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Abstract: Global land cover (GLC) data are an indispensable resource for understanding the re-
lationship between human activities and the natural environment. Estimating their classification
accuracy is significant for studying environmental change and sustainable development. With the
rapid emergence of various GLC products, the lack of high-quality reference data poses a severe
risk to traditional accuracy estimation methods, in which reference data are always required. Thus,
meeting the needs of large-scale, fast evaluation for GLC products becomes challenging. The triple
collocation approach (TCCA) is originally applied to assess classification accuracy in earthquake
damage mapping when ground truth is unavailable. TCCA can provide unbiased accuracy estimation
of three classification systems when their errors are conditionally independent. In this study, we
extend the idea of TCCA and test its performance in the accuracy estimation of GLC data without
ground reference data. Firstly, to generate two additional classification systems besides the original
GLC data, a k-order neighbourhood is defined for each assessment unit (i.e., geographic tiles), and a
local classification strategy is implemented to train two classifiers based on local samples and features
from remote sensing images. Secondly, to reduce the uncertainty from complex classification schemes,
the multi-class problem in GLC is transformed into multiple binary-class problems when estimating
the accuracy of each land class. Building upon over 15 million sample points with remote sensing
features retrieved from Google Earth Engine, we demonstrate the performance of our method on
WorldCover 2020, and the experiment shows that screening reliable sample points during training
local classifiers can significantly improve the overall estimation with a relative error of less than 4%
at the continent level. This study proves the feasibility of estimating GLC accuracy using the existing
land information and remote sensing data, reducing the demand for costly reference data in GLC
assessment and enriching the assessment approaches for large-scale land cover data.

Keywords: land cover; reference-free method; accuracy estimation; local classification strategy; triple
collocation approach (TCCA)

1. Introduction

Since the Global Land Cover Characterisation dataset was first released in the early
1990s, tremendous efforts have been made to produce global land cover (GLC) products
towards better accuracy and resolution [1,2]. Benefiting from remote sensing and artificial
intelligence techniques, GLC production efficiency has significantly improved in the last
decades. More than 10 GLC products with up to 10 m resolution are available now [3–7].
These GLC products provide unprecedented details of the Earth’s surface and promote a
batch of studies on environmental, biological and social sciences on a global scale [8–11].
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The application scope of a GLC product is significantly affected by its uncertainty,
which many factors can influence, including the definition of the classification scheme
(e.g., the hierarchy and description of land classes) [12], mapping scale (e.g., the minimum
mapping unit) [13], input data (e.g., satellite image) and classification methods [14]. The-
matic accuracy assessment is a fundamental procedure for producers and users to learn the
uncertainty in GLC data and thus make rational decisions [12,15]. Currently, most GLC
datasets are assessed by comparison with ground reference data. The confusion matrix,
together with some related descriptive metrics such as the overall accuracy (OA), user
accuracy (UA) and producer accuracy (PA), is used to characterise the accuracy [5,16,17].
Reference data are commonly collected based on a stratified random sampling design, in
which the true class for each sample point is determined by either field survey or visual
interpretation using high-resolution satellite images [15,18]. However, given the huge
amount of sample points needed for GLC assessment, obtaining sufficient high-quality
reference data on a global scale is always laborious and time-consuming [19–21].

Considerable efforts have been made to reduce the cost of reference data collection,
such as utilising open data sources such as OpenStreetMap or establishing web-based
platforms to collect crowdsourcing data from global volunteers for the validation of specific
GLC products [22–25]. A recent example can be seen in the validation of GlobeLand30, in
which an online system GLCVal was designed and used by approximately 30 countries and
international organisations for collaborative assessment [26]. Crowdsourcing also indicates
a promising direction for GLC assessment with the increasing popularity of geotagged
social media and related mobile apps [27,28]. However, significant concerns are raised
about the reliability of crowdsourcing data because of the varying expertise of volunteers,
and the uneven distribution of volunteers would possibly lead to very few sample points
in some regions [29,30].

Considering the limitation of sample-based assessment, some scientists seek to esti-
mate accuracy without standard reference data. Given the availability of vast global and
regional land cover products, various cross-comparison strategies were proposed to inves-
tigate the spatial, semantic or areal consistency between different GLC datasets [31–33].
The conversion of GLC products with heterogeneous classification systems is the first step
to enabling cross-comparison [34]. Considerable efforts have been made to harmonise
different land cover products, for example, by converting them into a standard classification
system or developing fuzzy approaches based on the semantic similarity in the definition
of land classes [32,33]. However, these methods require many subjective rules and present
several difficulties in dealing with complex land classes, which makes the conversion of
various GLC products still a challenging practice [35–37].

