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Abstract: The widely spread alpine grassland ecosystem in the Three River Headwaters Region 

(TRHR) plays an essential ecological role in carbon sequestration and soil and water conservation. 

In this study, we test the latest high spatial resolution hyperspectral (Zhuhai-1 OHS) remote sensing 

imagery to examine different alpine grassland coverage levels using Multiple Endmember Spectral 

Mixture Analysis (MESMA). Our results suggest that the 3-endmember (3-EM) MESMA model can 

provide the highest image pixel unmixing percentage, with a percentage exceeding 97% and 96% 

for pixel scale and landscape scale, respectively. The overall accuracy shows that Zhuhai-1 OHS 

imagery obtained the highest overall accuracy (83.7%, k = 0.77) in the landscape scale, but in the 

pixel scale, it is not as good as Landsat 8 OLI imagery. Overall, we can conclude that the hyperspec-

tral imagery combined 3-EM MESMA model performs better in both pixel scale and landscape scale 

alpine grassland coverage mapping, while the multispectral imagery with the 3-EM MESMA model 

can satisfy requirements of alpine grassland coverage mapping at the pixel scale. The approaches 

and workflow to mapping alpine grassland in this study can help monitor alpine grassland degra-

dation; not only in the Qinghai–Tibetan Plateau (QTP), but also in other grassland ecosystems. 
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Three River Headwaters Region 

 

1. Introduction 

Grassland ecosystem is one of the most critical and widespread terrestrial ecosystems 

worldwide [1–3], covering 20–40% of the Earth’s ice-free land surface [4–6]. The Qinghai–

Tibetan Plateau (QTP) holds the largest alpine grassland ecosystem in the world [7,8], 

sheltering a rich diversity of flora and fauna [9]. However, research suggests that up to 

90% of the grasslands on the QTP have been degraded [10] due to human activities and 

climate change [4,11,12]. Therefore, monitoring the status of QTP’s grasslands, especially 

the alpine grasslands, under current global climate change is particularly important. 

Traditionally, a grassland coverage assessment relies heavily on field investigation 

[13]; but field studies primarily focus more on small-scale areas and short-term periods, and 

are labor and time consuming and expensive; furthermore, due to the enormous spatial ex-

tent, remoteness, high elevation, and harsh environment on the QTP, it is inefficient for 

large-scale alpine grassland coverage mapping and monitoring [12]., Remote sensing tech-

niques offer an effective and economical alternative approach for gathering spatial time-
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series data for monitoring and mapping the alpine grassland coverage in this area 

[7,9,14,15]. 

Previous studies to map the alpine grassland coverage on the QTP have relied on 

coarse resolution and multispectral remote sensing data, to generate contextual infor-

mation such as the Vegetation Index (VI) derived from MODIS and AVHRR-NDVI data. 

The study in [12] utilized the MODIS MCD 43A4 product to explore the grassland degra-

dation on the Qinghai–Tibetan Plateau, and found that high spatial heterogeneity is better 

to indicate grassland degradation than that of low vegetation cover; another study [16] 

used every-10-day AVHRR-NDVI and every-10-day MODIS-NDVI data to assess the al-

pine grassland degradation index in Northern Tibet, and captured a very serious degra-

dation situation in this area; the study in [17] use MODIS VI products (MOD13Q1) to 

model alpine grassland cover in the headwater region of the Huanghe River, and the re-

sult showed that MODIS NDVI data outperforms MODIS EVI data for modeling grass-

land cover in this area. These studies successfully obtained the appropriate result in grass-

land cover mapping; however, the coarse resolution and fee bands of these datasets 

(AVHRR-NDVI with a 8 km × 8 km spatial resolution, MCD43A4 with 500m, and 

MOD13Q1 with 250 m spatial resolution) can only provide a coarse resolution and general 

cover information in a very large scale (such as whole QTP), but are inferior in exploring 

more finer grassland cover in a more specific area. 

Some image analysis techniques such as Linear Spectral Unmixing (LSU) and Spec-

tral Angle Mapper (SAM) [7,18], and machine-learning techniques such as Random Forest 

Regression (RF), Support Vector Machine Regression (SVMR), and Partial Least Squares 

Regression (PLSR) have also been used to derive plant coverage from finer resolution re-

motely sensed images in previous studies and achieved high accuracy [19–21]. However, 

the results based on these methods were established on the use of extensive training sam-

ples [22] or the use of single hyperspectral and multispectral data; however, collecting 

adequate ground validation samples in the QTP area is unfeasible and multispectral data 

are unable to match the combined advantages of high-resolution and hyperspectral re-

mote sensing data.. 

As an extension of the simple SMA (Spectral Mixture Analysis) approach, Multiple 

Endmember Spectral Mixture Analysis (MESMA) decomposes each pixel using different 

combinations of potential endmembers (model). This permits the number and types of 

endmembers to vary on a per-pixel basis, generating more reliable unmixing results for 

imageries with higher inter- and intra- endmember variance. In this way, the model with 

the lowest RMSE is selected to unmix each image pixel, resulting in the best fit across the 

entire image pixel [23–25], while there have been many studies that have monitored range-

land degradation in the Three River Headwaters Region (TRHR) [1,15,26]. However, few 

have used the MESMA method to investigate alpine grassland cover in the TRHR. There-

fore, for reasons described, we proposed using the potential for the latest high-resolution 

hyperspectral data, Zhuhai-1 Orbita Hyperspectral (Zhuhai-1 OHS) imagery, analyzed 

using the MESMA method as a novel approach to large-scale TRHR monitoring. 

The Zhuhai-1 OHS data have a swath width greater than 150 km and measuring 32 

spectral bands at 10 m spatial and 2.5 nm spectral resolution, with the spectral wavelength 

ranging from 466 nm to 940 nm [27,28]. Due to its combined high spatial and spectral 

resolution, Zhuhai-1 OHS has been applied in a range of fields, including water resources 

monitoring [29], land cover mapping [27,30], vegetation monitoring [31], carbon seques-

tration monitoring [32], and soil moisture estimation [33], but has not been used in alpine 

grassland monitoring in the QTP region. 

