
Citation: Xie, D.; Xu, H.; Xiong, X.;

Liu, M.; Hu, H.; Xiong, M.; Liu, L.

Cropland Extraction in Southern

China from Very High-Resolution

Images Based on Deep Learning.

Remote Sens. 2023, 15, 2231. https://

doi.org/10.3390/rs15092231

Academic Editor: Jochem Verrelst

Received: 29 March 2023

Revised: 17 April 2023

Accepted: 20 April 2023

Published: 23 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Cropland Extraction in Southern China from Very
High-Resolution Images Based on Deep Learning
Dehua Xie 1, Han Xu 1, Xiliu Xiong 2, Min Liu 1, Haoran Hu 1, Mengsen Xiong 1 and Luo Liu 1,*

1 Guangdong Provincial Key Laboratory of Land Use and Consolidation, South China Agricultural University,
Guangzhou 510642, China; huazai_heng_7@stu.scau.edu.cn (D.X.); 20202058003@stu.scau.edu.cn (H.X.);
lm0803@stu.scau.edu.cn (M.L.); huhaoran@stu.scau.edu.cn (H.H.); 18538067289@stu.scau.edu.cn (M.X.)

2 Institute of Ecological Environment Protection, Guangxi Eco-Engineering Vocational and Technical College,
Liuzhou 545004, China; xiongxl@stu.scau.edu.cn

* Correspondence: liuluo@scau.edu.cn

Abstract: Accurate cropland information is crucial for the assessment of food security and the
formulation of effective agricultural policies. Extracting cropland from remote sensing imagery is
challenging due to spectral diversity and mixed pixels. Recent advances in remote sensing technology
have facilitated the availability of very high-resolution (VHR) remote sensing images that provide
detailed ground information. However, VHR cropland extraction in southern China is difficult
because of the high heterogeneity and fragmentation of cropland and the insufficient observations of
VHR sensors. To address these challenges, we proposed a deep learning-based method for automated
high-resolution cropland extraction. The method used an improved HRRS-U-Net model to accurately
identify the extent of cropland and explicitly locate field boundaries. The HRRS-U-Net maintained
high-resolution details throughout the network to generate precise cropland boundaries. Additionally,
the residual learning (RL) and the channel attention mechanism (CAM) were introduced to extract
deeper discriminative representations. The proposed method was evaluated over four city-wide
study areas (Qingyuan, Yangjiang, Guangzhou, and Shantou) with a diverse range of agricultural
systems, using GaoFen-2 (GF-2) images. The cropland extraction results for the study areas had an
overall accuracy (OA) ranging from 97.00% to 98.33%, with F1 scores (F1) of 0.830–0.940 and Kappa
coefficients (Kappa) of 0.814–0.929. The OA was 97.85%, F1 was 0.915, and Kappa was 0.901 over
all study areas. Moreover, our proposed method demonstrated advantages compared to machine
learning methods (e.g., RF) and previous semantic segmentation models, such as U-Net, U-Net++,
U-Net3+, and MPSPNet. The results demonstrated the generalization ability and reliability of the
proposed method for cropland extraction in southern China using VHR remote images.

Keywords: cropland extraction; very high-resolution; GF-2; deep learning; southern China

1. Introduction

Cropland encompasses all agricultural land, including permanently cultivated land,
newly cultivated land, fallow land, and grassland-farming rotating land [1]. It provides
the largest share of the global food supply, constituting 90% of food calories and 80% of
protein and fats [2]. Accurate information regarding the extent and location of cropland
is a fundamental data requirement for various agricultural applications, such as field
area estimation, crop yield prediction, and understanding of the spatiotemporal patterns
of cropland changes [3,4]. These applications have essential roles in the assessment of
food security and formulation of effective agricultural policies [5]. In Guangdong, the
available cropland has continuously decreased because of rapid urbanization in recent
decades [6,7]. Between 2010 and 2020, the population increased by 21.04%, whereas the
cropland area decreased by 25.02%, resulting in a 38.05% decrease in cropland area per
capita. Currently, land surveys in Guangdong still heavily rely on manual field surveys and
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visual interpretation. These approaches are subjective, time-consuming, and labor-intensive
over large areas. Thus, there is an urgent need to develop an automatic and efficient method
for cropland extraction.

