperspectral remote
sensing data.

As an extension of the simple SMA (Spectral Mixture Analysis) approach, Multiple
Endmember Spectral Mixture Analysis (MESMA) decomposes each pixel using different
combinations of potential endmembers (model). This permits the number and types of
endmembers to vary on a per-pixel basis, generating more reliable unmixing results for
imageries with higher inter- and intra- endmember variance. In this way, the model with
the lowest RMSE is selected to unmix each image pixel, resulting in the best fit across
the entire image pixel [23–25], while there have been many studies that have monitored
rangeland degradation in the Three River Headwaters Region (TRHR) [1,15,26]. However,
few have used the MESMA method to investigate alpine grassland cover in the TRHR.
Therefore, for reasons described, we proposed using the potential for the latest high-
resolution hyperspectral data, Zhuhai-1 Orbita Hyperspectral (Zhuhai-1 OHS) imagery,
analyzed using the MESMA method as a novel approach to large-scale TRHR monitoring.

The Zhuhai-1 OHS data have a swath width greater than 150 km and measuring
32 spectral bands at 10 m spatial and 2.5 nm spectral resolution, with the spectral wave-
length ranging from 466 nm to 940 nm [27,28]. Due to its combined high spatial and
spectral resolution, Zhuhai-1 OHS has been applied in a range of fields, including water
resources monitoring [29], land cover mapping [27,30], vegetation monitoring [31], carbon
sequestration monitoring [32], and soil moisture estimation [33], but has not been used in
alpine grassland monitoring in the QTP region.

Therefore, the objective of this research is to investigate and evaluate the ability of
the latest Zhuhai-1 OHS hyperspectral imagery in distinguishing the plant and non-plant
at pixel scale, and mapping the alpine grassland fraction coverage at the landscape scale
(i.e., high coverage, moderate coverage, and low coverage) level using the MESMA method
in the TRHR.

2. Study Area

The TRHR (89◦22′42”~102◦14′10”E, 31◦35′16”~36◦15′31”N) lies in northwest China,
the hinterland of the QTP (Figure 1), and is a critical ecological barrier of China. This region
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also refers to the source of the Yangtze River, Yellow River, and Lancang River, known
as the “China Water Tower”. The TRHR covers an area of approximately 358,000 km2,
with an average elevation of 4500 m above sea level. Due to the high altitude, the natural
environmental conditions in TRHR are harsh, fragile, and sensitive to climate change [17],
making it one of China’s most important ecological function zones [34]. The climate of
the TRHR is dominantly continental, the annual average temperatures ranging approxi-
mately from −6 ◦C to 4 ◦C, with significant diurnal temperature differences, and annual
precipitation ranging from 260 mm to 780 mm which is highly variable in space and time.
Approximately 80% of its annual precipitation falls from June to August, which is the peak
of the growing season [15,17,35]. Our study area is located in the eastern TRHR (Figure 1),
which is in the transition zone between the Animaqing Mountains and Zhaling–Eling Lake;
two crucial ecozones in the Qinghai–Tibetan Plateau.

Figure 1. (a) Location of the TRHR at global scale, (b) location of the study area in the TRHR, (c) the
Zhuhai-1 OHS imagery cover, and (d) locations of the sample sites and study area images of Zhuhai-1
OHS (b27: 866 nm, b13: 656 nm, b6: 550 nm). The Tibetan Plateau boundary comes from Zhang et al.
(2021).

In the TRHR, grassland ecosystems occupy over 65% of the land area [15,36]. Aline
grassland, comprised of the alpine steppe (Figure 2a) and alpine meadow (Figure 2b),
is the main grasslands cover type in this region. Alpine meadows occupy most of the
natural grassland in the TRHR (72.15%). Because of the high grass quality, and richness
in grass nutrition, alpine meadows are excellent pastures with high utilization value in
the TRHR [36–38]. The alpine steppe only accounts for 21.44% of the grassland area in
this region [37–39]. Alpine grassland in this area not only plays a critical role due to
the ecosystem services it provides for the TRHR, but it is also an essential resource that
supplies over 90% of local residents’ subsistence, such as grazing activities. Table 1 shows
the dominant species, their distribution area, and the proportion of the alpine meadows
and alpine steppe in the TRHR. Figure 2 shows the typical alpine grassland landscape in
the TRHR.
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Figure 2. Photographs of the investigated alpine grasslands in the TRHR. (a) Picture of non-degraded
grassland in southern Qumalai County in August 2019 showing a typical alpine steppe landscape.
(b) Picture of a non-degraded alpine meadow in southeastern Zhiduo County in August 2019 showing
an alpine meadow landscape, the animals in the picture are Yak, one of the most common grazing
livestock of native Tibetan residents. (c) Picture of the high coverage alpine grassland in southern
Qumalai County in August 2017. (d) Picture of the moderate coverage of alpine grassland. (e) Picture
of the low coverage alpine grassland. (f) Picture of shrub cover in August 2017. All the pictures above
were obtained by our research group. Picture (a,b) were taken by smartphone; (c–f) were taken by DJI
Phantom 4 PRO; (d–f) were taken in northeastern Maduo County in August 2017.

Table 1. The dominant species, distribution area, and proportion of the alpine grassland in the TRHR.

Cover Type Dominant Species Co-Occurring
Species Distributed Area Elevation (m) Proportion References

Alpine
meadows

Kobresia pygmaea,
Kobresia humilis,

Kobresia
capillifolia

Herbarum variorum,
Stipa aliena,

Ptilagrostis spp. and
Poa spp.