Therefore, the objective of this research is to investigate and evaluate the ability of the 

latest Zhuhai-1 OHS hyperspectral imagery in distinguishing the plant and non-plant at 

pixel scale, and mapping the alpine grassland fraction coverage at the landscape scale (i.e., 

high coverage, moderate coverage, and low coverage) level using the MESMA method in 

the TRHR. 
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2. Study Area 

The TRHR (89°22′42″~102°14′10″E, 31°35′16″~36°15′31″N) lies in northwest China, the 

hinterland of the QTP (Figure 1), and is a critical ecological barrier of China. This region 

also refers to the source of the Yangtze River, Yellow River, and Lancang River, known as 

the “China Water Tower”. The TRHR covers an area of approximately 358,000 km2, with 

an average elevation of 4500 m above sea level. Due to the high altitude, the natural envi-

ronmental conditions in TRHR are harsh, fragile, and sensitive to climate change [17], 

making it one of China’s most important ecological function zones [34]. The climate of the 

TRHR is dominantly continental, the annual average temperatures ranging approxi-

mately from −6 °C to 4 °C, with significant diurnal temperature differences, and annual 

precipitation ranging from 260 mm to 780 mm which is highly variable in space and time. 

Approximately 80% of its annual precipitation falls from June to August, which is the peak 

of the growing season [15,17,35]. Our study area is located in the eastern TRHR (Figure 

1), which is in the transition zone between the Animaqing Mountains and Zhaling–Eling 

Lake; two crucial ecozones in the Qinghai–Tibetan Plateau. 

In the TRHR, grassland ecosystems occupy over 65% of the land area [15,36]. Aline 

grassland, comprised of the alpine steppe (Figure 2a) and alpine meadow (Figure 2b), is 

the main grasslands cover type in this region. Alpine meadows occupy most of the natural 

grassland in the TRHR (72.15%). Because of the high grass quality, and richness in grass 

nutrition, alpine meadows are excellent pastures with high utilization value in the TRHR 

[36–38]. The alpine steppe only accounts for 21.44% of the grassland area in this region 

[37–39]. Alpine grassland in this area not only plays a critical role due to the ecosystem 

services it provides for the TRHR, but it is also an essential resource that supplies over 

90% of local residents’ subsistence, such as grazing activities. Table 1 shows the dominant 

species, their distribution area, and the proportion of the alpine meadows and alpine 

steppe in the TRHR. Figure 2 shows the typical alpine grassland landscape in the TRHR. 

 

Figure 1. (a) Location of the TRHR at global scale, (b) location of the study area in the TRHR, (c) the 

Zhuhai-1 OHS imagery cover, and (d) locations of the sample sites and study area images of Zhuhai-

1 OHS (b27: 866 nm, b13: 656 nm, b6: 550 nm). The Tibetan Plateau boundary comes from Zhang et 

al. (2021). 
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Figure 2. Photographs of the investigated alpine grasslands in the TRHR. (a) Picture of non-de-

graded grassland in southern Qumalai County in August 2019 showing a typical alpine steppe land-

scape. (b) Picture of a non-degraded alpine meadow in southeastern Zhiduo County in August 2019 

showing an alpine meadow landscape, the animals in the picture are Yak, one of the most common 

grazing livestock of native Tibetan residents. (c) Picture of the high coverage alpine grassland in 

southern Qumalai County in August 2017. (d) Picture of the moderate coverage of alpine grassland. 

(e) Picture of the low coverage alpine grassland. (f) Picture of shrub cover in August 2017. All the 

pictures above were obtained by our research group. Picture (a,b) were taken by smartphone; (c–f) 

were taken by DJI Phantom 4 PRO; (d–f) were taken in northeastern Maduo County in August 2017. 
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Table 1. The dominant species, distribution area, and proportion of the alpine grassland in the 

TRHR. 

Cover Type Dominant Species Co-Occurring Species Distributed Area Elevation (m) Proportion References 

Alpine mead-

ows 

Kobresia pygmaea, 

Kobresia humilis, 

Kobresia capillifolia 

Herbarum variorum, 

Stipa aliena, Ptilagrostis 

spp., and Poa spp. 

Southwest, cen-

tral south, and 

east part of the 

TRHR 

3000~4800 72.15% 

[37–40] 

Alpine steppe 

Stipa purpurea, 

Carex moorcroftii, 

Brylkinia caudata 

Herbarum variorum, Poa 

spp., and Leymus secal-

inus 

West and north-

west of the 

TRHR 

3800~4600 21.44% 

3. Materials and Methods 

3.1. In-Situ Grassland Coverage Collection 

A field survey was conducted between 2017 and 2019 during the peak growing sea-

son (mid-August). We set our sample plots in typical alpine grassland communities with 

homogeneous growth status. Previous studies have indicated correlations between settle-

ments and plant coverage [41]. Therefore, all of our sample plots were set a minimum of 

5 km far away from the settlement points to reduce the impact of human activities. In each 

investigated site, we set a 30 m by 30 m sample plot and kept at least a 100 m distance 

apart from each other to minimize the spatial autocorrelation between the sample plots 

[42–44]. For each sample plot, nine 1 m by 1 m independent subplots were set in four 

directions extending from the center of the sample plots (Figure S1). In addition, all the 

sample sites were at least 100 m away from roads and rivers to reduce their influence. 

Grassland type, dominant grass species, grassland coverage, and coordinates information 

with an accuracy of ~0.5 m, including latitude, longitude, and altitude, were collected in 

each subplot. The grassland coverage in each subplot was averaged to represent the sample 

plot’s grassland coverage. In total, 63 sample plots were obtained in this study (Figure 1b). 

In this study, we also collected in situ spectra to correct the spectra derived from 

satellite images by using the SVC-HR 512i Hand-Held spectrometer. The spectral reflec-

tance value of this spectrometer ranges from 350–1075 nm and it has a spectral resolution 

of 3.5 nm with a minimum sampling interval of 1.5 nm. The in situ spectra were collected 

in each subplot in 1 m above the grass. In our study, all field-obtained grassland coverage 

and spectral reflectance data were used during the sample selection when employing the 

MESMA method. 