Instead of rigorous accuracy estimation, some studies have attempted to identify
potentially erroneous land objects without reference data, in which models based on outlier
detection techniques were widely adopted. A typical example can be seen in Radoux
and Defourny (2010) [38], where probabilistic outliers in terms of spectral features were
detected based on an iterative trimming method. This method was also extended to extract
reliable samples for GLC mapping [39]. To overcome the possible failure of statistical
assumptions in detecting outlying land objects, Chen et al. developed a series of reference-
free methods by adopting proximity-based outlier detection techniques and proposed
several quantitative measures of the reliability of land cover vector data [40] and raster
data [21]. Although these methods are useful as an auxiliary tool to assist the manual
inspection and the improvement of land cover products, they cannot estimate the confusion
matrix and fail to provide explicit information of accuracy.

Another batch of model-based studies took the ground truth as an unobserved (latent)
variable. Inference models, such as the latent class model (LCM) and triple collocation
approach (TCCA (The acronym TCCA is used following the original study of Pierdicca
et al. [41])), were adapted to estimate the thematic accuracy based on additional labels
for each land case [13,41–44]. Specially, TCCA was established to estimate the confusion
matrixes of three classification systems without reference data. The estimation was proven
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unbiased when the three systems’ errors were conditionally independent [41]. These pio-
neering works verified the feasibility of estimating land cover accuracy without ground
reference data, and TCCA seems promising because it can provide rich accuracy informa-
tion (e.g., the confusion matrix) rather than a single accuracy metric. However, a critical
issue emerges when applying TCCA to the assessment of GLC. Given that a GLC product
could be deemed as a single snapshot of the surface at a specific point in time, no other
independent versions of GLC follow the same classification scheme and specification that
can directly serve as the additional two systems to build up the foundation of TCCA.
Furthermore, given the massive data and unbalanced distribution of GLC, the performance
of TCCA in GLC accuracy estimation remains unclear.

This study aims to investigate strategies for using TCCA when only a single classi-
fication dataset is available and, thus, proposes a feasible workflow for estimating GLC
accuracy without reference data. To reduce the influence of complex classification schemes,
the multi-class problem in GLC is transformed into multiple binary-class problems when
estimating the accuracy of each land class. Taking geographic tiles as the basic assessed
unit, two local classifiers are independently trained for each land class of each assessed
tile based on samples randomly selected from its neighbouring tiles. To ensure the basic
assumption on conditional independence of TCCA, a Gaussian density function is applied
to weight the number of samples from neighbouring tiles of different orders. These local
classifiers are then applied to predict the land labels of the assessed unit, and the resultant
local classifications and the original one are taken as the input of TCCA to estimate the
classification accuracy. We also explore the effectiveness of the outlier detection technique
in extracting reliable local samples, which might reduce errors in local classifications that
are inherited from the original data and thus avoid the potential violation of conditional
independence. Building upon over 15 million sample points retrieved from Google Earth
Engine (GEE) and model parameters tuned from a regional land cover dataset, LandCover-
Net Africa (LCN-AFR), we test the performance of our approach on high-resolution GLC
datasets, European Space Agency (ESA) WorldCover 2020. Our approach is expected to
provide a low-cost solution for a rapid investigation of the spatial accuracy of GLC and
enrich the methodological framework of GLC mapping.

2. Methods
2.1. Mathematical Foundation of TCCA

The triple collocation technique was initially developed for modelling the errors in
ocean wind speed retrievals [45] and subsequently adopted in the assessment of many geo-
physical variables, such as soil moisture [46], sea surface salinity [47] and precipitation [48].
Concerning discrete variables in classification problems, Pierdicca et al. [41] conceived the
TCCA model to estimate the confusion matrixes of three classification systems without
ground truth data.

Let X, Y and Z denote the three systems, and Θ be the unobserved ground truth.
The sample points associated with each X, Y, Z system and Θ are denoted as x, y, z and θ,
respectively. The basic assumption of TCCA is that the errors of X, Y, Z are conditionally
independent (e.g., P(x|y, θ) = P(x, θ)), and thus the following equation is obtained:

P(x, y, θ) = P(x|y, θ)P(y, θ) =
P(x, θ)P(y, θ)

P(θ)
(1)

By marginalising over parameter θ, we could obtain the joint probability P(x, y), which
is equivalent to the confusion matrix of X, Y systems. The element of the confusion matrix
XY can be expressed as follows:

pXY
i,j =

N

∑
k=1

pXΘ
i,k pYΘ

i,k

pΘ
k

(2)
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where pXΘ
i,k denotes the joint probability for a sample point of a true class k being labelled

as class i in system X, and pΘ
k is the probability for a sample point belonging to class k in

ground truth Θ.
According to Equation (2), the target confusion matrixes XΘ, YΘ and ZΘ in accuracy

estimation should satisfy the following equations after some matrix operations:

XΘ · P · XΘT = XZ ·YZ−1 · XYT

YΘ · P ·YΘT = YZ · XZ−1 · XY
ZΘ · P · ZΘT = YZT · XY−1 · XZ

(3)

where P is a diagonal matrix composed of 1
pΘ

k
(k = 1, . . . , N). Additionally, considering the

prevalence of each class in Θ, one can obtain the following constraints:

pΘ
k =

N

∑
i=1

pXΘ
i,j =

N

∑
i=1

pYΘ
i,j =

N

∑
i=1

pZΘ
i,j (4)

Considering the joint probability P(x, y, z, θ) similar to the deduction in Equations (1)
and (2), one can obtain additional constraints:

pX,Y,Z
i,j,k =

N

∑
m=1

pX,Θ
i,m pY,Θ

j,m pZ,Θ
k,m

(pΘ
m)

2 (5)

Finally, together with Equations (3)–(5), the target confusion matrixes XΘ, YΘ and
ZΘ can be obtained with some algebraic operations, and more computational details can
be found in the original paper [41].