Southwest, central
south, and east part

of the TRHR
3000~4800 72.15%

[37–40]

Alpine steppe
Stipa purpurea,

Carex moorcroftii,
Brylkinia caudata

Herbarum variorum,
Poa spp. and

Leymus secalinus

West and
northwest of the

TRHR
3800~4600 21.44%
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3. Materials and Methods
3.1. In-Situ Grassland Coverage Collection

A field survey was conducted between 2017 and 2019 during the peak growing
season (mid-August). We set our sample plots in typical alpine grassland communities
with homogeneous growth status. Previous studies have indicated correlations between
settlements and plant coverage [41]. Therefore, all of our sample plots were set a minimum
of 5 km far away from the settlement points to reduce the impact of human activities.
In each investigated site, we set a 30 m by 30 m sample plot and kept at least a 100 m
distance apart from each other to minimize the spatial autocorrelation between the sample
plots [42–44]. For each sample plot, nine 1 m by 1 m independent subplots were set in
four directions extending from the center of the sample plots (Figure S1). In addition, all
the sample sites were at least 100 m away from roads and rivers to reduce their influence.
Grassland type, dominant grass species, grassland coverage, and coordinates information
with an accuracy of ~0.5 m, including latitude, longitude, and altitude, were collected in
each subplot. The grassland coverage in each subplot was averaged to represent the sample
plot’s grassland coverage. In total, 63 sample plots were obtained in this study (Figure 1b).

In this study, we also collected in situ spectra to correct the spectra derived from
satellite images by using the SVC-HR 512i Hand-Held spectrometer. The spectral reflectance
value of this spectrometer ranges from 350–1075 nm and it has a spectral resolution of
3.5 nm with a minimum sampling interval of 1.5 nm. The in situ spectra were collected in
each subplot in 1 m above the grass. In our study, all field-obtained grassland coverage
and spectral reflectance data were used during the sample selection when employing the
MESMA method.

3.2. Remote Sensing Imagery Acquisition and Data Processing

The Zhuhai-1 OHS imagery used in this study was acquired on 19 August 2020, and
downloaded at Level-1B processing from the Data Express website (Orbita). The data
pre-processing included layer stacking, radiometric calibration, and rational polynomial
coefficient orthorectification [45]. The geometric correction was conducted using the pro-
cessed Sentinel-2A images as the reference data, resulting in an error of fewer than 0.5 pixels.
In addition, because the Zhuhai-1 OHS imagery was acquired with a thin slump cloud,
we manually digitized the cloud and then masked the cloud area to reduce its influence.
We did not use a cloud masking algorithm since our study region is small and manually
masking the cloud can obtain higher accuracy [9]. Moreover, due to the high elevation
and great terrain relief of our study region, the VECA (Variable Empirical Coefficient Al-
gorithm) [46–48] topographic correction model was applied to all three satellite imageries.
After the above processing, all images were clipped to the study area boundary. Further-
more, the commonly used Sentinel-2 and Landsat 8 OLI imagery was also used in this
study to compare the ability of grassland fraction coverage mapping. Table 2 shows the
detailed information of the remote sensing imagery in our study.

Table 2. Remote sensing imagery used in our study.

Data Sources Acquisition Date Bands Spatial
Resolution (m)

Spectral
Resolution (nm)

Wavelength
Region (nm) Scenes

Landsat 8 OLI 25 August 2020 7 30 / 450~880, 1570~2290 2
Sentinel-2 17 September 2020 13 10 / 443~945, 1610~2190 4

Zhuhai-1 OHS 19 August 2020 32 10 2.5 400~1000 2

3.3. Land Use/Cover Datasets

Our study used two Land Use/Cover datasets as reference data (Table 3). The first
one is the China’s National Land Use and Cover Change (CNLUCC) dataset (Table 3) with
30 m spatial resolution which was developed by [49]. The overall accuracy is reported to
be higher than 90%, and the latest 2020 dataset was used in our study. The dataset was
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provided by the Data Center for Resources and Environmental Sciences, Chinese Academy
of Sciences (RESDC) (http://www.resdc.cn (accessed on 20 July 2022)) [49]. We resampled
the data to 10 m spatial resolution to match the spatial resolution of remote sensing imagery
used in the study, and extracted the grassland layer from the dataset as the reference
data. The second one is the 10 m spatial resolution global-scale land cover dataset: ESA
WorldCover 10 m 2020 v100 (ESA WorldCover) [50] (Table 3). The overall accuracy of this
dataset is 74.4 ± 0.1% for 2020 on a global scale, with the highest accuracy of 80.7% for
Asia. In terms of land cover types, tree cover and snow/ice, cropland, water body, and
bare/sparse vegetation classes had high accuracies, while shrubs, herbaceous wetland,
and moss/lichen classes were mapped with lower accuracies [51]. The selected land cover
types such as tree cover, shrubland, grassland, moss, and lichen from the ESA World Cover
dataset were merged into plants, and the left land cover types were merged into non-plants.
The selected high-density grassland, medium-density grassland, and low-density grassland
layers from the CNLUCC datasets were used to assess the accuracy of the sub-coverage
level unmixing results.

Table 3. Description of the two land use/cover datasets.

