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Abstract: A good understanding of the processes of land surface temperature (LST) change is impor-
tant for assessing regional climate change. In the present study, we obtained the MODIS MOD11A2
LST products over the Yangtze River Delta (YRD) from 2001 to 2020. In order to comprehensively
assess the spatial and temporal variability of LST in the YRD region over the past two decades, the
Theil-Sen Median trend analysis and Mann—Kendall test, BFAST01 trend decomposition, and land-
scape pattern analysis were used in this study. We show that the rate of linear change in LST in the
YRD ranges from —0.019 °C/month to 0.046 °C/month. The BFASTO01 trend decomposition identifies
more details of LST change and monotonic increases, reversal increase, and interruption increase are
the main warming trends. The distribution of the different trend types shows strong aggregation
with high spatial heterogeneity. The LST breakpoints are mainly located in the northern and southern
YRD, which frequently occurred during 2010-2013. Of the various land types, breakpoints occur most
frequently in cropland and high NDVI (0.5-0.7) areas, and the intensity of most of them is within
2 °C. In addition, much stronger warming occurs in urban areas than in other land types. Our study
provides a better understanding of the dynamics of LST in the YRD region over the past 20 years and
highlights that breakpoints cannot be circumvented in regional temperature assessment.

Keywords: land surface temperature; trend decomposition; breakpoints; Yangtze River Delta

1. Introduction

Climate warming has been a hot issue of public and academic concern in recent
decades and is gradually being confirmed by numerous studies and observations [1,2]. In
response, many international organizations and countries have taken measures to mitigate
global temperature rise. Land surface temperature (LST), a key indicator of global warming,
is an important characteristic parameter for the physical property of the earth, which has
been used in surface heat balance and ground-air energy interaction [3-6]. Tracking changes
in temperature trends based on historical LST observations has been already an important
component of global warming assessment [7,8].

Traditionally, temperature was often identified using in situ measurements or mobile
measurements in the urban canopy layer [9,10]. With the development of remote sensing
(RS) technology, RS inversion of land surface temperature (LST) has been increasingly
used to examine the surface thermal environment [6]. LST based on satellite RS, e.g.,
Terra, Aqua, Landsat, and Sentinel, can provide continuous observational data, reflecting
spatial and temporal evolutions of LST over a long term and on a large scale [11-13].
This provides an important pathway to assess regional and even global warming. There
are often significant differences in temperature variation across regions and periods for
temperature can be highly disturbed by local environments. When it comes to “temperature
variation”, the fluctuating variability of temperature has been confirmed by many historical
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observations [14-16]. However, existing studies have generally based their judgments
on the general trend of temperature change, and detailed information on the process of
temperature change (abrupt changes, non-linear changes, etc.) is often ignored [17,18].
Compared to gradual warming/cooling trends, abrupt changes in temperature result in
much stronger temperature fluctuations, which is important for the assessment of regional
temperature change.

The trend analysis of RS images is a general judgment of the long-term change process
of LST, which can be generally divided into linear trend analysis and non-linear trend
analysis [19,20]. The common linear trend analysis includes univariate linear regression
analysis and Theil-Sen Median trend analysis [21,22]. Linear trend analysis methods can
evaluate the overall direction and change rate of a trend, which has been widely used in
long-time series analysis. For example, Yu et al. [22] examined the trends of annual mean
LST and annual amplitude in China from 2003-2018 using the Mann-Kendall test and
the Theil-Sen estimator, which showed an increasing trend at a rate of 0.02 K/year. Fang
etal. [23] analyzed the trend changes of the maximum, minimum, and average temperature
in China from 1979 to 2018 and found that the number of cold nights and warm days
gradually decreased and increased, respectively. Zhao et al. [24] studied the linear trend
of surface air temperature for 16 cities in eastern China from 1909 to 2010 and reported
a warming trend of 1.52 °C (100 yr)~! in the regional mean surface air temperature. El
Kenawy et al. [25] assessed the long-term change and variability of temperature over
northeastern Spain (1920-2006) and a significant increase in temperatures was found, but
the diurnal temperature range showed less coherent variability with both positive and
negative trends. Linear trend analysis can only analyze the overall direction and speed
of change during long time series changes, but detailed information on trend changes is
ignored. To comprehensively analyze the dynamic characteristics of features during long-
term changes, new detection methods have been proposed, such as the breakpoint detection
methods including LandTrendr [26] and DBEST [27], the trend decomposition methods
including BFAST [28] and STL [29], and the trajectory fitting methods including Rescaled
Range Analysis (R/S) [30], Empirical Orthogonal Function (EOF) [31], and Empirical Model
Decomposition (EEMD) [32]. Most of these algorithms were initially applied in the dynamic
monitoring of vegetation with widespread applications [29,33,34]. However, studies using
these methods in the assessment of spatial and temporal variations of LST have rarely
been reported.