2.2. Solution for TCCA Applied to GLC Assessment

To distinguish our method from the original TCCA, we termed our method GLC-TCCA
in the following contents. The workflow of GLC-TCCA is shown in Figure 1. The core
of GLC-TCCA is to generate additional two classification system based on local classifiers
trained by samples from neighbouring tiles of the assessed one. Indeed, training local classi-
fiers is not unusual in current land cover production [39,49,50]. Given the heterogeneity of
the surface, a local classifier is expected to achieve better classification accuracy than a global
one by adaptively learning the regional characteristics of the land. Sample for training local
classifiers are obtained by either manual interpretation or derived from the existing land cover
products [51]. While manual interpretation generally provides reliable samples but involves
a huge workload [52], deriving samples from existing datasets has been demonstrated to
be much more efficient and allows the resultant classifications to follow the same classifica-
tion scheme, making it increasingly popular in large-scale land cover mapping [51,53]. The
processes will be introduced step by step in the following subsections.

2.2.1. Data Partition

The GLC dataset is first partitioned using specific geographical tiles (e.g., a 3× 3 degree
grid). This step aims to determine the assessed unit in the estimation and reduce the data
size processed at once.

2.2.2. Neighbourhood Construction

Training sample points are randomly selected from the training pool of each tile t,
which is here defined as its neighbourhood set Φk(t) = {φ1, . . . , φk}, where φi is the i-order
neighbourhood of ti as shown in Figure 1, and k is the maximum order considered here. Unlike
the common definition of the neighbourhood as the adjacent 3 × 3 tiles [51,54], the adoption
of a high-order neighbourhood would introduce a certain amount of sample points from
distant tiles into the training phase. According to Tobler’s First Law of Geography [55], points
that are distant from t would be less related to the ones from t. Given the basic assumption of
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TCCA, that is, the errors of the three systems should be conditionally independent to generate
unbiased estimation [41], using a high-order neighbourhood set is expected to increase further
the independence between Φk(t) and t, while keeping the effectiveness of local classifiers as
local features are still captured. However, as high-order neighbourhoods would dominate
Φk(t) with an increase in k, this study adopts a Gaussian density function to determine the
number of sample points mi from the i-order neighbourhood, which can be written as:

mi = M× Norm(u, σ2)
k
∑

i=1
Norm(u, σ2)

(6)

where the Norm
(
u, σ2) refers to the Gaussian density function with the expectation of u

and standard deviation of σ. M is the total number of sample points for training. For
simplicity, σ is set to 1, and k is set to 9 in this study, while the optimal value of u is tuned
by the simulation experiment discussed in Section 3.2.
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2.2.3. Training Two Local Classifiers

By taking the sample points’ class label as the dependent variable, two different classi-
fiers were trained on a balanced dataset using features from remote sensing data. To reduce
the correlation between the two local classification systems, the classifiers were trained
using exclusive points. It should be notable that since the two classifiers have different
mechanisms and are trained on different bases, their errors tend to be uncorrelated [44,56].

The local classifiers were subsequently applied to ti so that two additional systems
could be obtained for further analysis using TCCA. Given the widely existing spatial
heterogeneity in large-scale land cover data [57,58], the classification errors in different tiles
are also likely to present different distributions. In this regard, the correlation between the
original classification and the one predicted by local classifier could be largely reduced
using the sample from the defined neighbourhood in this study.

Finally, to increase the robustness of our method, the training and analysis phases were
repeated multiple times with different random samples, and the results were combined to
obtain the final estimation of the thematic accuracy.
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2.2.4. Estimating the Accuracy for a Single Class

TCCA is theoretically capable of handling multi-class problems with the complexity
of approximately O

(
n2), which would significantly increase with a larger number of

classes [41]. Therefore, in this study, considering various classification schemes in GLC
projects, we transform the multi-class problem into multiple binary-class problems by
iteratively taking one class as positive and the rest as negative. This operation has at least
two advantages. Firstly, the model uncertainty from local classifiers and TCCA would
be vastly reduced as the number of classes decreases [59]. Secondly, the sample space,
which determines the possible outcome of an experiment, will significantly change as some
classes are merged [60]. As a result, the correctness of the reformed dichotomous data
would be theoretically higher than the raw one, which might help to reduce the potential
error correlation between the local classification systems and the original one to improve
the effectiveness of TCCA.