3.2. Remote Sensing Imagery Acquisition and Data Processing 

The Zhuhai-1 OHS imagery used in this study was acquired on 19 August 2020, and 

downloaded at Level-1B processing from the Data Express website (Orbita). The data pre-

processing included layer stacking, radiometric calibration, and rational polynomial coef-

ficient orthorectification [45]. The geometric correction was conducted using the processed 

Sentinel-2A images as the reference data, resulting in an error of fewer than 0.5 pixels. In 

addition, because the Zhuhai-1 OHS imagery was acquired with a thin slump cloud, we 

manually digitized the cloud and then masked the cloud area to reduce its influence. We 

did not use a cloud masking algorithm since our study region is small and manually mask-

ing the cloud can obtain higher accuracy [9]. Moreover, due to the high elevation and great 

terrain relief of our study region, the VECA (Variable Empirical Coefficient Algorithm) 

[46–48] topographic correction model was applied to all three satellite imageries. After the 

above processing, all images were clipped to the study area boundary. Furthermore, the 

commonly used Sentinel-2 and Landsat 8 OLI imagery was also used in this study to com-

pare the ability of grassland fraction coverage mapping. Table 2 shows the detailed infor-

mation of the remote sensing imagery in our study. 

  



Remote Sens. 2023, 15, 2289 6 of 22 
 

 

Table 2. Remote sensing imagery used in our study. 

Data Sources Acquisition Date Bands 
Spatial  

Resolution (m) 

Spectral  

Resolution (nm) 

Wavelength  

Region (nm) 
Scenes 

Landsat 8 OLI 25 August 2020 7 30 / 450~880, 1570~2290 2 

Sentinel-2 17 September 2020 13 10 / 443~945, 1610~2190 4 

Zhuhai-1 OHS 19 August 2020 32 10 2.5 400~1000 2 

3.3. Land Use/Cover Datasets 

Our study used two Land Use/Cover datasets as reference data (Table 3). The first 

one is the China’s National Land Use and Cover Change (CNLUCC) dataset (Table 3) with 

30 m spatial resolution which was developed by [49]. The overall accuracy is reported to 

be higher than 90%, and the latest 2020 dataset was used in our study. The dataset was 

provided by the Data Center for Resources and Environmental Sciences, Chinese Acad-

emy of Sciences (RESDC) (http://www.resdc.cn (accessed on 20 July 2022)) [49]. We 

resampled the data to 10 m spatial resolution to match the spatial resolution of remote 

sensing imagery used in the study, and extracted the grassland layer from the dataset as 

the reference data. The second one is the 10 m spatial resolution global-scale land cover 

dataset: ESA WorldCover 10 m 2020 v100 (ESA WorldCover) [50] (Table 3). The overall 

accuracy of this dataset is 74.4 ± 0.1% for 2020 on a global scale, with the highest accuracy 

of 80.7% for Asia. In terms of land cover types, tree cover and snow/ice, cropland, water 

body, and bare/sparse vegetation classes had high accuracies, while shrubs, herbaceous 

wetland, and moss/lichen classes were mapped with lower accuracies [51]. The selected 

land cover types such as tree cover, shrubland, grassland, moss, and lichen from the ESA 

World Cover dataset were merged into plants, and the left land cover types were merged 

into non-plants. The selected high-density grassland, medium-density grassland, and 

low-density grassland layers from the CNLUCC datasets were used to assess the accuracy 

of the sub-coverage level unmixing results. 

Table 3. Description of the two land use/cover datasets. 

Data Source Spatial Resolution (m) Year Land Cover Types 

CNLUCC 30 2020 

Cultivated, forest, grassland (high-density grassland, medium-den-

sity grassland, low-density grassland), water, construction, and un-

used land 

ESA WorldCover 10 2020 

Tree cover, shrubland, grassland, cropland, built-up, bare/sparse 

vegetation, snow and ice, permanent water bodies, herbaceous wet-

land, mangroves, moss, and lichen 

3.4. MESMA Method Procedure 

Following previous studies [24,52,53], georeferenced polygons with metadata from 

the field survey data and FROM-GLC10 were used to define the potential endmembers of 

the land cover types included in our study area. The polygons with metadata were created 

with the open-source add-on software Visualization and Image Processing for Environ-

mental Research (VIPER) Tools (v2.1) [54]. We selected the polygon samples in the 

Zhuhai-1 OHS, Landsat 8, and Sentinel-2 images, respectively. Then, we generated three 

potential spectral libraries with the polygons obtained from the endmembers of the three 

images. 

To form the optimized spectral libraries, we used three techniques that have been 

used in previous studies: (1) Endmember Average RMSE (root mean squared error) 

(EAR), which selects the endmembers that yield the minimum RMSE within a class [55]; 

(2) Count-based Endmember Selection (CoB), which determines the number of spectra 

modeled by an endmember within their class (InCoB) and outside their class (OutCoB); 

and (3) Minimum Average Spectral Angle (MASA), which selects the endmembers 
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considering the minimum average spectral angle criterion between each candidate 

endmember [56]. We followed the approach suggested by Roberts [54], and we selected 

the optimized endmembers for each ground component by firstly using the lowest EAR, 

then by the highest InCoB, and finally the highest MASA value. 

Once the final optimal spectral libraries were built and the selected endmembers 

were identified, we regrouped the endmembers in two ways. The first one was at the pixel 

scale, similar to the previous works [52,57]. These levels were organized into green vege-

tation (GV), non-photosynthetic vegetation and soils (NPVS), and shade. The second one 

was at the landscape scale, where we regrouped the endmembers to: low coverage grass-

land (LCG), moderate coverage grassland (MCG), high coverage grassland (HCG), and 

others (Oth). In this study, we enable different model complexities for each pixel to be 

unmixed and use multi-level model complexity combinations as used in [52,57]. In this 

study, we used a partially-constrained mode when conducting MESMA with the follow-

ing model selection criteria: 0 and 1 were defined as the minimum and maximum allowa-

ble fraction values; 0 and 0.8 were set as the minimum and maximum permissible shade 

fraction values, and 0.025 was defined as the maximum allowable RMSE. In the case where 

several models fit these criteria, the model with the lowest overall RMSE was selected. 

Furthermore, we defined 95% of a pixel as the lowest acceptance threshold for an unmix-

ing process. If the condition was unfulfilled, we repeated the unmixing process by adjust-

ing the endmember type and/or the number of the ground component spectra included 

in the spectral libraries. Shade normalization was applied to the unmixed fraction images 

to remove the contribution of the shade endmembers and to obtain more relative abun-

dance information of the non-shade endmembers [54]. 