The past decades have witnessed very rapid urbanization in the Yangtze River Delta
(YRD), China, where human activities have significantly reshaped the land surface and
the environment [35-37]. These changes perturb the LST strongly and contribute to the
alteration in the dynamic trends of LST [38—40]. Existing studies have confirmed the
warming trend of LST in the YRD, especially in urban agglomerations [40-42]. However,
these studies, from an overall trend change perspective of LST, do not adequately reflect
the dynamic processes of the regional thermal environment [43,44]. Since the detailed
information, such as segmented linear transformations and abrupt changes, is ignored in
the overall LST trend change analysis, these studies do not provide an in-depth assessment
of LST change processes. An abrupt change is offset by an integral of a long-term linear
trend spanning several years or even decades [45—47]. This plays an essential role in the
assessment of regional and global warming but has been often underappreciated in existing
studies [48].

In this study, we obtained the MODIS MOD11A2 LST products over the YRD region
from 2001 to 2020 and performed a comprehensive assessment of the spatial and temporal
variability of the LST through an analysis and decomposition of the trend. LST breakpoints,
abrupt changes in temperature where LST exceeds previous averages, were of focus in
this study, and the effects of land cover type (LCT) on the type for LST trend changes and
breakpoints were analyzed. In addition, the inconsistent warming over different LCTs was
also explored. Section 2 introduces the data and methodology. Section 3 presents the results
and discussion and Section 4 draws the main conclusions.



Remote Sens. 2023, 15, 2274 30f 18

2. Date and Methods
2.1. Study Area

The YRD is one of the most economically developed regions in China, consisting of
Shanghai City, Jiangsu province, Zhejiang province and Anhui province. It is located in
eastern China, bordering the East China Sea. The climate is subtropical monsoon and
average annual temperatures range from 13-18 °C. The northern of the YRD is mainly
plain, while the southern is hilly. As shown in Figure 1, there are obvious spatial differences
among the LCT in the YRD.

Figure 1. Land use map of the study area.

2.2. LST, NDVI and LCT Data

Daytime MODIS MOD11A2 LST data over the YRD from 1 January 2001 to 31 Decem-
ber 2020 were retrieved on the Google Earth Engine (GEE). A total of 240 images of the LST
data were processed to obtain monthly daytime LST data using the maximum synthesis
method [49-51]. To avoid noise and perturbations caused by missing values, the processed
data were then filtered using the Savitsky—-Golay method [52,53], for best performance,
the optimal filter window is set to 2 and the number of smoothing polynomials is set to 4
after testing.

The annual NDVI data and LCT data in 2010, the middle year of the study period
(2001-2020), were also involved in the present study [53]. The raw NDVI data were
from the 2010 MODIS MOD13A2 product and the raw LCT data were from the 2010
MODIS MCD12Q1 product. NDVI was ranked equally to five levels of <0, 0-0.25, 0.25-0.5,
0.5-0.75, and 0.75-1, and The LCT reclassification is based on the nature of the subsurface
as woodland, grassland, cropland, built-up area, and others, as shown in Table 1.

Table 1. MCD12Q1 reclassification scheme.