Remotely sensed observations provide accurate and cost-effective solutions for agri-
cultural land-use mapping and monitoring [8] and have long been efficient tools for the
identification and assessment of cropland extent and distribution at local, regional, and
global scales [9–11]. For a long time, land-use mapping has generally relied on satel-
lite data with a high temporal frequency and coarse spatial resolution, particularly over
large areas [12], for example, the Global Land Cover 2000 (GLC2000) 1000-m resolution
dataset [13], Moderate Resolution Imaging Spectroradiometer Land Cover (MODISLC)
500-m dataset [14,15], Copernicus Global Land Service (CGLS) Land Cover 100-m
dataset [16], Finer Resolution Observation and Monitoring of Global Land Cover (FROM-
GLC) [17], China land cover dataset (CLCD) at 30-m spatial resolution [18], and Dynamic
World, Near Real-time Global 10-m Land Use Land (Dynamic World) [19]. However, the
cropland field size is very small (<0.04 ha) in most areas of southern China [1]. The available
datasets have low (250 m–1.5 km), moderate (40.0–249.9 m), and medium (10.0–39.9 m)
spatial resolution [20] and hence are not sufficiently fine to accurately delineate cropland
consisting of small parcels of land with fragmented distributions [21]. Therefore, these
datasets generally have low accuracies and vast inconsistencies [22,23], resulting in the
poor assessment of global and local food security scenarios [24].

Fortunately, advances in remote sensing technology have facilitated the availabil-
ity of high-resolution (5.0–9.9 m) (e.g., RapidEye, GF-1) and very high-resolution (VHR)
(<5.0 m) [20] very high-resolution (VHR) satellite images (e.g., GeoEye-1, QuickBird-2,
WorldView-1, and GF-2), which provide more detailed ground information to resolve
fuzzy boundaries and small cropland parcels [25]. Specifically, the GF-2 satellite is the first
civil optical remote sensing satellite with better than 1-meter spatial resolution developed
independently by China. Although the available data from this satellite are new, many
studies have investigated its performance in cropland classification [25–29]. However, the
abundance of information in VHR images has caused high variation between the same
classes and subtle variation between the different classes [30]. Gardens, grassland, and bare
land have spectral and textural signatures that are similar to the signatures of cropland.
In southern China, most agricultural landscapes are dominated by smallholder farms that
constitute a mosaic of small fields with a diverse range of crops [1]. Small fields are often in-
terspersed with other land uses, leading to unclear boundaries between cropland and other
land uses. Furthermore, the high spatiotemporal heterogeneity of cropland contributes to
classification challenges. Burning, manual land clearing and preparation, heterogeneous
management practices and labor inputs, and the presence of shade trees and shelters all
result in diverse crop types and cover densities [31]. Additionally, some croplands adopt
an intercropping practice, which both increases the variation within the fields and hin-
ders the delineation of field boundaries. In addition to the challenges presented by the
high intra-class spectral variance between and within fields, the rapid temporal dynamics
create obstacles for accurate cropland extraction. The spectral reflectance of crops varies
throughout the growing season because of distinct biological characteristics [32]. Moreover,
additional management practices (e.g., field preparation and fallow periods before seeding
and after harvesting) can increase the intra-class variance of the spectral-temporal sig-
nal [33]. Thus, robustness and transferability are essential for cropland extraction methods
in southern China.