2.2.5. Estimating the Overall Accuracy

One issue raised by the transformation mentioned above is the ensembling of accuracy
metrics: one can only obtain the accuracy estimation for a single class for each binary-
class case, while the accuracy information (e.g., the OA) of the entire data is not directly
measured. The present study takes OA as an example to demonstrate the calculation of
the accuracy of the entire data using the OA estimations from the binary-class case of each
class.

Let CMt denote the confusion matrix of the sample from tile t, which can be expressed
as follows:

CMt =


n11 n12 . . . n1N
n21 n22 . . . n2N
. . . . . . . . . . . .

nN1 . . . . . . nNN

 (7)

where N is the number of classes of the target GLC. The OA for class m after transforming
to the binary-class problem could be expressed as follows:

OAm =

nmm +
N
∑

i 6=m,j 6=m
nij

N
∑

i=1,j=1
nij

(8)

We term the OA in Equation (8) as bi-OA in the following content to distinguish it
from the generic OA metric. Therefore, let OAall denote the OA of CMt; the sum of bi-OAs
could be written as follows:

N

∑
m=1

OAm =

N
N
∑

i=1
nii + (N − 2)

N
∑

i=1,j=1,i 6=j
nij

N
∑

i=1,j=1
nij

= 2 ∗OAall + N − 2 (9)

Thus, one can follow Equation (9) to calculate OAall based on the bi-OA estimations.

2.3. Testing Conditional Independence

Conditional independence is a crucial assumption in GLC-TCCA. To find out the
optimal couple of classifiers that satisfied TCCA’s assumption on conditional independence,
we need to first test the conditional independence among the local classification systems
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and the prediction. In this study, the degree of conditional independence was quantified
based on the following equation:

ρ1 =
S∗1 − SX

1 SY
1√

SX
1 (1− SX

1 )S
Y
1 (1− SY

1 )
(10)

for the target class and

ρ0 =
S∗0 − SX

0 SY
0√

SX
0 (1− SX

0 )S
Y
0 (1− SY

0 )
(11)

for the rest data in the dichotomous problem. The superscripts X and Y denote the two classifica-
tion systems to be compared. S∗1 = P(X = 1, Y = 1

∣∣Θ = 1) and S∗0 = P(X = 0, Y = 0
∣∣Θ = 0) .

When ρ1 and ρ0 are substantially close to 0, the classification system X and Y could be consid-
ered conditionally independent [56,61,62]. For simplicity, we defined a single indicator CI to
quantify the correlation independence between two classification systems:

CI =
√
|ρ1ρ0| (12)

3. Experiments

Three experiments were sequentially conducted in this article. The first experiment
(Section 3.1) tested the sensitivity of TCCA when data were significantly imbalanced. The
results would be beneficial in determining the minimum proportion of sample size that
could be handled by TCCA in a reliable manner. The second experiment (Section 3.2) was
designed to test the influences of different couples of local classifiers and to determine the
optimal parameter in the Gaussian density function. The third experiment (Section 3.3)
demonstrated the practices of GLC-TCCA on real-life GLC assessment.

3.1. Sensitivity of TCCA on Extremely Imbalanced Data

TCCA has been proven to be unbiased in addressing moderately unbalanced data
(e.g., when the prevalence is 0.8 and 0.2 for two classes) [41]. However, given that data
can be extremely unbalanced in GLC (e.g., built-up accounts for only 0.7% in WorldCover
2020), to what extent TCCA can deal with such unbalance should be further explored.

In this section, we reconsidered the scenario simulated in the original paper of TCCA,
in which three classifiers X, Y and Z, with a false alarm rate and misdetection rates of
(8%,12%), (10%, 30%) and (20%, 40%), respectively, were applied to unbalanced data
with 4000 sample points (3200 for class 1 and 800 for class 2) [41]. We examined the
effectiveness of TCCA by varying the prevalence of class 2 from 0.2 to 0.005. Particularly, as
the uncertainty of TCCA would be large with a small sample size (e.g., less than 1000), we
reset the total number of simulated samples to 400,000 and fixed the sampling rate to 0.5.
Thus, each test had at least 1000 points for the minor class. Furthermore, we monitored the
estimation of commonly used metrics, including OA, PA and UA, in terms of their mean
absolute percentage error (MAPE) in this experiment. Mathematically, MAPE could be
written as:

MAPE =

∣∣Y− Ŷ
∣∣

Y
(13)

where Ŷ is the estimate, and Y is the actual value.
The results of the MAPE measurements for different accuracy metrics are shown

in Figure 2. TCCA achieved especially low MAPE for OA in all the cases, whereas the
estimations of PA and UA were less accurate and indicated large deviations when the
minor class was assigned a prevalence lower than 0.01. When the size of the minor class is
reduced to a comparable magnitude to the model uncertainty of TCCA, even a slight error
in estimating the element of the confusion matrix will introduce significant deviations for
PA and UA of the minor class. The estimation for OA is more stable than the one for other
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metrics because OA in an unbalanced scenario is primarily determined by the true-positive
number of the major class, which would not change significantly because of the relatively
small error in the elements of the confusion matrix. Thus, to maintain the reliability of the
results, we skipped the estimation of classes with a prevalence lower than 0.01 and focused
on the OA estimation in the following experiments. It is also noteworthy that, according to
the study of Pierdicca et al. [41], TCCA becomes less stable when the sample size is small.
Therefore, we further excluded the estimation of classes with a sample size lower than 100
to control the reliability in the following experiments.
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3.2. Tuning GLC-TCCA on a Real-Life Dataset with Known Ground Truth
3.2.1. Experimental Setup

In this section, we used LCN-AFR to test the performance of our proposed approach
and tune parameters for the further case study. LCN-AFR is an annual training dataset at a
10 m resolution for land cover classification, which consists of 1980 chips of 256× 256 pixels
across 89 tiles (3× 3 degree) in Africa [63]. The whole dataset was produced under a
seven-class scheme and manually validated by three independent experts. More details
on LCN-AFR can be found in Alemohammad and Booth (2020) [63]. The present study
filtered the most reliable pixels with a consensus score of 100, which can be used as ground
truth for validation. Furthermore, to save the computational cost, we randomly sampled
5% from the filtered result and finally obtained a collection of over 3.8 million pixels for
further experiments.

The workflow of this experiment is shown in Figure 3. Firstly, we trained a preliminary
classifier based on 5% random pixels and the Sentinel-2 time series associated with each
chip in LCN-AFR. A total of 240 spectral features were extracted from the Sentinel-2
images, following the instructions in the original paper on LCN-AFR [63]. Then, the trained
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preliminary classifier was applied to the whole collection to generate predictions for each
pixel. Finally, we applied GLC-TCCA to the prediction in each tile, following the strategies
introduced in Section 2.2. Additional concerns were given to explore the influence of two
initial conditions for TCCA in this experiment, including the choice of classifiers and the
parameter u in Gaussian density function used for sample collection. It is worth noting that
tree-based models and neural network (NN) are widely used in GLC mapping [6,9], and we
selected two representative methods, namely, the random forest model (RF) (Scenario A)
and the Multi-layer Perceptron classifier (MLP) (Scenario B), as the preliminary classifiers.
This allowed us to test our methods under different scenarios.
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3.2.2. Choice of Classifiers

We chose four basic classifiers as candidates for the two local classifiers in this study,
including decision tree (DT), random forest (RF), support vector machine (SVM), and
Gaussian Naive Bayes (GNB).

We ranged the parameter u from 1 to 6. We first calculated the CI values between
the systems produced by each classifier and the prediction. Notably, considering the
computation cost and effectiveness of training, a balanced training set of 10,000 points (i.e.,
5000 for the target class and 5000 for the rest) was selected during the training of the local
classifier for each land class.

As shown in Table 1, DT and GNB show a lower average value of CI (<0.1) in all
cases, whilst the values associated with RF and SVM are substantially larger than 0, which
indicates that RF and SVM might not satisfy the assumption of conditional independence
in TCCA. To further test the applicability of GNB and DT, we calculated the CI between
them. Additionally, to demonstrate the effectiveness of the exclusion of assessed tile when
constructing the neighbourhood set, we created a control group in which the assessed tile
was included in the neighbourhood set and recorded the corresponding CI values. As
shown in Figure 4, the exclusion of the assessed tile from the neighbourhood set could
significantly reduce the CI values, especially when the parameter u is small. When u
became larger, the Gaussian density function would assign less weight to the assessed tile
in the control group. Therefore, the difference in CI between the control and experimental
group would diminish. Moreover, it can be seen in Figure 4(a-3,b-3) that the increment
of CI in control group is relatively smaller than those in other scenarios, which indicates
that the errors in the outcomes of the selected local classifiers tend to be uncorrelated even
though the training sample might inherit some errors from the assess tiles.
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Table 1. Statistics of CI between the system produced by different local classifiers and values of u.
Std refers to standard deviation.

Preliminary Classifier Sampling Parameter

Local Classifier

DT RF SVM GNB

Mean Std Mean Std Mean Std Mean Std

RF

u = 1 0.084 0.042 0.411 0.117 0.387 0.114 0.082 0.057
u = 2 0.081 0.037 0.408 0.112 0.375 0.112 0.073 0.050
u = 3 0.068 0.036 0.391 0.108 0.361 0.108 0.062 0.047
u = 4 0.061 0.035 0.349 0.103 0.326 0.116 0.053 0.040
u = 5 0.056 0.033 0.327 0.123 0.298 0.115 0.050 0.032
u = 6 0.054 0.031 0.311 0.125 0.284 0.123 0.045 0.030