Reclassification MCD12Q1 IGBP Classification
Woodland Evergreen Needleleaf Forests, Evergreen Broadleaf Forests, Deciduous Needleleaf
Forests, Deciduous Broadleaf Forests, Mixed Forests
Grassland Closed Shrublands, Open Shrublands, Woody Savannas, Savannas, Grasslands
Cropland Croplands, Cropland /Natural Vegetation Mosaics
Built-up area Urban and Built-up Lands

Others Barren, Permanent Wetlands, Permanent Snow and Ice, Water Bodies
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2.3. Theil-Sen Median Trend Analysis and Mann—Kendall Test

The Theil-Sen Median trend analysis method can be combined with the Mann—Kendall
test, reflecting the trend changes of each pixel in the time series. This combination does not
require the data to obey a certain distribution. The Theil-Sen median trend analysis is a
robust statistical method for the extraction of trend, and the formula is as follows:

LST; - LST;
) @

SLST = Median( ] i
where i and j represent different months, January 2001-December 2020 in the present study.
A positive (negative) Sy g7 represents a warming (cooling) trend.

The Mann-Kendall test is used to evaluate the significance of a trend. It is a non-
parametric statistical test and is free from the interference of outliers. This method has the
advantage that samples do not need to obey certain distributions. The calculation of the
Mann-Kendall test follows:

S-Ls>0

s(S)

0,S=0 , ()
S+1 5<0

\/s(8)”

where, § = 2;‘:_11 ?:jflsgn(LSTj — LST;),s(S) = W, and

Z

1, LST,—LST; >0
sgn(LST; —LST;) ={ 0 , LST;—LST, =0, 3)
~1 , LST,—LST; <0

In the equation, i and j indicate different months, n denotes the length of the time
series, sgn is the sign function, and the statistic Z has a range of (—oo, +00). At a given
significance level «, when |Z| > uy_, 5, indicates a significant change in the time series at
the ff level. In this study, we choose & = 0.05, meaning that we measure the significance of
the LST trend from 2001 to 2020 on a pixel scale at a confidence level of 95%. A significant
trend is defined with |Z| > 1.96, otherwise a slight trend is obtained.

2.4. BFAST Algorithm

To detect and characterize changes in LST variations, the BFAST algorithm was applied
to analyze the LST series. The BFAST algorithm was initially used to capture the dynamic
changes of vegetation. This algorithm iteratively decomposes the original data series into
the trend, seasonal, and residual components, which can detect abrupt changes in the trend
and seasonal components. The process of implementing the BFAST algorithm is as follows:

(1) An additive model is used to decompose the original time series into a trend compo-
nent, a seasonal component, and a residual component. The algorithm is formulated
as follows:

Yi=T;+ St +e, t=1,...,n, 4)

where Y; is the observed value at time ¢, T; is the trend component, S; is the seasonal
component, and e; is the residual component.

(2) A segmented linear fit is used to fit the trend component T;. For each trend segment
t7 <t <t;+1" after defining Ty = 0, the linear model algorithm is as follows:

Ty = a; + Bit ®)

In the above equation, i = 1...m, m is the number of mutation points, «; represents
the intercept of the linear model after segment fitting, and §; represents its slope.
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(3) For the seasonal component S, the harmonic model is fitted due to the obvious
periodic variation of LST. For each trend segment t; < t < t; + 17, after defining
To = 0, the harmonic model can be expressed as:

k
27kt
S = Z a]-,k sin( s + (Sj,k> (6)
=1 f

In the above equation, j is the position of the breakpoint (j =1,...,q). g is the
number of breakpoints in the seasonal component, k is the number of harmonic terms in
the harmonic model, and the amplitude 4; and phase J; x need to be obtained by a linear
regression model. f is the known observed frequency in the input time-series image.

More specifically, we use the BFASTO1 algorithm, which is a variant of the BFAST
algorithm. BFASTO1 is implemented following the same procedure as BFAST, which detects
the most significant breakpoints in long time series [54]. The algorithm not only detects abrupt
changes in the LST time series but also distinguishes different trend change types [55]. The
formula argument of BFAST01 was set to “response ~ trend + harmon”, because we used
monthly time series with seasonality [55], and the h value is set to 1/9 [33,53,54]. The trend
test was performed using four structural tests: Bayesian Information Criterion (BIC), Lagrange
Multiplier (SupLM), Least Squares Moving Summation (OLS-MOSUM), and F-test (supF).
A breakpoint is detected if any single test identifies a significant break (p < 0.05) [53,56]. In
addition, LST pixels where the change in trend was not significant either before or after the
breakpoint are defined as insignificant trends. In this study, we classified the types of LST
dynamic trends detected by BFASTO01 into six types. Monotonic changes indicate that the LST
trend has always maintained the same trend. Interruption changes suggest an abrupt change
in the opposite direction of the trend but with the same overall direction of the trend change.
Reversal changes mean a shift in the direction of trend change during the study period. See
Table 2 for more details.