3.5. Accuracy Assessment 

The accuracy of the MESMA classification results was assessed by calculating a con-

fusion matrix that used independent validation samples. The validation samples in this 

study are pixel-based firstly, the sample polygons were converted to points by using their 

center point, then the point was converted to raster pixels, and the overlapping of the 

classified pixel, the referenced land use pixel, and the sample pixel were considered cor-

rected classified. 

Following [58] and [53,59,60], the Overall Accuracy (OA), Producer’s Accuracy (PA) 

(omission errors), User’s Accuracy (commission errors), and Kappa (K) statistics were cal-

culated. In addition, similar to Clark [61] and Quintano [52], Z statistics were computed 

from K statistics and variance to compare the accuracy of the acquired unmixed grassland 

coverages from each input data source. At the 95% confidence level, only Z ≥ 1.96 is con-

sidered significant [58,62]. 

3.6. RMSE Distribution Analysis 

We also analyzed the relationship between RMSE variations and topographic attrib-

utes during the MESMA unmixing process. We divided the elevation by a 100 m gradient 

from 3500 m to 5200 m in the study area. The aspect was divided into nine groups as 

follows: <−1: flat; 0–22.5° and 337.5°–360°: north; 22.5°–67.5°: northeast; 67.5°–112.5°: east; 

112.5°–157.5°: southeast; 157.5°–202.5°: south; 202.5°–247.5°: southwest; 247.5°–292.5°: 

west; 292.5°–337.5°: northwest. The slope was divided by 10% gradients to indicate the 

topographical relief. Version 3 of the Advanced Spaceborne Thermal Emission and Reflec-

tion Radiometer (ASTER) Global Digital Elevation Model (DEM) (ASTER GDEM V3) da-

taset used in this study was obtained from Geospatial Data Cloud (GDC, 

http://www.gscloud.cn (accessed on 10 December 2019)) at 30 m spatial resolution, and 

clipped to the study area boundary. 
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4. Results 

4.1. MESMA Classification 

At the pixel scale, the mean image pixel percentages of MESMA unmixed for the 

Zhuhai-1 OHS images were 98.5% and 99.1% with the 2-EM and 3-EM models, respec-

tively; and for the landscape scale, the percentages with the 2-EM, 3-EM, and 4-EM models 

were 96.3%, 99.1%, and 98.6%, respectively. Furthermore, there are significant differences 

between the 2-EM and 3-EM results at the pixel scale (p < 0.001), and among the 2-EM, 3-

EM, and 4-EM results at the landscape scale (p < 0.001). In particular, the 3-EM model 

results in the highest value of pixels classified for both the pixel scale, and landscape scale. 

Table 4 includes the details of the unmixing results for the three images under different 

model complexities. 

At the pixel scale, the pixel unmixing percentage obtained from the Zhuhai-1 OHS 

imagery was lower than that from the Landsat 8 OLI imagery but higher than that of the 

Zhuhai-1 OHS imagery with the 2-EM models (Table 4); while when using the 3-EM mod-

els, the Zhuhai-1 OHS imagery got the highest unmixed percentage (Table 4). At the land-

scape scale, the pixel unmixed percentage obtained from the Zhuhai-1 OHS imagery is 

higher than that from both the Landsat 8 OLI and Sentinel-2 imagery with the 3-EM and 

4-EM models, but the pixel unmixed percentage obtained from Zhuhai-1 OHS imagery 

with the 2-EM models showed the same trend at the pixel scale. Therefore, based on our 

results and previous studies [63,64], we used the 3-EM model unmixed fractions’ results 

in the next analysis. 

Table 4. Summary of MESMA unmixing results. 

Model Com-

plexity 
Landsat 8 OLI Sentinel-2 Zhuhai-1 OHS 

 Number of pixels classified and the overall percentage (%) classified in each image at pixel scale 

2-EM 
98.9 97.2 98.5 

8,995,210 19,888,207 19,501,999 

3-EM 
98.5 97.5 99.1 

8,960,561 19,946,983 19,613,810 

 Number of pixels classified and the overall percentage (%) classified in each image at landscape scale 

2-EM models 
97.6 95.1 96.3 

8,870,491 19,469,101 19,066,003 

3-EM models 
98.5 96.6 99.1 

8,954,389 19,762,221 19,611,130 

4-EM models 
95.6 94.3 98.6 

8,696,568 19,302,190 19,520,686 

Notes: EM: endmember. 

Figures 3 and 4 show the shade-normalized fraction images derived from the Landsat 

8 OLI, Sentinel-2, and Zhuhai-1 OHS images by MESMA with the 3-EM models in pixel 

scale, and landscape scale, respectively. Regardless of the GV fraction or NPVO fraction, 

the fractions obtained from the Landsat 8 OLI imagery had a stronger contrast with the 

background, followed by the results from the Sentinel-2 imagery; the fraction results ob-

tained from the Zhuhai-1 OHS imagery had the lowest contrast. 

From Figure 4, we can see that the HCG fractions derived from Landsat 8 OLI im-

agery (Figure 4(a1)) cover the largest area, followed by the results obtained from Sentinel-

2 imagery (Figure 4(a2)) and Zhuhai-1 OHS imagery (Figure 4(a3)). The MCG and LCG 

fraction results (Figure 4(b1–b3,c1–c3)) show the opposite trend. When looking at the Oth-

ers fraction results (Figure 4(d1–d3)), the Landsat 8 OLI and Sentinel-2 images show a 

higher abundance than that of the Zhuhai-1 OHS imagery. 
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Figure 3. Shade-normalized fraction images for pixel scale coverage. (a1–a3) GV fraction image derived 

from Landsat 8 OLI, Sentinel-2, Zhuhai-1 OHS images, respectively; (b1–b3) NPVO fraction image de-

rived from Landsat 8 OLI, Sentinel-2, Zhuhai-1 OHS images, respectively; (c1–c3) RMSE distribution im-

ages for Landsat 8 OLI, Sentinel-2, Zhuhai-1 OHS images, respectively. 