MLP

u = 1 0.097 0.047 0.459 0.118 0.530 0.116 0.010 0.065
u = 2 0.088 0.044 0.466 0.113 0.523 0.121 0.010 0.062
u = 3 0.073 0.041 0.441 0.105 0.493 0.124 0.092 0.052
u = 4 0.076 0.032 0.404 0.122 0.451 0.119 0.082 0.050
u = 5 0.073 0.035 0.362 0.147 0.406 0.151 0.070 0.046
u = 6 0.064 0.031 0.344 0.155 0.386 0.146 0.076 0.052
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According to the superior performance in the simulation, DT and GNB were selected
as the two local classifiers for the following experiments:

3.2.3. Selection of the Parameter u in the Gaussian Density Function

To choose the optimal value of u in the Gaussian density function, we investigated the
influence of different values of u on estimation accuracy. The resultant estimations were
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evaluated in terms of the mean absolute error (MAE) and signed deviation (SD), which are
expressed as follows:

MAE(θ̂) = 1
n

n
∑

i=1

∣∣θi − θ̂i
∣∣

SD(θ̂) = θi − θ̂i

(14)

where θ̂i refers to the estimate of the true accuracy metric θi (e.g., OA) of grid i. Compared
with MAE, which measures the average magnitude of errors in the estimates, the mean of
SD (MSD) captures the average differences between truth and estimate. An MSD value
smaller than zero may imply a general overestimation.

As shown in Figure 5(a-1,b-1), overestimations can be observed in the control group
in terms of their MSD substantially lower than 0 when u is small (e.g., u = 1 or 2). The
reason could be that local classifiers tend to inherit classification errors from the assessed
tile in the control group. As a result, the local classifiers would produce similar predictions
that contain correlated errors to the data being evaluated. According to Pierdicca et al.
(2017) [41], such a correlation would lead to overestimating the accuracy of systems with
similar outcomes. This inference is also supported by Table 1 and Figure 4 as the highest
values of CI generally appear at u = 1. In contrast, the overestimation was largely reduced
with the exclusion of the assessed tile as the MSD is close to 0 in the experimental group.
These findings, again, justify the construction of the neighbourhood set in this study.
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As shown in Figure 5(a-2,b-2), the MAE of the estimation declines at first and then
increases with the increment of u. This can also be explained by the fact that the local
classifiers tend to inherit errors that might be correlated to those in the assessed tile when
the training sample concentrates in a low-order neighbourhood. However, when u becomes
too large, the effectiveness of local classifiers is lowered. As TCCA generally trusts the
systems that present similar outcomes more [41], TCCA would judge the target system
(i.e., the outcome of the preliminary classifier) to be less accurate when it is significantly
different to the other two local systems. In sum, regardless of the preliminary classifier
used, the smallest MAE always appear at u = 2. Therefore, given that LCN-AFR has very
similar data properties (e.g., resolution and classification scheme) to WorldCover 2020, we
finally adopted u = 2 in the Gaussian density function and used DT and GNB as the local
classifiers in the following experiments on WorldCover 2020.

3.3. GLC-TCCA Applied to WorldCover 2020

In this section, we demonstrated the performance of GLC-TCCA on WorldCover 2020,
a 10 m resolution GLC dataset produced by ESA. WorldCover 2020 is claimed to have an
overall accuracy of 74.4%. WorldCover 2020 is also available on GEE, which significantly
offers easy access and data processing. Details about the accuracy of WorldCover 2020 can
be found in the European Space Agency (2021) [64].

3.3.1. Data Preparation

To generate a sufficient number of global sample points for applying GLC-TCCA,
we randomly picked points based on a density of approximately one point per 9 km2,
considering memory and computation limitations in GEE. To train the local classifiers, a
total of 98 remote sensing features were extracted from Sentinel-1 (S1), Sentinel-2 (S2) and
AW3D30 Version 3.2. Details of the feature extraction could be found in the Supplementary
file. It should be noted that different feature combinations are expected to influence the
results of GLC-TCCA, however, exploring the best combination is out of the scope of this
study.

Given that S1 and S2 do not cover the full surface of the Earth, some sample points
would be invalid because of the lack of image coverage. Thus, they were discarded in this
study. For example, Greenland and the northernmost regions of Canada were excluded
from this study due to the lack of S1 images in VV-VH mode. Finally, we obtained over
15 million points covering 2207 3× 3 degree tiles (Figure 6) for the following experiments.
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3.3.2. Estimation of WorldCover 2020 at the Continent Level

Given the lack of rigorous reference data (i.e., grid-specific accuracy information) for
WorldCover 2020, we utilised the accuracy information for each continent and the global
accuracy map reported in the product report of WorldCover 2020 to verify the performance
of our method.