Previous studies have explored various methods to identify cropland information.
These methods can generally be divided into three categories. First, some studies used
statistical methods, such as K-nearest neighbors [34], support vector machine [35], decision
trees [36], and random forest (RF) [37]. These methods extract low-level features (e.g.,
spectra, texture, and geometry) and use minimal semantic information [38]. However,
because of the highly variable spectral signature of cropland and the spectral confusion in
VHR images, low-level features are less effective, resulting in difficulties in transferring the
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method both temporally and spatially [39,40]. Second, some methods used time-series data
for cropland classification using threshold-based algorithms. For example, Dong et al. [41]
and Guo et al. [42] presented phenology-based approaches to map the paddy rice planting
area and cropping intensity. Despite achieving good performance, these methods were
susceptible to uncertainty and thus required numerous high-quality images. Unfortunately,
VHR sensors make insufficient observations because of the long revisit intervals and poor
observational conditions (cloudy and frequent precipitation) in southern China [43]. The
third category is the latest popular deep learning-based method, which can hierarchically
learn more representative and discriminative features than existing techniques [44,45]. As
the most effective deep learning architecture for semantic segmentation, convolutional
neural networks (CNNs) [46] can autonomously extract contextual associations and learn
abstract features in the image without reliance on manually designed features [47,48]. For
example, Liu et al. [29] used U-Net to identify cropland and effectively reduced the salt-
and-pepper phenomenon of conventional methods. Zhang et al. [25] utilized the modified
PSPNet (MPSPNet) to extract cropland from different agricultural systems at a large scale,
demonstrating excellent generalizability and transferability.

However, these methods are hindered by the loss of spatial information and the ineffi-
cient utilization of spectral information. CNN-based models use down-sampling operations
to capture long-term dependency information, but they lose important spatial details [49].
Although the generated abstract feature maps are subsequently up-sampled to the original
resolution in the decoder, boundary information cannot be explicitly determined because
the up-sampled representations are essentially pseudo-high-resolution [50]. This property
severely reduces the classification accuracy of fragmented small fields, which are common
in most areas of southern China. Additionally, CNNs can learn the spatial dependency
of neighboring pixels, but they have struggled to capture correlations between adjacent
spectra [51]. Considering the substantial intra-class variability and extra-class similarity
of cropland in VHR images, the extracted results are subject to many commission and
omission errors without sufficient exploitation of spectral information.

Many efforts have been made to improve the performances of CNN-based models.
For example, the High-Resolution Network (HRNet) [52] maintains the high-resolution
details and accordingly learns semantically strong and spatially precise representations.
However, the massive additional convolutional modules in HRNet both substantially
increase the computational cost and present gradient problems. To address the degradation
problem of deep networks, He et al. [53] proposed the Deep Residual Network (ResNet),
which introduced a residual learning framework. Recently, attention mechanisms have
attracted increasing interest in the deep learning community. These mechanisms simulate
the manner in which humans understand and perceive images, and they can facilitate
the rapid and accurate acquisition of essential features [54]. For example, Hu et al. [55]
developed the Squeeze-and-Excitation Network (SENet), which uses the channel attention
mechanism (CAM) to adaptively recalibrate the weight of each channel, thereby increasing
sensitivity to representative features. The CAM can mitigate the effect of small differences
between classes and large differences within classes [56] and has been demonstrated to be
an effective method to improve CNN performance [57].

In this study, we developed a deep learning-based method for accurate cropland
extraction in southern China from VHR images using an improved CNN model. The
improved model was built on the end-to-end U-Net architecture [58] and fully exploited
state-of-the-art algorithms, including HRNet, ResNet, and SENet, and thus it was named
HRRS-U-Net. HRRS-U-Net uses parallel convolutional module flows to overcome spatial
information loss and constructs residual squeeze and excitation blocks (RS-Blocks) to learn
discriminative representations. We selected four study areas across Guangdong Province
to evaluate the performance of HRRS-U-Net using GF-2 images.

The main contributions of this study are listed as follows: (1) we developed a robust
and transferable deep learning-based method to extract highly spatiotemporal heteroge-
neous croplands in southern China; (2) we have comprehensively investigated the impact
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of RL and CAM on model performance; (3) to evaluate the superiority of our model, we
compared it with RF machine learning algorithm and other popular semantic segmentation
models.

2. Methodology

Figure 1 illustrates the workflow of this study, which involves several stages: GF-2
image preparation and pre-processing, sample datasets production, deep learning model
development, cropland extraction and accuracy assessment, and comparison of different
modules and methods.
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Figure 1. The workflow diagram of this study.