Data Source Spatial Resolution (m) Year Land Cover Types

CNLUCC 30 2020
Cultivated, forest, grassland (high-density grassland,

medium-density grassland, low-density grassland), water,
construction, and unused land

ESA WorldCover 10 2020
Tree cover, shrubland, grassland, cropland, built-up,

bare/sparse vegetation, snow and ice, permanent water bodies,
herbaceous wetland, mangroves, moss, and lichen

3.4. MESMA Method Procedure

Following previous studies [24,52,53], georeferenced polygons with metadata from the
field survey data and FROM-GLC10 were used to define the potential endmembers of the
land cover types included in our study area. The polygons with metadata were created with
the open-source add-on software Visualization and Image Processing for Environmental
Research (VIPER) Tools (v2.1) [54]. We selected the polygon samples in the Zhuhai-1 OHS,
Landsat 8, and Sentinel-2 images, respectively. Then, we generated three potential spectral
libraries with the polygons obtained from the endmembers of the three images.

To form the optimized spectral libraries, we used three techniques that have been used
in previous studies: (1) Endmember Average RMSE (root mean squared error) (EAR), which
selects the endmembers that yield the minimum RMSE within a class [55]; (2) Count-based
Endmember Selection (CoB), which determines the number of spectra modeled by an
endmember within their class (InCoB) and outside their class (OutCoB); and (3) Minimum
Average Spectral Angle (MASA), which selects the endmembers considering the minimum
average spectral angle criterion between each candidate endmember [56]. We followed the
approach suggested by Roberts [54], and we selected the optimized endmembers for each
ground component by firstly using the lowest EAR, then by the highest InCoB, and finally
the highest MASA value.

Once the final optimal spectral libraries were built and the selected endmembers
were identified, we regrouped the endmembers in two ways. The first one was at the
pixel scale, similar to the previous works [52,57]. These levels were organized into green
vegetation (GV), non-photosynthetic vegetation and soils (NPVS), and shade. The second
one was at the landscape scale, where we regrouped the endmembers to: low coverage
grassland (LCG), moderate coverage grassland (MCG), high coverage grassland (HCG),
and others (Oth). In this study, we enable different model complexities for each pixel to
be unmixed and use multi-level model complexity combinations as used in [52,57]. In this
study, we used a partially-constrained mode when conducting MESMA with the following
model selection criteria: 0 and 1 were defined as the minimum and maximum allowable
fraction values; 0 and 0.8 were set as the minimum and maximum permissible shade

http://www.resdc.cn
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fraction values, and 0.025 was defined as the maximum allowable RMSE. In the case where
several models fit these criteria, the model with the lowest overall RMSE was selected.
Furthermore, we defined 95% of a pixel as the lowest acceptance threshold for an unmixing
process. If the condition was unfulfilled, we repeated the unmixing process by adjusting
the endmember type and/or the number of the ground component spectra included in
the spectral libraries. Shade normalization was applied to the unmixed fraction images to
remove the contribution of the shade endmembers and to obtain more relative abundance
information of the non-shade endmembers [54].

3.5. Accuracy Assessment

The accuracy of the MESMA classification results was assessed by calculating a con-
fusion matrix that used independent validation samples. The validation samples in this
study are pixel-based firstly, the sample polygons were converted to points by using their
center point, then the point was converted to raster pixels, and the overlapping of the clas-
sified pixel, the referenced land use pixel, and the sample pixel were considered corrected
classified.

Following [58] and [53,59,60], the Overall Accuracy (OA), Producer’s Accuracy (PA)
(omission errors), User’s Accuracy (commission errors), and Kappa (K) statistics were
calculated. In addition, similar to Clark [61] and Quintano [52], Z statistics were computed
from K statistics and variance to compare the accuracy of the acquired unmixed grassland
coverages from each input data source. At the 95% confidence level, only Z ≥ 1.96 is
considered significant [58,62].

3.6. RMSE Distribution Analysis

We also analyzed the relationship between RMSE variations and topographic at-
tributes during the MESMA unmixing process. We divided the elevation by a 100 m
gradient from 3500 m to 5200 m in the study area. The aspect was divided into nine
groups as follows: <−1: flat; 0–22.5◦ and 337.5◦–360◦: north; 22.5◦–67.5◦: northeast;
67.5◦–112.5◦: east; 112.5◦–157.5◦: southeast; 157.5◦–202.5◦: south; 202.5◦–247.5◦: south-
west; 247.5◦–292.5◦: west; 292.5◦–337.5◦: northwest. The slope was divided by 10%
gradients to indicate the topographical relief. Version 3 of the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model
(DEM) (ASTER GDEM V3) dataset used in this study was obtained from Geospatial Data
Cloud (GDC, http://www.gscloud.cn (accessed on 10 December 2019)) at 30 m spatial
resolution, and clipped to the study area boundary.

4. Results
4.1. MESMA Classification

At the pixel scale, the mean image pixel percentages of MESMA unmixed for the
Zhuhai-1 OHS images were 98.5% and 99.1% with the 2-EM and 3-EM models, respectively;
and for the landscape scale, the percentages with the 2-EM, 3-EM, and 4-EM models
were 96.3%, 99.1%, and 98.6%, respectively. Furthermore, there are significant differences
between the 2-EM and 3-EM results at the pixel scale (p < 0.001), and among the 2-EM,
3-EM, and 4-EM results at the landscape scale (p < 0.001). In particular, the 3-EM model
results in the highest value of pixels classified for both the pixel scale, and landscape scale.
Table 4 includes the details of the unmixing results for the three images under different
model complexities.