Table 2. The different types of LST change detected by BFASTO1.

Type of Change

Example Description

Monotonic increase

Monotonic decrease

Interruption increase

Interruption decrease

Reversal decrease

Reversal increase

A significant increase with one significant break or none

An increasing trend with a negative breakpoint

A decreasing trend with a positive breakpoint

\ A significant decrease with one significant break or none
e

Ve An increasing trend disturbed by a breakpoint and followed by a
\ decrease trend

AN A decreasing trend disturbed by a breakpoint and followed by an
increasing trend

2.5. Landscape Pattern Analysis

Landscape pattern is the spatial arrangement of different patterns among a series of
landscape elements of different sizes and shapes, including the number, type and spatial
distribution and configuration of landscape components [57].
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By calculating the landscape indices, the basic spatial characteristics of landscape

patterns can be understood. In this study, the grid method of Fragstats 4.2 [58] was used
to calculate the overall Landscape pattern based on the types derived from the BFASTO01
trend decomposition, while the Class metrics are calculated directly using Fragstats 4.2.

More specifically, at the overall landscape metrics, the four landscape indices SHEI,

SHDI, SPLIT and CONTAG were selected and the overall landscape distribution pat-
tern was spatially mapped using the grid method. The selected landscape indices and
corresponding landscape ecological implications are shown in Table 3.

Table 3. Landscape indices and the meaning in landscape ecology.

Landscape Indices Value Meaning
NP >1 The number of patches in the landscape
AREA_MN >0 Average area of patches
Class LPI 0 < LPI < 100 The percentage of the landscape comprised by
. The largest patch
metrics PD >0 Patch density
LSI >0 Complexity of patch shape
Al 0<AI<100 Degree of aggregation of patches
NP >1 The number of patches in the landscape
SPLIT 0 < SPLIT < NP2 Higher values indicate greater landscape
Landscape fragmentation
metrics CONTAG 0 < CONTAG < 100 Higher values 1nd1cat§ greater landscape
connectivity
SHDI >0 Higher values indicate more landscape types
SHEI 0 < SHEI <1 Higher values indicate lower landscape

dominance

3. Results and Discussion
3.1. Linear LST Trends Based on Theil-Sen Median Trend Analysis and the Mann—Kendall

The long-term variation of LST on each pixel can be effectively traced using the Theil-
Sen Median trend analysis and the Mann—Kendall test. The trend analysis shows that the
range of LST variation in the YRD varied between —0.019 °C/month and 0.046 °C/month.
According to the meaning of LST in reality and previous related studies [59], the types of
LST trend changes are classified into four types (Table 4).

Table 4. LST linear trend variation statistics.

Slopey st z LST Trend Area Percentage (%)

—0.019-0 >1.96 Significant warming 1.83%

—0.019-0 —1.96-1.96 Non-significant warming 71.46%
0-0.046 >1.96 Significant cooling 0.01%
0-0.046 —1.96-1.96 Non-significant cooling 26.70%

We conducted statistics on the monthly daytime LST in Shanghai, Hangzhou, Nanjing
and Hefei from 2001 to 2020 and found that the LST in all four cities showed a slowly
increasing trend (Figure 2). To gain further insight into the overall temperature change in
the YRD region. Figure 3 illustrates the spatial distribution of the LST trend from 2001 to
2020 in the YRD. Significant warming (1.83%) occurred in the Suzhou-Wuxi-Changzhou
urban agglomeration and the Hefei urban agglomeration, which are highly urbanized
areas. Most of these areas have experienced rapid urbanization over the past decades,
with urban expansion, population growth, and energy consumption recognized as the
main causes of rapid warming [60-63]. Non-significant cooling warming (71.46%) mainly
occurred in the northern YRD with large areas of cropland. The areas characterized by
non-significant cooling (26.70%) were mainly concentrated in southwest Zhejiang and
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western Anhui. These areas are generally higher in elevation and the ground cover is
dominated by vegetation. This result suggests that vegetation probably has a cooling effect

on the LST [62]. Recent numerous studies also proposed that there is a warming trend for
the LST over most of the YRD region [44,47,64].