The accuracy map estimated by GLC-TCCA and the official one are compared in
Figure 7. Given that numeric data are unavailable for the official accuracy map, we cannot
make a direct quantitative comparison. However, through a quick visual comparison,
we found that the estimation of GLC-TCCA captured most of the spatial patterns of the
accuracy map. For example, significant high-accuracy areas (connected by a blue dashed
line) and low-accuracy areas (connected by a red dashed line) were successfully identified
by GLC-TCCA. The estimated OA values for each continent are summarised in Table 2. In
most cases, the estimations of GLC-TCCA are close to the reported OA provided by ESA,
with a mean absolute error (MAE) of 3.40, and a mean absolute percentage error (MAPE)
of 4.71%. These findings prove the effectiveness of the proposed GLC-TCCA in providing a
generally reliable estimation and capturing the most spatial variation of the accuracy of
WorldCover 2020.
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2020. The red dashed lines connect areas with high accuracy in both (a) and (b), whilst the blue
dashed lines connect those low-accuracy areas.
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Table 2. Comparison of the reported and estimated OA at the continent level.

Continent Reported OA (Official) Estimated OA Absolute Error Absolute Percentage Error

South America 76.10 80.04 3.94 5.18%
Europe 76.80 77.14 0.34 0.44%

Asia 80.70 77.59 5.11 3.85%
Africa 73.60 76.41 2.81 3.82%

North America 72.20 70.96 1.24 1.71%
Oceania 67.50 76.47 8.97 13.29%

Average 3.40 4.71%

There are at least two reasons that explain the mismatches between Figures 7a and 6b:
(1) Model errors exist in the results of GLC-TCCA, and (2) Given that two accuracy layers
are produced with different spatial resolutions (i.e., 100 m for (a) and 3× 3 degree tile for
(b)), some local extremum in (a) tend to be smoothed in (b), which is believed to cause a
certain level of mismatch, such as the one in eastern South America.

It is noteworthy that certain grids at high latitudes have smaller areas due to the
distortion caused by projection and occupation by the sea, resulting in their reduced
weights in the calculation of overall accuracy. The northeast regions of North America,
for instance, visually exhibit a greater difference in accuracy; however, this does not
significantly diminish the overall accuracy of North America, as shown in Table 2.

The largest absolute error was observed in the estimation of Oceania. The reason
for the relatively lower effectiveness of GLC-TCCA in Oceania are as follows: (1) A large
proportion of grids in Oceania is close to the sea, and their neighbourhoods are relatively
broken, containing fewer neighbouring tiles than the ones in other continents. As shown in
Table 3, the average number of neighbours of Oceania is only 146, which is significantly
lower than the global average of 223. In that sense, sample points might concentrate in
low-order neighbourhoods, and an overestimation could be expected, as discussed in
Section 3.2. The same issue also occurs in South America, where the number of neighbours
is only 172. (2) As Oceania presents the lowest true OA of 67.5% among all the continents,
sample points from the neighbourhood set are more likely to be wrongly labelled. Thus,
classifications produced by local classifiers tend to inherit more correlated errors from
the original data, which is expected to result in an overestimation, according to Pierdicca
et al. [41].

Table 3. Number of neighbours in the neighbourhood set Φ9 at the continent level.

Continent Average Number of Neighbouring Tiles

South America 172
Europe 245

Asia 255
Africa 237

North America 196
Oceania 146
Global 223

3.3.3. Improving GLC-TCCA with the Screening of Reliable Sample

The final section verifies the feasibility and effectiveness of the proposed GLC-TCCA.
However, as mentioned above, some estimates are less reliable because of the high propor-
tion of erroneous sample points. To that end, we added an outlier detection phase based
on isolation forest (IForest) for the filtration of reliable sample points before training local
classifiers. Compared with other outlier detection techniques, IForest has been proven
robust and efficient in handling large data volumes and high-dimensional problems given
its ensemble framework and nearly linear complexity [65].

For GLC data, erroneous pixels may be limited to common outliers that present
abnormal dispersions from others and possibly form clusters when the number of errors
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reaches a certain level. In this regard, we discarded the top 10% sample points in the
anomaly score estimated by IForest. We chose 10% as the threshold because OA for GLC
products is commonly around 80, and we conservatively assumed that 50% of the errors
might form clusters. Thus, the remaining sample can still capture most land characteristics
that allow training effective local classifiers.

As shown in Figure 8, the overestimation of OA in Oceania and South America was
significantly reduced, whereas the estimated accuracy of other continents remained consistent
with the previous estimates that were produced without IForest. After using IForest, the MAE
was reduced from 3.40 to 2.54, and MAPE was reduced from 4.71% to 3.45%.
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3.3.4. Class-Specific Accuracy Analysis Based on the Estimates of Improved GLC-TCCA

The most significant deviation seems to occur in the Grassland of Oceania. According
to the product report of WorldCover 2020, the true bi-OA of Grassland in Oceania was
computed to be 72%, which is the lowest among all the cases we considered in Figure 9.
Therefore, approximately 28% of the samples are erroneous when training the local clas-
sifiers to evaluate the accuracy of Grassland. Although IForest was applied to reduce the
influence of the errors from the original data, the influence cannot be fully avoided when
the quantity of erroneous pixels is too large. Furthermore, Grassland accounts for 54.64% of
the original data in Oceania. This low accuracy of Grassland and its high proportion in Ocea-
nia would increase the error correlation between the three input systems for GLC-TCCA
and thus result in less reliable estimates.