At the pixel scale, the pixel unmixing percentage obtained from the Zhuhai-1 OHS
imagery was lower than that from the Landsat 8 OLI imagery but higher than that of
the Zhuhai-1 OHS imagery with the 2-EM models (Table 4); while when using the 3-EM
models, the Zhuhai-1 OHS imagery got the highest unmixed percentage (Table 4). At the
landscape scale, the pixel unmixed percentage obtained from the Zhuhai-1 OHS imagery is
higher than that from both the Landsat 8 OLI and Sentinel-2 imagery with the 3-EM and
4-EM models, but the pixel unmixed percentage obtained from Zhuhai-1 OHS imagery

http://www.gscloud.cn
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with the 2-EM models showed the same trend at the pixel scale. Therefore, based on our
results and previous studies [63,64], we used the 3-EM model unmixed fractions’ results in
the next analysis.

Table 4. Summary of MESMA unmixing results.

Model Complexity Landsat 8 OLI Sentinel-2 Zhuhai-1 OHS

Number of pixels classified and the overall percentage (%) classified in each image at pixel scale

2-EM
98.9 97.2 98.5

8,995,210 19,888,207 19,501,999

3-EM
98.5 97.5 99.1

8,960,561 19,946,983 19,613,810

Number of pixels classified and the overall percentage (%) classified in each image at landscape scale

2-EM models
97.6 95.1 96.3

8,870,491 19,469,101 19,066,003

3-EM models
98.5 96.6 99.1

8,954,389 19,762,221 19,611,130

4-EM models
95.6 94.3 98.6

8,696,568 19,302,190 19,520,686

Notes: EM: endmember.

Figures 3 and 4 show the shade-normalized fraction images derived from the Landsat
8 OLI, Sentinel-2, and Zhuhai-1 OHS images by MESMA with the 3-EM models in pixel
scale, and landscape scale, respectively. Regardless of the GV fraction or NPVO fraction,
the fractions obtained from the Landsat 8 OLI imagery had a stronger contrast with the
background, followed by the results from the Sentinel-2 imagery; the fraction results
obtained from the Zhuhai-1 OHS imagery had the lowest contrast.

Figure 3. Shade-normalized fraction images for pixel scale coverage. (a1–a3) GV fraction image
derived from Landsat 8 OLI, Sentinel-2, Zhuhai-1 OHS images, respectively; (b1–b3) NPVO fraction
image derived from Landsat 8 OLI, Sentinel-2, Zhuhai-1 OHS images, respectively; (c1–c3) RMSE
distribution images for Landsat 8 OLI, Sentinel-2, Zhuhai-1 OHS images, respectively.
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Figure 4. Shade-normalized fraction images for landscape scale. (a1–a3): HCG fraction images
derived from Landsat 8 OLI, Sentinel-2, Zhuhai-1 OHS images, respectively; (b1–b3): MCG fraction
images derived from Landsat 8 OLI, Sentinel-2, Zhuhai-1 OHS images, respectively; (c1–c3): LCG
fraction images derived from Landsat 8 OLI, Sentinel-2, Zhuhai-1 OHS images, respectively; (d1–d3):
Others fraction images derived from Landsat 8 OLI, Sentinel-2, Zhuhai-1 OHS images, respectively;
(e1–e3): RMSE distribution images for Landsat 8 OLI, Sentinel-2, Zhuhai-1 OHS images, respectively.

From Figure 4, we can see that the HCG fractions derived from Landsat 8 OLI imagery
(Figure 4(a1)) cover the largest area, followed by the results obtained from Sentinel-2
imagery (Figure 4(a2)) and Zhuhai-1 OHS imagery (Figure 4(a3)). The MCG and LCG
fraction results (Figure 4(b1–b3,c1–c3)) show the opposite trend. When looking at the
Others fraction results (Figure 4(d1–d3)), the Landsat 8 OLI and Sentinel-2 images show a
higher abundance than that of the Zhuhai-1 OHS imagery.

From visual inspection, at the pixel scale, we can see that the Zhuhai-1 OHS, Landsat
8 OLI, and Sentinel-2 imagery all have the ability to discriminate the vegetated and non-
vegetated areas, and we can clearly distinguish the built-up, riverbed, and road area in the
unmixing fraction (Figure 5(a1–a3)). Meanwhile, within the same land cover classes (GV
or NPVO), the objects were more clustered in the unmixed results of the Landsat 8 OLI
and Sentinel-2 imagery than in the Zhuhai-1 OHS imagery (Figure 5(a3)). However, at the
landscape scale, the results derived from the Zhuhai-1 OHS imagery performed better in
presenting detailed information on grassland coverage than that from Landsat 8 OLI and
Sentinel-2 imagery (Figure 5(b1–b3)) and (Figure S2(c1–c3,d1–d3)).
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Figure 5. Cont.
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Figure 5. Comparison of unmixed results derived from the Landsat 8 OLI, Sentinel-2, and Zhuhai-1
OHS images. (I) Full study area scene that includes subsequent comparison locations. (a1–a3) Zoomed
in view of point (a). (Top row are original images, and bottom row are unmixed results of different
image sources) for pixel scale results. Green represents the GV fraction, red represents the NPVO frac-
tion, and the black proportion represents the image pixels that were not unmixed. (b1–b3) Zoomed
in view of point (b) for landscape scale results. Red represents HCG fractions, green represents MCG
fractions, and blue represents LCG fractions. The black parts in the Zhuhai-1 OHS imagery were
cloud masked. For the detailed information for point (c) and point (d), please see Figure S2.