 

Figure 4. Shade-normalized fraction images for landscape scale. (a1–a3): HCG fraction images de-

rived from Landsat 8 OLI, Sentinel-2, Zhuhai-1 OHS images, respectively; (b1–b3): MCG fraction 

images derived from Landsat 8 OLI, Sentinel-2, Zhuhai-1 OHS images, respectively; (c1–c3): LCG 

fraction images derived from Landsat 8 OLI, Sentinel-2, Zhuhai-1 OHS images, respectively; (d1–

d3): Others fraction images derived from Landsat 8 OLI, Sentinel-2, Zhuhai-1 OHS images, respec-

tively; (e1–e3): RMSE distribution images for Landsat 8 OLI, Sentinel-2, Zhuhai-1 OHS images, re-

spectively. 
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From visual inspection, at the pixel scale, we can see that the Zhuhai-1 OHS, Landsat 

8 OLI, and Sentinel-2 imagery all have the ability to discriminate the vegetated and non-

vegetated areas, and we can clearly distinguish the built-up, riverbed, and road area in 

the unmixing fraction (Figure 5(a1–a3)). Meanwhile, within the same land cover classes 

(GV or NPVO), the objects were more clustered in the unmixed results of the Landsat 8 

OLI and Sentinel-2 imagery than in the Zhuhai-1 OHS imagery (Figure 5(a3)). However, 

at the landscape scale, the results derived from the Zhuhai-1 OHS imagery performed 

better in presenting detailed information on grassland coverage than that from Landsat 8 

OLI and Sentinel-2 imagery (Figure 5(b1–b3)) and (Figure S2(c1–c3,d1–d3)). 

Spatially, we can see the high value-zone of the RMSE fraction for all three image 

sources was clustered and distributed in the mountain area with high altitudes (Figure 

S3) and steep slopes (Figure S4). Especially, the result from the Landsat 8 OLI imagery 

(Figure 3(c1)) is the most obvious, and followed by the Landsat 8 OLI imagery, while the 

RMSE result from the Zhuhai-1 OHS imagery (Figure 3(c3)) is more dispersed. Statisti-

cally, we can see from Figure 6 that for all the three image sources, the RMSE value was 

rising with the elevation and slope growth, but there are no obvious RMSE variations be-

tween the aspect changes (Figure S5). As for the different data sources, the Zhuhai-1 OHS 

imagery obtained the highest RMSE result during the unmixing process, followed by the 

Sentinel-2 imagery; the RMSE result obtained from the Landsat 8 OLI imagery was kept 

at a low level. 
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Figure 5. Comparison of unmixed results derived from the Landsat 8 OLI, Sentinel-2, and Zhuhai-

1 OHS images. (I) Full study area scene that includes subsequent comparison locations. (a1–a3) 

Zoomed in view of point (a). (Top row are original images, and bottom row are unmixed results of 

different image sources) for pixel scale results. Green represents the GV fraction, red represents the 

NPVO fraction, and the black proportion represents the image pixels that were not unmixed. (b1–
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b3) Zoomed in view of point (b) for landscape scale results. Red represents HCG fractions, green 

represents MCG fractions, and blue represents LCG fractions. The black parts in the Zhuhai-1 OHS 

imagery were cloud masked. For the detailed information for point (c) and point (d), please see 

Figure S2. 

 

Figure 6. Distribution of RMSE observed from various (a) elevations and (b) slope for the three im-

age sources. RZ2, RS2, and RL2 are the R2 for the Zhuhai-1 OHS, Sentinel-2, and Landsat 8 OLI im-

agery, respectively. 

4.2. Endmember Spectral Libraries 

The georeferenced polygons from the fieldwork reference and the land use map as-

sisted us in finding the most suitable spectra of each land cover class in our study area. 

Figure 7 provides an example of the selected endmember spectra for each category in the 

three image sources. In Figure 7, we can see that in GV spectral libraries, the reflectance 

of ground objects that appear in the Zhuhai-1 OHS imagery is higher than that of the 

Landsat 8 OLI and Sentinel-2 imagery; especially GV1 and GV2 (Figure 7c). For Landsat 

8 and Sentinel-2 imagery, the ability to discriminate detailed GV objects can extend from 

875 nm (NIR) bands to 2235 nm (SWIR) bands, while the Zhuhai-1 OHS imagery can only 

provide a short spectral range, even though with more spectral bands than the Landsat 8 

OLI and Sentinel-2 imagery. The shortage in band wavelength limited the discriminate 

ability of the objects in the Zhuhai-1 OHS imagery. The NPVO ground objects showed a 

clustered trend in all three imageries, and this phenomenon provided a good chance to 

distinguish them from the GV objects, particularly in the Sentinel-2 imagery. At the land-

scape scale, Zhuhai-1 OHS showed the best ability to distinguish the grassland and other 

objects for wavelengths from 490 nm to 700 nm, LCG, HCG, and MCG in wavelengths 

from 800 nm to 900 nm, and it can capture the small differences between HCG and MCG 

in wavelengths from 825 nm to 875 nm. This demonstrates the advantages of the high 

spectral resolution of Zhuhai-1 OHS imagery, and it shows the ability of the hyperspectral 

data to discriminate the ground objects even in short wavelengths. 
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Figure 7. Example endmember spectra from the final optimized spectral libraries. (a–c) Green veg-

etation spectral libraries at the pixel scale coverage from Landsat 8 OLI, Sentinel-2, and Zhuhai-1 

OHS images, respectively; (d–f) Non-photosynthetic vegetation and other components spectral li-

braries at the pixel scale coverage from Landsat 8 OLI, Sentinel-2, and Zhuhai-1 OHS images, re-

spectively; (g–i) HCG, MCG, LCG and Others spectral libraries at the landscape scale from Landsat 

8 OLI, Sentinel-2, and Zhuhai-1 OHS images, respectively. 

4.3. MESMA Classification Accuracy 

At the pixel scale (Table 5), the OA was 91.1%, 88.0%, and 92.3% for Landsat 8 OLI, 

Sentinel-2, and Zhuhai-1 OHS images, respectively. The highest PA (96.9%, 98.0%) and 

UA (99.4%, 89.8%) for the GV and NPVO fractions were both obtained from the Landsat 

8 OLI imagery, respectively. The Sentinel-2 image provided the lowest PA (96.7%, 92.1%) 

and UA (97.8%, 88.6%) for both GV and NPVO fractions. A significance test of the k-sta-

tistic values for each image source (Z = 41.45, 32.05, and 39.12 respectively, all >1.96) indi-

cates that using all of the three images to estimate the plant cover with MESMA classifi-

cation can be utilized to make a plant coverage map with a 95% confidence level. The Z-

test of the MESMA classification (Z = 0.41, 0.41, and 0.86, respectively, all <1.96) showed 

that there is no significant statistical difference among three images. 
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Table 5. The accuracy parameters for MESMA classification with 3-EM Landsat 8 OLI, Sentinel-2, 

and Zhuhai-1 OHS. Images’ results at the pixel scale. 