2.1. Study Area

Guangdong Province is located in the southern part of mainland China (20◦13′−25◦31′N,
109◦39′−117◦19′E), with a land area of 179,800 km2. The region has a tropical/subtropical
temperate and monsoon climate, with mostly cloudy and rainy weather year-round. The
topography is primarily mountainous and hilly, and the cropland is generally fragmented,
consisting of multiple small fields. Because of its complex topography and heterogeneous
landscapes, the spectral characteristics and spatial patterns of cropland are highly variable
throughout the province. Therefore, four representative areas were selected as study areas,
which included different landscapes, cropping systems, and environmental conditions.
Figure 2 shows the location and topography of the study areas. The general characteristics
of the four study areas are described below.
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Study area 1: Qingyuan is located in northern Guangdong (23◦26′−25◦11′N,
111◦55′−113◦55′E) and has a total land area of 19,036 km2. The topography mainly con-
stitutes mountains and hills, which cover 70.4% of the total area. The cropland area is
2681 km2 (14.08%), and a significant portion is fragmented. The main crops include early
and late rice, peanut, and corn. Early rice is planted in mid to late May and harvested
in mid to late July, while late rice is planted before the lunar autumn and harvested in
November. Spring peanut is sown in mid to late February and harvested in mid to late July,
while summer peanut is sown in late May and early June, then harvested in September and
October. The phenological calendar of corn is from late October or early November until
the following March.

Study area 2: Yangjiang is located on the southwestern coast of Guangdong
(21◦28′−22◦41′N, 111◦16′−112◦21′E). It has a land area of 7955 km2, of which 1491 km2

(18.74%) is cropland. This area has a mixed topography: 25.6% of the area is hilly, 42.0%
is mountainous, and 21.8% constitutes plains. The area borders the South China Sea to
the south and has large mudflat regions. The main crops include early and late rice and
peanuts.

Study area 3: Guangzhou, the capital of Guangdong Province, is located at
22◦26′–23◦56′N, 112◦57′–114◦03′E. It covers 7434 km2, of which cropland is only 924 km2

(10.76%). The landscape is complex, including mountains, hills, alluvial plains, and mud-
flats. The main crop types include early rice, late rice, and sugarcane. Sugarcane is sown in
spring from the end of January to mid-March and harvested from May to mid-July, while
in autumn, it is sown from the end of August to the end of September and harvested in
mid-December.

Study area 4: Shantou, located in the southeast of South China (23◦02′–23◦38′N,
116◦14′–117◦19′E), covers 2199 km2, and the area of cropland is 368 km2 (16.73%). The
topography of Shantou is flat, and the landform is mainly delta alluvial plains, which
account for 63.62% of the area. This area has a high level of urbanization, and the ratio of
built-up area is one of the highest in South China. The major crop types include early and
late rice.

2.2. Dataset
2.2.1. Data Sources and Pre-Processing

We collected available high-quality GF-2 satellite images with slight cloud coverage
(<5%) to cover the whole study area from the Guangdong Data and Application Center
of High-Resolution Earth Observation System (http://gdgf.gd.gov.cn/, accessed on 5
September 2022). Successfully launched on 19 August 2014, the GF-2 satellite is equipped
with two high-resolution 1-m panchromatic and 4-m multispectral cameras that exhibit
sub-meter spatial resolution. The detailed specifications of the GF-2 satellite are presented
in Table 1. In total, images of 118 scenes were collected, which were acquired from 2018 to
2020. Due to insufficient observations of GF-2, a small portion of the study areas remains
uncovered. Figure 3 shows the spatial distribution of the GF-2 images used in the study.

Table 1. The detailed specifications of the GF-2 satellite.

Orbital
Type

Orbital
Altitude

Coverage
Cycle

Revisit
Cycle

Swath
Width

Band

Spectral Range (µm)
Spatial

Resolution
(m)

MSS
PAN MSS PAN

Blue Green Red Infrared

Sun-
synchronous 631 km 69 days 5 days 45 km 0.45–0.52 0.52–0.59 0.63–0.69 0.77–0.89 0.45–0.90 4 1

http://gdgf.gd.gov.cn/
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To correct the distortions, we pre-processed the collected remote-sensing images. Or-
thorectification was performed to remove geometric distortions, followed by radiometric
calibration and quick atmospheric correction(QUAC) [59] to remove scattering and absorp-
tion effects from the atmosphere. The images were then processed as composites with blue,
green, red, and near-infrared bands at VHR by fusing multispectral scanner system (MSS)
images and the corresponding panchromatic (PAN) images based on Pan-sharpening [60].
Eventually, the composites were resampled to 1-m spatial resolution.