Spatially, we can see the high value-zone of the RMSE fraction for all three image sources
was clustered and distributed in the mountain area with high altitudes (Figure S3) and steep
slopes (Figure S4). Especially, the result from the Landsat 8 OLI imagery (Figure 3(c1)) is
the most obvious, and followed by the Landsat 8 OLI imagery, while the RMSE result from
the Zhuhai-1 OHS imagery (Figure 3(c3)) is more dispersed. Statistically, we can see from
Figure 6 that for all the three image sources, the RMSE value was rising with the elevation
and slope growth, but there are no obvious RMSE variations between the aspect changes
(Figure S5). As for the different data sources, the Zhuhai-1 OHS imagery obtained the highest
RMSE result during the unmixing process, followed by the Sentinel-2 imagery; the RMSE
result obtained from the Landsat 8 OLI imagery was kept at a low level.

4.2. Endmember Spectral Libraries

The georeferenced polygons from the fieldwork reference and the land use map
assisted us in finding the most suitable spectra of each land cover class in our study area.
Figure 7 provides an example of the selected endmember spectra for each category in the
three image sources. In Figure 7, we can see that in GV spectral libraries, the reflectance of
ground objects that appear in the Zhuhai-1 OHS imagery is higher than that of the Landsat
8 OLI and Sentinel-2 imagery; especially GV1 and GV2 (Figure 7c). For Landsat 8 and
Sentinel-2 imagery, the ability to discriminate detailed GV objects can extend from 875 nm
(NIR) bands to 2235 nm (SWIR) bands, while the Zhuhai-1 OHS imagery can only provide
a short spectral range, even though with more spectral bands than the Landsat 8 OLI and
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Sentinel-2 imagery. The shortage in band wavelength limited the discriminate ability of
the objects in the Zhuhai-1 OHS imagery. The NPVO ground objects showed a clustered
trend in all three imageries, and this phenomenon provided a good chance to distinguish
them from the GV objects, particularly in the Sentinel-2 imagery. At the landscape scale,
Zhuhai-1 OHS showed the best ability to distinguish the grassland and other objects for
wavelengths from 490 nm to 700 nm, LCG, HCG, and MCG in wavelengths from 800 nm to
900 nm, and it can capture the small differences between HCG and MCG in wavelengths
from 825 nm to 875 nm. This demonstrates the advantages of the high spectral resolution
of Zhuhai-1 OHS imagery, and it shows the ability of the hyperspectral data to discriminate
the ground objects even in short wavelengths.

Figure 6. Distribution of RMSE observed from various (a) elevations and (b) slope for the three
image sources. RZ

2, RS
2, and RL

2 are the R2 for the Zhuhai-1 OHS, Sentinel-2, and Landsat 8 OLI
imagery, respectively.

4.3. MESMA Classification Accuracy

At the pixel scale (Table 5), the OA was 91.1%, 88.0%, and 92.3% for Landsat 8 OLI,
Sentinel-2, and Zhuhai-1 OHS images, respectively. The highest PA (96.9%, 98.0%) and UA
(99.4%, 89.8%) for the GV and NPVO fractions were both obtained from the Landsat 8 OLI
imagery, respectively. The Sentinel-2 image provided the lowest PA (96.7%, 92.1%) and
UA (97.8%, 88.6%) for both GV and NPVO fractions. A significance test of the k-statistic
values for each image source (Z = 41.45, 32.05, and 39.12 respectively, all >1.96) indicates
that using all of the three images to estimate the plant cover with MESMA classification
can be utilized to make a plant coverage map with a 95% confidence level. The Z-test of the
MESMA classification (Z = 0.41, 0.41, and 0.86, respectively, all <1.96) showed that there is
no significant statistical difference among three images.

Table 5. The accuracy parameters for MESMA classification with 3-EM Landsat 8 OLI, Sentinel-2,
and Zhuhai-1 OHS. Images’ results at the pixel scale.

Accuracy Parameters Landsat 8 OLI Sentinel-2 Zhuhai-1 OHS

GV NPVO GV NPVO GV NPVO
PA (%) 91.1 90.9 85.5 96.8 92.1 93.1
UA (%) 97.3 73.8 99.0 65.0 98.0 76.6
OA (%) 91.1 88.0 92.3

k-statistic 0.76 0.70 0.79
Zk-statistic 20.8 17.9 23.6

ZL8-S2-statistic 0.7
ZL8-ZOHS-statistic 0.7
ZS2-ZOHS-statistic 1.86

Notes: PA: producer’s accuracy; UA: user’s accuracy; OA: overall accuracy; GV: green vegetation; NPVO: non-
photosynthetic vegetation and other components in the study area. s for each data source was to confirm that
wheatear the classification based on these data sources is meaningful, and the Z-statistic between each data source
was to reveal that wheatear the classification between each two data sources is significantly different from each other.
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Figure 7. Example endmember spectra from the final optimized spectral libraries. (a–c) Green
vegetation spectral libraries at the pixel scale coverage from Landsat 8 OLI, Sentinel-2, and Zhuhai-1
OHS images, respectively; (d–f) Non-photosynthetic vegetation and other components spectral
libraries at the pixel scale coverage from Landsat 8 OLI, Sentinel-2, and Zhuhai-1 OHS images,
respectively; (g–i) HCG, MCG, LCG and Others spectral libraries at the landscape scale from Landsat
8 OLI, Sentinel-2, and Zhuhai-1 OHS images, respectively.