We further calculated the bi-OA for each class based on Equation (8) and compared
the result with its truth derived from the product report of WorldCover 2020. As shown
in Figure 9, the low value of MAPE for each continent proves the general correctness of
the bi-OA estimates. However, deviations can be observed in some minor classes, such
as Moss and Lichen in Asia (0.71% of the original data in Asia) and Herbaceous wetland in
Europe (0.71% of the original data in Europe). As discussed in Section 3.1, lower prevalence
will result in a larger deviation when solving the binary-classification problem using TCCA.
However, these deviations would have less effect on the estimation of the entire dataset
because the absolute sample sizes of these classes are small.
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4. Discussion

The essence of GLC-TCCA is to estimate the confusion matrixes of multiple classifica-
tions based on their agreements. The overall correctness of the data should be carefully
checked before applying GLC-TCCA in practice. The estimation could be invalid if the
accuracy of the original data is too low. In that situation, both local classifiers are likely to
produce erroneous predictions, which will lead to a high proportion of correlated errors
between local classifications and thus violate the assumption of their conditional inde-
pendence given the ground truth. However, given that the majority of existing GLC data
are reported to have a similar OA to WorldCover 2020, which is over 70%, we believe
GLC-TCCA could also apply to most GLC products, given its performance in WorldCover
2020.

It is important to note that the accuracy of each classification does not affect the results
of GLC-TCCA, as long as the assumption of conditional independence is satisfied [41]. In
this study, the construction of neighbourhoods plays a crucial role in consolidating this
assumption by enabling the utilization of spatial heterogeneity to reduce the potential
dependency between the assessed data and local classifications. This step also ensures the
effectiveness of local classifiers by using local samples and avoiding potential correlation
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between local classifications caused by very low accuracy as discussed above. In addition,
we weakened the impact of classification errors on local classifiers by screening reliable
samples and conducting multiple times of training, which would further reduce the po-
tential dependency between the original data and local classifications. The effectiveness
of these operations was demonstrated by the significantly reduced CI values shown in
Figure 4 and the improved estimates shown in Figure 8.

The computational cost could be a critical concern when using GLC-TCCA in practice.
Retrieving massive global sample points with their spectral and terrain features is the first
step for conducting GLC-TCCA. Fortunately, with the help of modern cloud computing
platforms, such as GEE, the remote sensing data processing cost can be largely reduced.
Furthermore, although GLC-TCCA involves many computational procedures, such as
training local classifiers and outlier detectors, its ensemble framework makes most of these
procedures parallelisable. Thus, the time cost can be greatly reduced by distributing the
estimation task.

5. Conclusions

While various GLC products are rapidly produced and updated with advanced classi-
fication techniques, their assessment seems to “fall behind” in providing timely accuracy
reports to support decision-making. Despite the high reliability, traditional sample-based
assessment approaches are often restrained by the lack of ground truth and criticised for
the huge workload and low efficiency. This study develops a new reference-free method
termed GLC-TCCA, particularly for estimating the thematic accuracy of GLC products.
Compared with traditional assessment methods that rely heavily on ground reference
data, GLC-TCCA makes full use of the original classification information and does not
rely on any external data except remote sensing images. According to the experiment on
WorldCover 2020, GLC-TCCA can provide accurate estimates for individual land classes
and the whole dataset at the continent level with a relative error of approximately 4%.

The reference-free characteristics of GLC-TCCA make it a useful tool for GLC pro-
ducers and users. From the producers’ perspective, GLC-TCCA allows a quick survey of
spatial accuracy of large-scale land cover datasets without conducting situ measurement.
Furthermore, the spatial accuracy layer produced by GLC-TCCA is valuable for producers
to target poorly classified regions and thus take more efficient interventions (e.g., train-
ing sophisticated local classification models or scrutinising poorly classified regions) to
improve the data accuracy before delivery to the users. From users’ perspective, the results
of GLC-TCCA could serve as a third-party inspection to validate the reported accuracy of
land cover data and allow users’ self-services to obtain classification accuracy, which is
only empirically estimated and reported by the producers.

Improvements can be made in future works. Firstly, as many grid cells are located on
the edge of a continent or island, their neighbours’ actual number and spatial coverage
could be significantly smaller than those located in the land’s interior. To address that issue,
adaptive neighbourhoods could be developed to train better local classifiers. Secondly, only
spectral and terrain features are used in this study. Given the massive land classification
information in existing GLC data and crowdsourcing data, how auxiliary information
could be used to enhance GLC-TCCA needs to be further explored. Thirdly, the effect of the
accuracy of the original data on the reliability of estimations needs to be further quantified
by experiments and simulations. Lastly, stable and efficient software needs to be developed
in future work to enhance the practical utilisation of GLC-TCCA.
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