2.2.2. Sample Dataset

To ensure that the deep learning model could effectively learn the spectral character-
istics and spatial distribution of cropland in different agricultural landscapes, five scenes
of GF-2 images across the study area were used to produce the sample dataset for model
training. Binary labeled images were generated by manual delineation of cropland bound-
aries from GF-2 images, and the labeled dataset was validated and revised based on field
surveys. Notably, because of insufficient observations, the labeled dataset did not cover all
seasons. CNNs use context to identify targets, and objects at the edges of the image may
lack complete contextual information, leading to incorrect classification [61]. Therefore, the
GF-2 images and corresponding labeled images were split into 256 × 256-pixel patch sizes
through a sliding window with a stride of 128 pixels in each direction. Additionally, the
dataset was expanded using data augmentation algorithms, including random rotation and
flip (horizontal and vertical). Finally, there were 3,343,076 sample patches, of which 80%
were randomly allocated for training, and the remaining 20% were allocated for validation.

2.3. Deep Learning Model

In this study, we developed an improved HRRS-U-Net for cropland extraction.
Figure 4 shows the architecture of the HRRS-U-Net, which was built on the U-Net frame-
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work and utilized the three recently developed HRNet, ResNet, and SENet. Compared
to the normal U-Net, HRRS-U-Net uses parallel convolutional module streams and multi-
resolution fusion operations to produce precise boundaries and constructs RS-Block to
learn discriminative representations. The above improvements appropriately increased the
network parameters; therefore, deep supervision [62] was introduced to efficiently train
the parameters and prevent overfitting. The following subsections describe the details of
each improvement.
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2.3.1. Parallel Convolutional Module Streams

Inspired by HRNet, we adopted the strategy of maintaining high-resolution represen-
tations throughout the network to generate precise cropland boundaries. In HRRS-U-Net,
the feature maps are maintained at their original level by using repeated convolutional
modules between the encoder and decoder. As shown in Figure 4a, convolutional mod-
ules with the same resolution are connected in series, and convolutional module streams
with different resolutions are connected in parallel. In the same resolution stream, the
shallow features in each layer are delivered to the subsequent layers via skip connections
to maintain the details. For example, the previous x0,1 was passed to the subsequent x0,2,
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x0,3, and x0,4. Feature maps generated by convolutional modules share the same resolution
and number of channels within the same convolutional module stream. Specifically, from
x0,j to x4,j, the scale size was 256, 128, 64, 32, and 16, while the channel numbers were 64,
128, 256, 512, and 1024, respectively.

2.3.2. Multi-Resolution Fusion

Multi-resolution fusion was repeatedly used to mutually enrich different-resolution
feature maps to obtain stronger semantic representations with precise locations. Low-level
feature maps with high-resolution representations had fine location information, and high-
level feature maps with large receptive fields had rich semantic information [63]. Therefore,
the combination of different level features is an effective approach to improving model
performance. Multi-resolution fusion aggregates feature maps that are generated from
previous basic blocks with different resolutions. Figure 4b demonstrates the implemen-
tation details of multi-resolution fusion using x2,2 as an example. Different resolution
feature maps have distinct scales; therefore, the feature maps undergoing aggregation
required transformation to ensure that they were consistent with the corresponding basic
blocks. Specifically, the high-resolution features (x0,3, x1,2) were performed by max-pooling
operations, low-resolution features (x3,0, x3,1) were performed by up-sampling operations
with specified strides, and some resolution features (x2,0, x2,1) were directly copied. After
alignment, all feature maps were aggregated into the high-dimensional feature map. Con-
sidering that high-dimensional data require substantial computational consumption, the
generated features had reduced dimensions in subsequent basic blocks, which included a
sequential 3 × 3 convolutional (Conv) layer, batch normalization (BN) layer, and rectified
linear unit (ReLU).