Figure 2. Temporal variations of monthly daytime LST in Shanghai, Hangzhou, Nanjing and Hefei in
the YRD from 2001 to 2020.

Figure 3. Distributions of the LST linear trend from the Theil-Sen Median trend analysis and the
Mann-Kendall test in the YRD during 2001-2020. Islands are not included in the analysis.
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3.2. LST Variations Based on BEAST01 Decomposition
3.2.1. LST Trends Based on BFAST01 Decomposition

The BFASTO1 algorithm was used to decompose the variations of LST in the YRD
region over the period 2001-2020. The different trend types obtained from BFASTO1 trend
decomposition can be used to investigate abrupt changes in trend direction and rate during
LST variations, to monitor more detailed information about the LST change process and
to identify different patterns of regional warming. The spatial distribution of the type
derived by BFASTO1 trend decomposition is shown in Figure 4. The most remarkable
finding is that LST is highly dynamic (although the warming is very slow), with 63.4 % of
pixels having a statistically significant trend. Non-significant trends accounted for 36.6%
of all trend types. The type derived by BFAST01 trend decomposition is further divided
into warming trends (monotonic increases, interruption increase, reversal increase) and
cooling trends (monotonic decreases, interruption decrease, reversal decrease) based on
the overall temperature change. Monotonic increases (27.3%), reversal increase (19.3%),
and interruption increase (10.64%) constitute the majority of significant trends in the
warming trend. As a comparison, the cooling trend (6.16%) accounts for little. In the spatial
distribution, monotonic increases are concentrated in the YRD estuary urban agglomeration
and central Anhui Province, which have higher levels of urbanization. Reversal increase,
suggesting a reversal in the direction of the trend change, is mainly found in the northern
YRD, where the land cover type is predominantly cropland. Interruption increase, reversal
increase and interruption decrease mosaics are distributed in central Zhejiang and southern
Anhui, indicating that external disturbance events are more frequent in these areas.

Figure 4. Trend types of the LST derived from the BFASTO01 trend decomposition in the YRD during
2001-2020. Islands are not included in the analysis.

Compared to a linear trend change, BFAST01 decomposition can reveal underlying
changes that are masked in linear trends and provide a more comprehensive view of the
dynamic changes of LST [55,65-67]. In most of the warming/cooling regions, the BFAST01
method monitored more types of trend changes. Both the linear trend and the BFASTO01
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decomposition show a warming trend in the YRD estuary urban agglomeration and in the
northern region, consisting mainly of monotonic increases, and reversal increases. The trend
types of non-significant types, interrupted decreases and reversed decreases are musically
distributed in the southern part of the YRD. However, the linear trend is dominated here by
regions of slight cooling. To further demonstrate the differences in linear trend /BFAST01
trend decomposition, two trend-type conversion tables were calculated (Table 5). There are
significant differences in LCTs of the YRD region. The southern part is mainly mountainous
and hilly, with extensive woodland, while the eastern part is dominated by dense urban
agglomerations and the northern part by large areas of agricultural land. The LCT plays a
key role in the dynamic evolution of the LST, more details of which are given in Section 3.3.

Table 5. Linear and the type derived by BFASTO01 trend decomposition conversion table.

Non-Linear Trends

Monotonic Monotonic Interruption  Interruption Reversal Reversal . N.O iy
Significant
Increases Decreases Increase Decrease Increase Decrease
Change
Significant cooling / 34.29 2.86 / 22.86 / 40
Non-significant 1.52 0.75 6.97 13.54 17.10 0.01 60.10
. cooling
Lmeﬁr Significant 60.73 / 28.01 0.12 437 0.24 6.53
trends warming . R . . . .
Non-significant 36.09 0.01 11.54 3.23 20.49 0.06 28.58
warming

3.2.2. Landscape Pattern Analysis

Landscape pattern is a high level of condensation of information on spatial distribu-
tion [57,68]. To further reveal the distribution pattern of LST dynamic changes in the YRD
region, for the type derived by BFAST01 trend decomposition, we have further analyzed
its landscape distribution.