Regarding the landscape scale (Table 6), the OA was 78.9%, 76.2%, and 83.7% for the
Landsat 8 OLI, Sentinel-2, and Zhuhai-1 OHS images respectively, lower than that of the
pixel scale coverage for all image sources. The highest PA for HCG (79.3%) and LCG (60.3%)
were obtained from the Landsat 8 OLI and Sentinel-2 imagery, respectively; the highest PA
for MCG (100 %) and Others (95.2%) were both derived from the Zhuhai-1 OHS imagery,
respectively. The highest UA for HCG (75.0%) and MCG (80.0%) were obtained from the
Sentinel-2 and Landsat 8 OLI imagery, respectively; and the highest UA for LCG (95.0%)
and Others (90.9%) were both derived from the Zhuhai-1 OHS imagery, respectively. The
Others acquired the highest PA and UA both internally for each image source and across
image types, followed by MCG, and HCG with a moderate PA and UA. The Z-test showed
that all the three classification results were statistically significant at a 95% confidence level
(Z = 19.1, 20.3, 26.6 > 1.96). The Z-test value between each two image sources’ k-statistic
revealed no statistical differences for the MESMA classification results derived from the
Landsat 8 OLI imagery and Sentinel-2 imagery (Z = 0.1 < 1.96). However, the classification
results showed significant statistical differences between either the Zhuhai-1 OHS imagery
and Landsat 8 OLI imagery (Z = 2.4 > 1.96), or the Zhuhai-1 OHS imagery and Sentinel-2
imagery (Z = 2.3 > 1.96).
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Table 6. Summary of accuracy parameters for MESMA classification with 3-EM model complexity
Landsat 8 OLI, Sentinel-2, and Zhuhai-1 OHS images’ results at the landscape scale.

Accuracy
Parameters Landsat 8 OLI Sentinel-2 Zhuhai-1 OHS

HCG MCG LCG Others HCG MCG LCG Others HCG MCG LCG Others

PA (%) 69.5 68.8 43.8 79.4 60.9 76.4 55.6 80.8 60.8 92.0 54.4 88.4
UA (%) 54.0 70.7 55.3 83.3 70.0 63.2 59.3 82.5 63.3 76.2 78.7 84.3
OA (%) 68.7 70.0 77.4

k-statistic 0.57 0.60 0.69
Zk-test 15.3 16.8 21.1

ZL8-S2-statistic 0.5
ZL8-ZOHS-statistic 2.4
ZS2-ZOHS-statistic 1.92.3

Notes: PA: producer’s accuracy; UA: user’s accuracy; OA: overall accuracy; HCG: high coverage grassland; MCG:
moderate coverage grassland; LCG: low coverage grassland; Others: dry and dead grass, river band, and other
non-plant components in our study area. Zk-statistic for each data source was to confirm that wheatear the
classification based on these data sources is meaningful, and the Z-statistic between each data source was to reveal
that wheatear the classification between each two data sources is significantly different from each other.

5. Discussion
5.1. MESMA Endmember Selection and Model Performance

Both at the pixel scale, and landscape scale, with either the 2-EM, 3-EM, or 4-EM
models, the mean percentage of the image pixels classified by MESMA using Landsat 8 OLI,
Sentinel-2, and Zhuhai-1 OHS images exceeded 95% with an RMSE value smaller than
0.025. More specifically, this percentage exceeded 98% for the 3-EM models. One of the
main reasons for this high percentage of unmixed pixels was the appropriate candidate
endmember selection approach used to construct the spectral library. As a previous study
mentioned, the successful application of linear pixel unmixing must satisfy several condi-
tions for the selected endmembers, such as the linear independency of the spectra, their
representativeness, and approximate constant-ness over the scene, their high number, and
their identifiability [65]. Furthermore, the way in which the endmembers were organized,
such as in GV, NPV, and other components of the study area used by [52,66] in their studies
to identify forest burn severity in the Mediterranean region obtained a pixel unmixing
percentage overall 99%. Consequently, the accurate pixel scale coverage and landscape
scale for the alpine grassland ecosystem were acquired from the fraction images.

Although the results indicate that both the Landsat 8 OLI, Sentinel-2, and Zhuhai-1
OHS images have an excellent performance (mean percentage of image pixel classified
exceeding 95%) in the unmixing procedure, there were differences in the ability to dis-
criminate the grassland coverages. Similar results are also mentioned in the previous
studies [63,64], where obtaining a high pixel unmixing percentage, the classification accu-
racy can be low as well. All this indicates that in the simple land surface cover unmixing
cases (e.g., GV, NPVO, and shade), multispectral imagery combined with the appropriate
model complexity (3-EM) can obtain almost the same high-performance unmixing result as
hyperspectral imagery (Table 4). Moreover, we saw that hyperspectral imagery can even
achieve a lower unmixed percentage (2-EM) than multispectral imagery (Table 4). One of
the possible reasons for this could lay in the simple landcover combinations. Hyperspectral
imagery provides a high number of spectral bands (Zhuhai-1 OHS provided 32 bands)
and could cause much easier spectral confusion between objects, which would not exist in
multispectral imagery’s classic spectral band combinations. Nevertheless, in more complex
land cover unmixing (e.g., HCG, MCG, LCG, Others, and shade), the high number of
spectral bands provided by the hyperspectral imagery allows for more sensitivity to the
specific unmixing objective, and performs better than the multispectral imagery (Table 4).
Furthermore, we found that a more complex model does not necessarily lead to better
unmixed results. Previous studies have suggested that natural and disturbed systems
are best modeled by two or three models [64,67–69]. Hence, a higher model complexity
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should only be selected when the error decrease related to complexity exceeds a specific
threshold [70,71].