2.3.3. RS-Block

The RS-block with embedded RL and CAM was used in encoded layers to extract
deep discriminative and representative features. CNNs are not effective in the modeling
of high dependencies between spectra in VHR images, which potentially hinders the
generalization and robustness of the model. Thus, the extraction of more representative
and discriminative features is a crucial procedure for cropland identification. The detailed
composition diagram of the RS-Block is shown in Figure 4c. The RS-Block consists of three
parts: two basic blocks, the identity shortcut connection, and the SE-Block. The identity
shortcut connection is a branch that delivers input features to be summed and merged
with the features, which are processed by the SE-Block using a 1 × 1 Conv layer and
subsequent ReLU. The SE-Block is a CAM module that selectively emphasizes informative
channels and suppresses noise and irrelevant information. In SE-Block, the input feature
maps are first passed through a global average pooling (GAP) operation over the feature
maps, which produces a vector of channel-wise statistics. These statistics are then passed
through two fully connected (FC) layers, ReLU and Sigmoid activation functions, and these
operations learn to model channel dependencies and generate a channel-wise attention map.
Specifically, the first layer reduces the dimensionality of the input vector, while the second
layer produces a set of channel-wise scaling factors. Finally, the attention map is applied
to the original feature maps using element-wise multiplication, effectively amplifying the
important channels and suppressing the less important ones.

2.4. Model Training

To evaluate the performance of the neural network, the loss function was used to
measure the fitness between the predicted and the ground truth values. For remote sensing
images, there is an imbalance in the proportion of cropland and non-cropland, which is
more pronounced in mountainous and urban areas. In the commonly used binary cross-
entropy (BCE) loss, the weights of the different categories are equal. This can result in a
biased learning direction of the model. Dice loss [64], which is more inclined to extract
the foreground, is appropriate for cases of sample imbalance. However, Dice loss exhibits
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gradient instability problems that lead to suboptimal convergence [65]. To overcome these
issues, we utilized a composite function known as BCE-Dice loss, which benefits from the
stability of BCE loss and robustness of dice loss. The calculation formula of BCE-Dice loss
can be expressed as follows:

Dice = − 1
N

N

∑
i=1

2pigi
pi + gi

(1)

LDice = 1−Dice (2)

LBCE = − 1
N

N

∑
i=1

(gi log pi + (1− gi) log(1− pi)) (3)

LBCE−Dice = LDice + LBCE (4)

where Dice is the Dice coefficient; LDice, LBCE, and LBCE−Dice represent Dice loss, BCE loss,
and BCE-Dice loss, respectively; pi is the predicted probability value of the ith pixel; gi is
the ground truth value of the ith pixel, and N is the total number of pixels in the image.

To combat the overfitting during model training and ensure sufficient generaliza-
tion performance, we adopted L2 regularization [66]. This approach ensured that the
weights were small but avoided reducing them to zero. The calculation formula of the L2
regularization can be expressed as follows:

L′(ω) = L(ω) + λ ‖ω‖2
2 (5)

where, L(ω) represents the original function; L′(ω) represents the function after regular-
ization; ‖ω‖2

2 represents the squared constraint of the L2 norm, and λ represents a constant,
which we set to 0.01.

We used Adam [67] as the algorithm for gradient descent optimization. The initial
learning rate was 0.0001, and the learning rate decay strategy was adopted to decrease
the original value 0.9 times every 3000 steps. The training batch size was set to 8, the
maximum number of training epochs was set to 50, and the early-stopping strategy was
designed to stop training after 10 epochs without performance improvement. Finally, He
initialization [68] was adopted to initialize model weights.

2.5. Accuracy Assessment

In this study, the accuracy of the classification results was assessed using two different
assessment methods: point-based and polygon-based assessment.