Regarding the overall landscape metrics, Figure 5 shows the landscape pattern map of
the LST trend types in the YRD after trend decomposition. SHEI and SHDI are relatively
similar in their spatial distribution patterns, with higher values in central Zhejiang Province,
north-central Anhui Province and northern Jiangsu Province. This indicates that the LST
trend types in these regions are very diverse, but the dominance of the trend types is not
high. The value of SPLIT reaches its highest value in the south-central region of Zhejiang,
suggesting that the fragmentation of LST trend types in this region is very high, with
a mosaic distribution of different trend types. CONTAG values are higher in southern
Anhui, the YRD urban agglomeration, and northern Anhui. The LST trend types in these
regions are generally relatively homogeneous, with strong connectivity of trend types.
These indicators suggest that external disturbance activity on LST is somewhat spatially
concentrated but with extensive spatial heterogeneity.

For the different trend types, Table 6 shows the landscape index values for the different
trend types at class metrics. the monotonic increasing and non-significant trend patches are
very similar in all indicators, with the AREA_MN and the LPI being significantly higher
than the other trend types. The two trend types, both of which have relatively large and
highly connected patches, are predominantly located in the east and southwest part of
the YRD. This is mainly related to the highly centralized urban agglomerations in the east
area and the forests in the southwest part. The interrupted increasing type has the highest
number of patches, but the smaller AREA_MN and lower degree of Al indicate a very
dispersed distribution of the trend type. The lower PD for all indices further suggests a
mosaic distribution between patches of each trend type. Overall, the warming trend type is
higher than the non-significant trend and the cooling trend in terms of the mean patch area,
maximum patch index and degree of aggregation, respectively, indicating that the overall
warming effect is dominant in the YRD, followed by the non-significant trend and finally
the cooling trend.
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Figure 5. Distributions of landscape pattern of LST trend types in the YRD from the trend decomposition.

Table 6. Landscape index values for the different trend types at class metrics.

cl . Monotonic Monotonic Interruption Interruption Reversal Reversal Non-
ass Metrics s
Increases Decreases Increase Decrease Increase Decrease Significant
NP 2357 170 3969 1523 3445 95 3886
AREA_MN 3993.7537 419.1853 924.5099 1335.1613 1932.0885 182.5037 3247.9073

LPI 16.7232 0.0209 0.5316 1.0246 10.7034 0.0045 23.9916
PD 0.0068 0.0005 0.0115 0.0044 0.01 0.0003 0.0113
LSI 62.8771 14.9683 77.0671 45.4685 63.9435 10.3548 71.7793
Al 82.6631 53.1167 65.8089 73.0886 79.0188 34.2404 82.8819

3.2.3. Breakpoint Strength, Occurrence Times and Spatial Distribution

Anomalous increases or decreases in LST during long time series temperature changes
often reflect strong external disturbances to the local environment. To detect temperature
anomalies during LST variations, further analysis was performed on the timing and in-
tensity of temperature breakpoints (breakpoints in monotonic trends were also counted)
during the type derived by BFASTO1 trend decomposition in the LST. Figure 6 illustrates
the spatial distribution of breakpoint strength. Breakpoints are widely distributed in the
YRD, concentrated in the northwestern and southern regions. The magnitude of the tem-
perature change at the breakpoints tends to reflect the strength of the region’s exposure to
perturbations from the external environment. The LST breakpoint intensity varies between
—9 °C and 4.1 °C but does not exceed 2 °C in most areas (91.54%). With respect to the
rate of the LST trend (Section 3.1, it takes about 3.62 to 8.77 years to compensate for the
temperature decrease or increase at a breakpoint. This finding reveals the range of varia-
tion in the intensity of LST breakpoints and emphasizes the important role of the abrupt
LST change in local temperature assessments. As a comparison, there are few areas with
breakpoint strength above 2 °C, with a sporadic distribution. Further investigation was
conducted into the timing of breakpoints in the type derived by BFASTO01 trend decompo-
sition (breakpoints in monotonic trends were also counted). The breakpoint occurrence
times are distributed almost every year (Figure 7), by further aggregating the breakpoint
occurrence times, one can find that the breakpoint occurrence times are highly concentrated
in the periods 2010-2011 and 2012-2013. More specifically, the breakpoints in 2010-2011
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were more concentrated in Anhui Province and northern Jiangsu Province. In contrast, the
breakpoints in 2012-2013 are more concentrated in central Zhejiang.