At the pixel scale, the overall accuracy for all three image sources exceeded 95%. While
at the landscape scale, the overall accuracy for all three image sources was above 75%. Thus,
the overall accuracy for all three image sources decreased compared to that at the pixel scale.
The overall accuracy of the Sentinel-2 imagery had the most significant decline, dropping
by 19.5%, followed by the Landsat 8 OLI imagery, which decreased by 18.3%. The Zhuhai-1
OHS imagery had the lowest decline, which was only 13.0%. All this demonstrates the
differences in the ability to model the details of land cover types between multispectral and
hyperspectral images. At the pixel scale, we only grouped the endmembers into two types;
therefore, the endmembers are more clustered within one type. When we regroup the
endmembers into four categories at the landscape scale, the lower number of spectral bands
provided by multispectral imagery may not be able to discriminate the minor differences
between the different categories. In contrast, the hyperspectral imagery with more spectral
bands can provide more sensitivity in distinguishing the minor differences between the
different categories.

When we compare the producer’s and user’s accuracy of different categories at the
landscape scale; we find that low coverage grassland obtained the lowest producer’s
accuracy in all three image sources, and a relatively lower user’s accuracy in the Landsat
8 OLI imagery as well. This agrees with the studies of [63,72,73] who observed a lower
accuracy for low coverage land cover types. According to our field survey and prior
knowledge about the research area, one of the main reasons for low classification accuracy
in the low coverage alpine grassland region is that, in this region, there is a large proportion
of bare land coverage, causing the soil background to have a stronger effect than the low
coverage alpine grassland within one image pixel. This made the low coverage grassland
spectra weak and influenced by bare ground (Figure 2e). On the other hand, the few spectral
bands provided by the multispectral imagery are also one of the reasons, combined with its
low spectral resolution which highlighted the shortcomings. For the hyperspectral imagery
used in our study, although the Zhuhai-1 OHS imagery provided more spectral bands
(32 bands) and a higher spectral resolution (2.5 nm), the spectrum scope only ranged from
466 nm to 940 nm, and there was no spectral information provided in the shortwave region.
As for the spatial resolution, the 15 m, 10 m, and 10 m spatial resolution of the Landsat
8 OLI, Sentinel-2, and Zhuhai-1 OHS imagery, respectively, may not have the capability
to capture a small patch of the low coverage alpine grassland which has a fragmented
distribution over the region.

In addition, the spatial distribution of the results with the Landsat 8 OLI imagery and
Sentinel-2 imagery showed a concentrated pattern; the same class is always present as a
large patch, showing a sudden transition and clear boundary between different coverage
levels, while the results derived from the Zhuhai-1 OHS imagery showed a staggering
spatial distribution; the transitions between different coverage levels were smoother, which
correspond more to the natural state of the alpine grassland distribution. These also agree
with the accuracy assessment results at the landscape scale (Section 4.3), which demonstrated
that at the landscape scale with more land cover types, hyperspectral imagery can provide
more detailed information than multispectral imagery with the MESMA method.

5.2. RMSE Distribution

Because the whole area is situated high above sea level, in this study, we found a
significant increase in the RMSE along with a variation in the elevation and slope form of
the Landsat 8 OLI and Zhuhai-1 OHS imagery (Figure 6). This was particularly true in
areas with strong topographic relief. We found a strong statistical relationship between the
RMSE results from the Zhuhai-1 OHS (R2 = 0.98) and Landsat 8 OLI imagery (R2 = 0.97)
and variations in the slope. The relationship between the RMSE results from the Zhuhai-1
OHS (R2 = 0.68) and Landsat 8 OLI imagery (R2 = 0.74) and the elevation change were also
significant (Figure 6). This was consistent with previous spatial results (Section 4.2).
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From this perspective, combined with our experience and results, we have confidence
in saying that the variation in elevation and slope have a strong influence on the RMSE
distribution, especially as measured by Zhuhai-1 OHS and Landsat 8 OLI imageries. How-
ever, previous studies have investigated factors influencing the accuracy of the DEM data
(either SRTM DEM or ASTER GDEM [74–80]). These have reported that the main factors
were topographic (slope angle and slope aspects) and vegetation (mainly forests). Szabó
et al. [74] found that the DEM models had a significant bias compared to the same cross
section of CLTIN, but the magnitude was greater in the forested area than the no-forested
area. On gentle slopes, the deviation was smaller than on the steeper slopes, and ridges
had larger vertical biases than valleys.

Slope aspects also had a significant effect on the accuracy. The SRTM models had
the smallest bias on the south-facing slope, while for the ASTER GDEM, the western
slopes were the most accurate. ASTER GDEM had an aspect dependency on easterly
directions; the slope and GDEM were positively related. Vegetation can alter the terrain
height, which is challenging for the DEM accuracy and affects the RMSE results. However,
it has also been shown that although the accuracy of DEM can be affected by topography,
the errors were less than the dataset planned errors. These authors further suggested
that the vegetation (mainly forests) also affects the accuracy of the DEM dataset [74].
However, in our study, forests are assent and the ground surface is mainly covered by
alpine grassland and sparse shrubs. Therefore, the effects of vegetation to the accuracy of the
DEM dataset were excluded and we consider that our DEM was able to meet the analytical
requirements. Topographical correction is highly recommended when conducting research
in a topographic relief region [9]. However, where there are differences in the image sources
and terrain conditions, we also expect that future MESMA-based research in different
landscapes could provide a better understanding of the RMSE distribution in broader data
resources and locations.