Accuracy Parameters Landsat 8 OLI Sentinel-2 Zhuhai-1 OHS 
 GV NPVO GV NPVO GV NPVO 

PA (%) 91.1 90.9 85.5 96.8 92.1 93.1 

UA (%) 97.3 73.8 99.0 65.0 98.0 76.6 

OA (%) 91.1 88.0 92.3 

k-statistic 0.76 0.70 0.79 

Zk-statistic 20.8 17.9 23.6 

ZL8-S2-statistic 0.7   

ZL8-ZOHS-statistic 0.7   

ZS2-ZOHS-statistic 1.86   

Notes: PA: producer’s accuracy; UA: user’s accuracy; OA: overall accuracy; GV: green vegetation; 

NPVO: non-photosynthetic vegetation and other components in the study area. s for each data 

source was to confirm that wheatear the classification based on these data sources is meaningful, 

and the Z-statistic between each data source was to reveal that wheatear the classification between 

each two data sources is significantly different from each other. 

Regarding the landscape scale (Table 6), the OA was 78.9%, 76.2%, and 83.7% for the 

Landsat 8 OLI, Sentinel-2, and Zhuhai-1 OHS images respectively, lower than that of the 

pixel scale coverage for all image sources. The highest PA for HCG (79.3%) and LCG 

(60.3%) were obtained from the Landsat 8 OLI and Sentinel-2 imagery, respectively; the 

highest PA for MCG (100 %) and Others (95.2%) were both derived from the Zhuhai-1 

OHS imagery, respectively. The highest UA for HCG (75.0%) and MCG (80.0%) were ob-

tained from the Sentinel-2 and Landsat 8 OLI imagery, respectively; and the highest UA 

for LCG (95.0%) and Others (90.9%) were both derived from the Zhuhai-1 OHS imagery, 

respectively. The Others acquired the highest PA and UA both internally for each image 

source and across image types, followed by MCG, and HCG with a moderate PA and UA. 

The Z-test showed that all the three classification results were statistically significant at a 

95% confidence level (Z = 19.1, 20.3, 26.6 > 1.96). The Z-test value between each two image 

sources’ k-statistic revealed no statistical differences for the MESMA classification results 

derived from the Landsat 8 OLI imagery and Sentinel-2 imagery (Z = 0.1 < 1.96). However, 

the classification results showed significant statistical differences between either the 

Zhuhai-1 OHS imagery and Landsat 8 OLI imagery (Z = 2.4 > 1.96), or the Zhuhai-1 OHS 

imagery and Sentinel-2 imagery (Z = 2.3 > 1.96). 

Table 6. Summary of accuracy parameters for MESMA classification with 3-EM model complexity 

Landsat 8 OLI, Sentinel-2, and Zhuhai-1 OHS images’ results at the landscape scale. 

Accuracy Parame-

ters 
Landsat 8 OLI Sentinel-2 Zhuhai-1 OHS 

 HCG MCG LCG Others HCG MCG LCG Others HCG MCG LCG Others 

PA (%) 69.5 68.8 43.8 79.4 60.9 76.4 55.6 80.8 60.8 92.0 54.4 88.4 

UA (%) 54.0 70.7 55.3 83.3 70.0  63.2 59.3 82.5 63.3 76.2 78.7 84.3 

OA (%) 68.7 70.0 77.4 

k-statistic 0.57 0.60 0.69 

Zk-test 15.3 16.8 21.1 

ZL8-S2-statistic 0.5   

ZL8-ZOHS-statistic 2.4   

ZS2-ZOHS-statistic 1.92.3   

Notes: PA: producer’s accuracy; UA: user’s accuracy; OA: overall accuracy; HCG: high coverage 

grassland; MCG: moderate coverage grassland; LCG: low coverage grassland; Others: dry and dead 

grass, river band, and other non-plant components in our study area. Zk-statistic for each data 

source was to confirm that wheatear the classification based on these data sources is meaningful, 
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and the Z-statistic between each data source was to reveal that wheatear the classification between 

each two data sources is significantly different from each other. 

5. Discussion 

5.1. MESMA Endmember Selection and Model Performance 

Both at the pixel scale, and landscape scale, with either the 2-EM, 3-EM, or 4-EM 

models, the mean percentage of the image pixels classified by MESMA using Landsat 8 

OLI, Sentinel-2, and Zhuhai-1 OHS images exceeded 95% with an RMSE value smaller 

than 0.025. More specifically, this percentage exceeded 98% for the 3-EM models. One of 

the main reasons for this high percentage of unmixed pixels was the appropriate candi-

date endmember selection approach used to construct the spectral library. As a previous 

study mentioned, the successful application of linear pixel unmixing must satisfy several 

conditions for the selected endmembers, such as the linear independency of the spectra, 

their representativeness, and approximate constant-ness over the scene, their high num-

ber, and their identifiability [65]. Furthermore, the way in which the endmembers were 

organized, such as in GV, NPV, and other components of the study area used by [52,66] 

in their studies to identify forest burn severity in the Mediterranean region obtained a 

pixel unmixing percentage overall 99%. Consequently, the accurate pixel scale coverage 

and landscape scale for the alpine grassland ecosystem were acquired from the fraction 

images. 