Figure 6. Distributions of the LST breakpoint intensity over the YRD region during 2001-2020. Islands
are not included in the analysis.

Figure 7. Distributions of the LST breakpoint time over the YRD region during 2001-2020. Islands
are not included in the analysis.
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3.3. Attributions of LST Trends

As a key parameter of the physical and chemical properties of the surface, the variabil-
ity of LST is closely related to the local environment. In previous studies, LCT and NDVI
have been reported as the most important influences of LST, and they play an important
role in long-term changes in LST [69-71]. Therefore, we have analyzed the influences of
these two factors on LST breakpoints and trend types.

3.3.1. NDVI, LCT and the LST Breakpoints

We further analyzed the frequency of breakpoints on different NDVI levels and LCTs
(Figure 8). For NDVI, the occurrence of breakpoints is highly concentrated in the range of
NDVTI of 0.5-0.75. The occurrence of breakpoints is closely related to NDVI, with higher
NDVI corresponding to a higher probability of breakpoints occurrence. Higher vegetation
cover is more likely to induce dynamic changes in LST because human activities, pest
and disease hazards, and hill fires are more likely to erupt in these areas [33,72,73]. It
has been confirmed that the higher variation of vegetation variations in the southern and
northern parts of the YRD region [74]. This is thought to be a potential cause of LST
breakpoints. Breakpoints statistics for LUCC show that the distribution of breakpoints
is highly concentrated in cropland (50.4%), followed by grassland (27.7%), woodland
(10.7%), built-up areas (7.1%) and others (4.1%). Processes of LCT change, such as rapid
urbanization, afforestation and reclamation of wasteland, can have a greater impact on
the nature of the land surface, which changes the biophysical state of the land and causes
feedback in the LST. Numerous studies have confirmed that the YRD region has experienced
a large reduction in arable land over the past decades, which plays a key role in the
occurrence of LST breakpoints [75,76].

Figure 8. Percentages of different NDVI levels (a) and LCTs (b) in the LST breakpoints during
2001-2020 in the YRD region.

3.3.2. NDVI, LCT and the Type Derived by BFAST01 Trend Decomposition

Further analysis of the types derived from the BFASTO01 trend decomposition at
different NDVI levels and LCTs (Figure 9). The statistics on the type of temperature change
can help to understand the details of LST change on different LCTs. Overall, the proportion
of type derived by BFAST01 trend decomposition was non-significant change (36.64%),
monotonic increase (27.27%), reversal increase (19.30%), interrupted increase (10.58%),
interrupted decrease (5.95%), monotonic decrease (0.21%) and reversal decrease (0.05%).
The warming-type trend dominates the temperature change. However, there are significant
differences in type derived by BFASTO01 trend decomposition at different LCTs and NDVI
levels. Figure 9 shows the frequency occurrence of the LST trend types decomposed
by BFASTO1 at different LCTs. The built-up area is dominated by monotonic increases
(54.56%) and interrupted increases (19.53%). Monotonic increases and interrupted increases
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mean that there are no negative disturbances to LST during the temperature rise. This is
because increases in population and emissions are continuous and slow. While external
disturbances such as urban expansion, changes in the subsurface are often more rapid and
intense, to which temperature changes respond more strongly. The main types of trend
changes on cropland are monotonic increases (33.61%), decreases to increases (28.85%)
and non-significant changes (26.05%). Compared to other LCTs, the frequency in the type
of decreases to increases is the highest in cropland. Numerous studies have shown that
the main target of urban expansion in the YRD is cropland [77,78]. The replacement of
natural vegetation by urban buildings in urban expansions causes a significant change in
temperature variations in terms of trend direction and rate. The non-significant change
was the dominant type over grasslands and woodlands. As a comparison, for NDVI, the
proportion of non-significant change generally increases as the NDVI value gets higher. In
the background of global warming, regions with higher NDVI values show non-significant
responses to warming, and monotonic increases are predominant in the range of NDVI less
than 0.5.