In the point-based assessment approach, stratified random sampling design and pixel-
by-pixel validation were used to assess the accuracies of our maps and the other cropland
maps. To reduce the standard error of the producer accuracy (PA) and OA [69], sample
points were assigned to cropland and non-cropland based on their areal proportions. We
randomly selected 300 sample points in each of the four study areas according to the
areal proportion of land use types for validation, including 180 samples for cropland and
1020 samples for non-cropland. The distribution of sample points is shown in Figure 5. We
visually interpreted the land use for all sample points by combining field survey results.
Finally, using cropland extraction results and sample data, we calculated confusion matrixes
to evaluate the accuracy.
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We adopted the following evaluation indicators: user accuracy (UA), PA, OA, F1 of
cropland, and Kappa. UA is the probability that a value predicted to be in a specific class
really is that class, and PA is the probability that a value in a particular class was classified
correctly. UA and PA measure the completeness and precision of decisions, respectively;
F1 is a balanced metric between the two. Additionally, Kappa was used to estimate the
consistencies of prediction and ground truth; it represents the ratio of classification to the
reduction of errors generated by completely random classification. The formula for each
evaluation indicator was as follows:

UAC =
TP

TP + FP
, UAN =

TN
TN + FN

(6)

PAC =
TP

TP + FN
, PAN =

TN
TN + FP

(7)

OA =
TP + TN

T
(8)

F1 = 2× UAC × PAC

UAC + PAC
(9)

pe =
(TP + FP)× (TP + FN) + (TN + FP)× (TN + FN)

(TP + FP + TN + FN)2 (10)

Kappa =
OA− pe

1− pe
(11)
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where TP is true positive (i,e., correctly identified croplands), TN is true negative (i,e.,
correctly identified non-croplands); FN is false negative (i.e., true cropland omitted by the
method), and FP is false positive (i.e., not cropland but erroneously detected as cropland).
Additionally, UAC and UAN denote the UA of cropland and non-cropland, respectively;
PAC and PAN denote the PA of cropland and non-cropland, respectively; and pe represents
the hypothetical probability of chance agreement.

Although point-based accuracy metrics are commonly used to evaluate the accuracy
of image classifications, they do not provide information about the thematic representation
quality of land objects [70]. On the other hand, polygon-based approaches take into account
the thematic and geometric properties of map units [71]. Therefore, we additionally used a
polygon-based evaluation to determine the thematic accuracy of the object representation.
This method is used to evaluate the segmentation accuracy by simply converting the
classification results into vector data and extracting the intersection with the reference
polygon [70]. We employed the spatial point sampling approach for polygon sampling [72].
We first randomly generated a set of sample points within the bounding box of the polygon
and then selected the mapped polygon in which the sample points fall. We extracted and
visually interpreted 100 polygons (50 polygons for cropland and 50 polygons for non-
cropland) in each of the four study areas. The distribution of sample polygons is shown in
Figure 5. This evaluation performs an area-based ratio calculation between the intersection
area of the result and the area of the reference polygon. The formula for the intersection
rate was as follows:

IntRate =
AreaInt
AreaRe f

(12)

where IntRate refers to intersection rate, AreaInt refers to the area of the intersection area,
and AreaRe f refers to the area of the reference polygon.

The rate takes values from 0 to 1. After calculating the ratio, the mean value of the
rate (Mean) and standard deviation of the rate (Std) metrics are provided for each category.