Although the results indicate that both the Landsat 8 OLI, Sentinel-2, and Zhuhai-1 

OHS images have an excellent performance (mean percentage of image pixel classified 

exceeding 95%) in the unmixing procedure, there were differences in the ability to dis-

criminate the grassland coverages. Similar results are also mentioned in the previous stud-

ies [63,64], where obtaining a high pixel unmixing percentage, the classification accuracy 

can be low as well. All this indicates that in the simple land surface cover unmixing cases 

(e.g., GV, NPVO, and shade), multispectral imagery combined with the appropriate 

model complexity (3-EM) can obtain almost the same high-performance unmixing result 

as hyperspectral imagery (Table 4). Moreover, we saw that hyperspectral imagery can 

even achieve a lower unmixed percentage (2-EM) than multispectral imagery (Table 4). 

One of the possible reasons for this could lay in the simple landcover combinations. Hy-

perspectral imagery provides a high number of spectral bands (Zhuhai-1 OHS provided 

32 bands) and could cause much easier spectral confusion between objects, which would 

not exist in multispectral imagery’s classic spectral band combinations. Nevertheless, in 

more complex land cover unmixing (e.g., HCG, MCG, LCG, Others, and shade), the high 

number of spectral bands provided by the hyperspectral imagery allows for more sensi-

tivity to the specific unmixing objective, and performs better than the multispectral im-

agery (Table 4). Furthermore, we found that a more complex model does not necessarily 

lead to better unmixed results. Previous studies have suggested that natural and disturbed 

systems are best modeled by two or three models [64,67–69]. Hence, a higher model com-

plexity should only be selected when the error decrease related to complexity exceeds a 

specific threshold [70,71]. 

At the pixel scale, the overall accuracy for all three image sources exceeded 95%. 

While at the landscape scale, the overall accuracy for all three image sources was above 

75%. Thus, the overall accuracy for all three image sources decreased compared to that at 

the pixel scale. The overall accuracy of the Sentinel-2 imagery had the most significant 

decline, dropping by 19.5%, followed by the Landsat 8 OLI imagery, which decreased by 

18.3%. The Zhuhai-1 OHS imagery had the lowest decline, which was only 13.0%. All this 

demonstrates the differences in the ability to model the details of land cover types between 

multispectral and hyperspectral images. At the pixel scale, we only grouped the endmem-

bers into two types; therefore, the endmembers are more clustered within one type. When 

we regroup the endmembers into four categories at the landscape scale, the lower number 

of spectral bands provided by multispectral imagery may not be able to discriminate the 

minor differences between the different categories. In contrast, the hyperspectral imagery 
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with more spectral bands can provide more sensitivity in distinguishing the minor differ-

ences between the different categories. 

When we compare the producer’s and user’s accuracy of different categories at the 

landscape scale; we find that low coverage grassland obtained the lowest producer’s ac-

curacy in all three image sources, and a relatively lower user’s accuracy in the Landsat 8 

OLI imagery as well. This agrees with the studies of [63,72,73] who observed a lower ac-

curacy for low coverage land cover types. According to our field survey and prior 

knowledge about the research area, one of the main reasons for low classification accuracy 

in the low coverage alpine grassland region is that, in this region, there is a large propor-

tion of bare land coverage, causing the soil background to have a stronger effect than the 

low coverage alpine grassland within one image pixel. This made the low coverage grass-

land spectra weak and influenced by bare ground (Figure 2e). On the other hand, the few 

spectral bands provided by the multispectral imagery are also one of the reasons, com-

bined with its low spectral resolution which highlighted the shortcomings. For the hyper-

spectral imagery used in our study, although the Zhuhai-1 OHS imagery provided more 

spectral bands (32 bands) and a higher spectral resolution (2.5 nm), the spectrum scope 

only ranged from 466 nm to 940 nm, and there was no spectral information provided in 

the shortwave region. As for the spatial resolution, the 15 m, 10 m, and 10 m spatial reso-

lution of the Landsat 8 OLI, Sentinel-2, and Zhuhai-1 OHS imagery, respectively, may not 

have the capability to capture a small patch of the low coverage alpine grassland which 

has a fragmented distribution over the region. 

In addition, the spatial distribution of the results with the Landsat 8 OLI imagery and 

Sentinel-2 imagery showed a concentrated pattern; the same class is always present as a 

large patch, showing a sudden transition and clear boundary between different coverage 

levels, while the results derived from the Zhuhai-1 OHS imagery showed a staggering 

spatial distribution; the transitions between different coverage levels were smoother, 

which correspond more to the natural state of the alpine grassland distribution. These also 

agree with the accuracy assessment results at the landscape scale (Section 4.3), which 

demonstrated that at the landscape scale with more land cover types, hyperspectral im-

agery can provide more detailed information than multispectral imagery with the 

MESMA method. 

5.2. RMSE Distribution 

Because the whole area is situated high above sea level, in this study, we found a 

significant increase in the RMSE along with a variation in the elevation and slope form of 

the Landsat 8 OLI and Zhuhai-1 OHS imagery (Figure 6). This was particularly true in 

areas with strong topographic relief. We found a strong statistical relationship between 

the RMSE results from the Zhuhai-1 OHS (R2 = 0.98) and Landsat 8 OLI imagery (R2 = 0.97) 

and variations in the slope. The relationship between the RMSE results from the Zhuhai-

1 OHS (R2 = 0.68) and Landsat 8 OLI imagery (R2 = 0.74) and the elevation change were 

also significant (Figure 6). This was consistent with previous spatial results (Section 4.2). 

From this perspective, combined with our experience and results, we have confidence 

in saying that the variation in elevation and slope have a strong influence on the RMSE 

distribution, especially as measured by Zhuhai-1 OHS and Landsat 8 OLI imageries. How-

ever, previous studies have investigated factors influencing the accuracy of the DEM data 

(either SRTM DEM or ASTER GDEM [74–80]). These have reported that the main factors 

were topographic (slope angle and slope aspects) and vegetation (mainly forests). Szabó 

et al. [74] found that the DEM models had a significant bias compared to the same cross 

section of CLTIN, but the magnitude was greater in the forested area than the no-forested 

area. On gentle slopes, the deviation was smaller than on the steeper slopes, and ridges 

had larger vertical biases than valleys. 