Expect for the topography and DEM dataset itself which may affect the RMSE distribu-
tion, the other factor that impacts the RMSE distribution is the ground truth data we used
during the unmixing procedure, because the ground truth data collection and framework
design has a direct effect on the subsequent steps, such as image processing, classification,
and result analysis [81]. In this study, the field data collected was used as a reference in
the endmember selection stage, and the selected endmember was then used as the image
unmixing sample, while the RMSE was generated during the image unmixing process.
Therefore, from this perspective, the RMSE was affected by the field data used in this study.
A previous study [82] has pointed out that the insufficient ground truth data may limit the
accuracy result. Furthermore, the sample point distribution during the field data collection
will also have an influence on the final result, such as being too close together between two
sample points which will cause spatial auto-correlation, while too far apart in each point
may lead to low representation. In addition, the location of the sample point is also an
issue in field data collection; in the complex terrain area, if all the points are located in the
flattened area, the mountain area will lack ground truth data and lead to a high error area,
just like the RMSE distribution in our study. However, even though we have a high error
area in the mountain part, we have no obvious evidence to conclude that the high error
area was caused by a lack of ground truth datal; due to the high elevation in this region, we
cannot reach to the mountain area to collect ground truth data, but in the future, a similar
study that is conducted in the low altitude area may validate this.

6. Conclusions

This study explored the MESMA method to map the alpine grassland fraction coverage
with the latest Zhuhai-1 OHS imagery. The results showed that the Zhuhai-1 OHS imagery
can obtain a high image pixel unmixing percentage at both the pixel scale and landscape
scale. The mean OA of the MESMA classification obtained at the pixel scale (96.5%) was
significantly higher than that in the landscape scale (78.61%). Meanwhile, we observed
different percentages of image pixel unmixed and accuracy for different image sources with
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the MESMA method under different model complexities. The overall conclusions from this
study are (1) the Zhuhai-1 OHS in our research or hyperspectral imagery can provide a better
performance to map both the pixel scale and landscape scale of vegetation in an area of interest;
(2) Landsat 8 OLI or multispectral imagery can also meet the requirements of research work
to discriminate vegetation and non-vegetation cover in the area of interest when combined
with a suitable MESMA model complexity, such as the 3-EM model in this research; (3) from
our analysis of the RMSE in the MESMA unmixing procedure, we have obtained apparent
statistical evidence that reveals the relationship between RMSE and topographic relief. Hence,
imagery terrain correction was highly recommended when conducting similar research in the
region with rough terrains, such as in QTP and mountain areas.

In this study, we compared the ability of hyperspectral imagery (Zhuhai-1 OHS) and
multispectral imagery (Landsat 8 OLI and Sentinel-2) to map the fraction coverage of alpine
grassland in the TRHR, and investigated the relationship between RMSE in the MESMA
unmixing procedure and the topographic factors. The results acquired in this study can
be used as the reference in making an alpine grassland conservation plan; the approaches
and workflow to mapping the alpine grassland in this study can also be applied to help
monitor grassland degradation in other grassland ecosystems. However, there are still some
limitations in this study, such as that the acquisition date of Sentinel-2 images used in this
study were about one month later than Zhuhai-1 OHS and Landsat 8 OLI, the accuracy of
the DEM dataset used to analysis the RMSE distribution were also affected by topographic
and vegetation factors, and the wavelength of the Zhuhai-1 OHS hyperspectral imagery
used in this study were limited to 400–1000 nm; these limitations may have potentially
impacted the accuracy of the results in our study. Therefore, in future work, more images
that are in the same or closer time period can be used in the study, analysis of the DEM
dataset accuracy can be performed prior to the application, and more advanced approaches
such as deep learning could be applied to the grassland fraction coverage mapping.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15092289/s1, Figure S1: Sample plot structure. 30 m by 30 m sample
plot, the blue quadrats are nine 1 m by 1 m independent subplots set in four directions extending from
the center of the sample plots; Figure S2: Comparison of unmixing results derived from Landsat 8 OLI,
Sentinel-2, and Zhuhai-1 OHS images. (a) Full study area scene il-lustrating comparison locations a, b,
c and d. Panel “c” is detail of area “c”, and panel “d” is detail of area “d” where the top row is original
imagery, and bottom row is unmixed imagery from indicated sources at the landscape scale. Red is the
HCG fraction, green is the MCG fraction, and blue is the LCG fraction. The black area in the Zhuhai-1
OHS image was could masked. For detailed information for c and d see Figure S2; Figure S3: RMSE
distribution of the three image sources. Digital Elevation Model (DEM) of the study region (a). RMSE
from Landsat 8 OLI imagery (b). RMSE from Sentinel-2 imagery (c), and RMSE from Zhuhai-1 OHS
imagery (d); Figure S4: RMSE distribution of the three image sources. Slope of the study region derived
from the DEM (a). RMSE from Landsat 8 OLI imagery (b). RMSE from Sentinel-2 imagery (c), and
RMSE from Zhuhai-1 OHS imagery (d); Figure S5: Distribution of RMSE observed from various aspect
for Zhuhai-1 OHS, Sentinel-2, and Landsat 8 OLI imagery, respectively.
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