Figure 9. Percentages of the LST trend types derived from the BFASTO01 trend decomposition in
different LCTs and NDVI levels during 2001-2020 in the YRD region.

3.4. The Inconsistent Warming of Different LCTs

To reveal the effect of different LCTs on regional warming, we compared the difference
between the average monthly 2001 LST and the average monthly 2020 LST in the YRD
region and further analyzed the LST changes in woodland, grassland, cropland, built-up
area for warming-type trends (Figure 10). There were significant differences in the mean
LST changes under different LCTs, with the largest changes occurring in built-up areas
(3.14 °C), followed by grassland (2.01 °C), cropland (1.94 °C) and woodland (0.91 °C). There
is also some variation in the warming contribution of the different warming-type trends
within LCTs. For built-up areas and cropland, the highest warming contribution of the
interrupted warming type was 3.46 °C and 2.09 °C, respectively. This suggests that external
disturbances such as urban expansion and subsurface changes have a greater impact on
the warming in built-up areas and cropland [79]. However, the warming contribution
of monotonic warming is highest in grassland and woodland. Uneven warming is a
phenomenon that cannot be ignored in global warming and has been widely reported,
especially in urban areas. Numerous studies have confirmed that warming in urban
contexts is significantly higher than in rural contexts, with urban expansion contributing to
the major warming in China’s cities [5]. Regional warming due to rapid urban warming
is the main cause of global warming. Among the different warming trends, monotonic
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warming and interrupted warming are more pronounced and contribute to the main
warming during temperature change.

Figure 10. LST changes of various trend types derived from the BFAST01 trend decomposition over
different LCTs.

4. Conclusions

The analysis of the Spatiotemporal variations of the LST has been widely analyzed
and discussed, but the variability of the LST is often complex and susceptible to external
disturbances, especially at long timescale. In this study, In this study, we use the BFAST01
algorithm to decompose LST trends and monitor break-points, compare the spatial and
temporal patterns of LST variability in the YRD region from different perspectives, and
further analyze them using a landscape pattern approach for non-linear patterns of LST
variability. Our study not only deepens the understanding of the spatiotemporal variability
of LST in the region but also highlights that LST breakpoints caused by external distur-
bances cannot be ignored in temperature assessment. The main conclusions obtained from
this paper are as follows:

(1) The linear rate of change of LST in the YRD ranged from —0.019 °C/month to
0.046 °C/month, with a more pronounced warming trend in the north and near
urban agglomerations. However, within the warming trend, it is mainly composed
of monotonic increases (27.3%), reversal increases (19.3%) and interruption increases
(10.64%). The landscape index shows a strong aggregation of the type derived by
BFASTO01 trend decomposition, but low connectivity and high spatial heterogeneity.
Monotonic increases and non-significant trends are more dominant.

(2) The breakpoints are widely distributed in the YRD but are more concentrated in the
southern and northern regions. The intensity of the breakpoints is mostly within 2 °C,
with reference to the linear trend rate of change, which typically takes 3.62-8.77 years
to offset an abrupt change. The breakpoints are highly concentrated in the period
2010-2013, suggesting stronger external disturbances in this period. Breakpoints
occurred more frequently over cropland and the NDVI range of 0.5-0.7, indicating
more disturbances over these areas.

(38) The types of LST trends varied considerably for different NDVI levels and LCTs.
In general, the proportion of non-significant trends generally increases gradually
as the NDVI level increases. Within a global warming background, this suggests a
suppressive effect of vegetation on LST warming. The warming in the built-up area is
significantly higher than in the other LCTS, with monotonic warming and interrupted
warming contributing more to warming.
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