Slope aspects also had a significant effect on the accuracy. The SRTM models had the 

smallest bias on the south-facing slope, while for the ASTER GDEM, the western slopes 

were the most accurate. ASTER GDEM had an aspect dependency on easterly directions; 
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the slope and GDEM were positively related. Vegetation can alter the terrain height, which 

is challenging for the DEM accuracy and affects the RMSE results. However, it has also 

been shown that although the accuracy of DEM can be affected by topography, the errors 

were less than the dataset planned errors. These authors further suggested that the vege-

tation (mainly forests) also affects the accuracy of the DEM dataset [74]. However, in our 

study, forests are assent and the ground surface is mainly covered by alpine grassland 

and sparse shrubs. Therefore, the effects of vegetation to the accuracy of the DEM dataset 

were excluded and we consider that our DEM was able to meet the analytical require-

ments. Topographical correction is highly recommended when conducting research in a 

topographic relief region [9]. However, where there are differences in the image sources 

and terrain conditions, we also expect that future MESMA-based research in different 

landscapes could provide a better understanding of the RMSE distribution in broader data 

resources and locations. 

Expect for the topography and DEM dataset itself which may affect the RMSE distri-

bution, the other factor that impacts the RMSE distribution is the ground truth data we 

used during the unmixing procedure, because the ground truth data collection and frame-

work design has a direct effect on the subsequent steps, such as image processing, classi-

fication, and result analysis [81]. In this study, the field data collected was used as a refer-

ence in the endmember selection stage, and the selected endmember was then used as the 

image unmixing sample, while the RMSE was generated during the image unmixing pro-

cess. Therefore, from this perspective, the RMSE was affected by the field data used in this 

study. A previous study [82] has pointed out that the insufficient ground truth data may 

limit the accuracy result. Furthermore, the sample point distribution during the field data 

collection will also have an influence on the final result, such as being too close together 

between two sample points which will cause spatial auto-correlation, while too far apart 

in each point may lead to low representation. In addition, the location of the sample point 

is also an issue in field data collection; in the complex terrain area, if all the points are 

located in the flattened area, the mountain area will lack ground truth data and lead to a 

high error area, just like the RMSE distribution in our study. However, even though we 

have a high error area in the mountain part, we have no obvious evidence to conclude that 

the high error area was caused by a lack of ground truth datal; due to the high elevation 

in this region, we cannot reach to the mountain area to collect ground truth data, but in 

the future, a similar study that is conducted in the low altitude area may validate this.  

6. Conclusions 

This study explored the MESMA method to map the alpine grassland fraction cover-

age with the latest Zhuhai-1 OHS imagery. The results showed that the Zhuhai-1 OHS 

imagery can obtain a high image pixel unmixing percentage at both the pixel scale and 

landscape scale. The mean OA of the MESMA classification obtained at the pixel scale 

(96.5%) was significantly higher than that in the landscape scale (78.61%). Meanwhile, we 

observed different percentages of image pixel unmixed and accuracy for different image 

sources with the MESMA method under different model complexities. The overall con-

clusions from this study are (1) the Zhuhai-1 OHS in our research or hyperspectral im-

agery can provide a better performance to map both the pixel scale and landscape scale of 

vegetation in an area of interest; (2) Landsat 8 OLI or multispectral imagery can also meet 

the requirements of research work to discriminate vegetation and non-vegetation cover in 

the area of interest when combined with a suitable MESMA model complexity, such as 

the 3-EM model in this research; (3) from our analysis of the RMSE in the MESMA unmix-

ing procedure, we have obtained apparent statistical evidence that reveals the relationship 

between RMSE and topographic relief. Hence, imagery terrain correction was highly rec-

ommended when conducting similar research in the region with rough terrains, such as 

in QTP and mountain areas. 

In this study, we compared the ability of hyperspectral imagery (Zhuhai-1 OHS) and 

multispectral imagery (Landsat 8 OLI and Sentinel-2) to map the fraction coverage of 
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alpine grassland in the TRHR, and investigated the relationship between RMSE in the 

MESMA unmixing procedure and the topographic factors. The results acquired in this 

study can be used as the reference in making an alpine grassland conservation plan; the 

approaches and workflow to mapping the alpine grassland in this study can also be ap-

plied to help monitor grassland degradation in other grassland ecosystems. However, 

there are still some limitations in this study, such as that the acquisition date of Sentinel-

2 images used in this study were about one month later than Zhuhai-1 OHS and Landsat 

8 OLI, the accuracy of the DEM dataset used to analysis the RMSE distribution were also 

affected by topographic and vegetation factors, and the wavelength of the Zhuhai-1 OHS 

hyperspectral imagery used in this study were limited to 400–1000 nm; these limitations 

may have potentially impacted the accuracy of the results in our study. Therefore, in fu-

ture work, more images that are in the same or closer time period can be used in the study, 

analysis of the DEM dataset accuracy can be performed prior to the application, and more 

advanced approaches such as deep learning could be applied to the grassland fraction 

coverage mapping. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/rs15092289/s1, Figure S1: Sample plot structure. 30 m by 30 

m sample plot, the blue quadrats are nine 1 m by 1 m independent subplots set in four directions 

extending from the center of the sample plots; Figure S2: Comparison of unmixing results derived 

from Landsat 8 OLI, Sentinel-2, and Zhuhai-1 OHS images. (a) Full study area scene il-lustrating 

comparison locations a, b, c and d. Panel “c” is detail of area “c”, and panel “d” is detail of area “d” 

where the top row is original imagery, and bottom row is unmixed imagery from indicated sources 

at the landscape scale. Red is the HCG fraction, green is the MCG fraction, and blue is the LCG 

fraction. The black area in the Zhuhai-1 OHS image was could masked. For detailed information for 

c and d see Figure S2; Figure S3: RMSE distribution of the three image sources. Digital Elevation 

Model (DEM) of the study region (a). RMSE from Landsat 8 OLI imagery (b). RMSE from Sentinel-

2 imagery (c), and RMSE from Zhuhai-1 OHS imagery (d); Figure S4: RMSE distribution of the three 

image sources. Slope of the study region derived from the DEM (a). RMSE from Landsat 8 OLI 

imagery (b). RMSE from Sentinel-2 imagery (c), and RMSE from Zhuhai-1 OHS imagery (d); Figure 

S5: Distribution of RMSE observed from various aspect for Zhuhai-1 OHS, Sentinel-2, and Landsat 

8 OLI imagery, respectively. 
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