3. Results
3.1. Ablation Experiment Results of the RS-Block

As mentioned in Section 2.3.2, we constructed the RS-Block embedding RL and CAM
to improve the accuracy of cropland extraction. To investigate the effectiveness of the
RS-Block in terms of improving model performance, ablation experiments were conducted.
As shown in Figure 6, the RS-Block was detached in the experiment, resulting in conditions
that excluded only RL, only CAM, or both RL and CAM.
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Figure 7 shows detailed comparisons of the extraction results of different modules.
In each row, the GF-2 images of regions and the corresponding segmentation results
of different modules are presented. Table 2 presents the comparative accuracies of the
cropland results for different modules. Because the backbone is the same, the delineation
results of different modules were generally consistent. However, there were differences
in the delineation of small fields and dense boundaries. When RL or CAM was absent,
the segmented results became coarse, and tiny ridges were neglected. In particular, the
model without RL produced classification maps with more missed and misclassified pixels,
particularly in backgrounds with gardens and forests. The addition of RL significantly
reduced these errors, resulting in cropland UA, cropland PA, and OA improvements
of 4.80%, 0.85%, and 0.69%, respectively; F1 and Kappa increased by 3.0% and 3.5%,
compared with the non-application of RS-Blocks. However, the performance of CAM alone
was mediocre, with no significant improvement and even a decrease in some accuracies.
This was because deeper models usually become stuck on the gradient problem; thus, it
is impractical to perform parameter updates. In the presence of RL, CAM could further
improve accuracy; the cropland UA, PA, OA, F1, and Kappa increased by 1.37%, 0.69%,
0.34%, 1.3%, and 1.6%, respectively, compared with the use of RL alone. The complete RS-
Block clearly surpassed the other modules and had the highest accuracy. Compared with
the simultaneous absence of RL and CAM, the complete RS-Block significantly improved
model performance, with 6.85% higher cropland UA, 1.54% higher cropland PA, and 1.04%
higher OA, as well as 4.3% and 5.1% higher F1 and Kappa, respectively. Furthermore, the
integration of RL and CAM can enhance the accuracy of object representation, resulting
in an increase of 2.30% and 1.58% in the Mean values of cropland and non-cropland,
respectively. Moreover, the complete RS-Block significantly improves transferability and
robustness, as demonstrated by a reduction of 17.32% and 27.56% in the Std values of
cropland and non-cropland, respectively.

Table 2. Comparison of extraction accuracy with different modules and different methods (CL:
cropland, Non-CL: non-cropland).

Scenario Model

Point-Based Polygon-Based

UA (%) PA (%)
OA (%) F1 Kappa

Mean Std

CL Non-CL CL Non-CL CL Non-CL CL Non-CL

Comparison
of modules

No RL and CAM 81.11 99.31 95.42 96.75 96.58 0.877 0.857 0.871 0.951 0.179 0.127
No RL 82.22 99.22 94.87 96.94 96.67 0.881 0.862 0.865 0.943 0.161 0.104

No CAM 85.00 99.41 96.23 97.41 97.25 0.903 0.887 0.877 0.960 0.165 0.097

Comparison
of methods

RF 26.11 96.67 58.02 88.11 86.08 0.360 0.295 0.525 0.647 0.217 0.164
U-Net 75.56 99.02 93.15 95.83 95.50 0.834 0.809 0.813 0.913 0.196 0.132

U-Net++ 80.56 99.22 94.77 96.66 96.42 0.871 0.850 0.833 0.925 0.153 0.118
U-Net3+ 80.00 98.43 90.00 96.54 95.67 0.847 0.822 0.807 0.891 0.173 0.122
MPSPNet 82.78 99.51 96.75 97.04 97.00 0.892 0.875 0.862 0.953 0.158 0.114

Our Model 86.67 99.51 96.89 97.69 97.58 0.915 0.901 0.891 0.966 0.148 0.092

3.2. Comparison of HRRS-U-Net with Other Methods

To evaluate the classification performance of the proposed HRRS-U-Net model, we
conducted a comprehensive comparison with traditional machine learning method (RF)
and other deep semantic segmentation algorithms (U-Net, U-Net++ [73], U-Net3+ [74], and
MPSPNet). The RF classifier can successfully handle high data dimensionality and multi-
collinearity, being both fast and immune to data noise and overfitting [75,76].
U-Net++ and U-Net3+ are built on U-Net and reduce the information gap by increasing
the skip connection between the encoder and decoder. MPSPNet exploits global contextual
information by aggregating the contexts of different regions to make the final prediction
more reliable [77].
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Figure 7. Cropland extraction results of the comparison of different modules: No RL and CAM, No
RL, No CAM, and our model (RS-Block).

Figure 8 presents a detailed comparison of the different models, including the repre-
sentative zones for each study area. Table 2 summarizes the cropland extraction accuracies
of the different methods. The cropland maps of RF showed salt-and-pepper noise, with
undesirable visual effects and the most misclassifications. When compared to the deep
learning approach, the RF method exhibited a reduction in overall accuracy (OA), ranging
from 9.86% to 13.36%. Additionally, the F1 and Kappa of the RF were only 39.34% to 43.17%
and 32.74% to 36.46% of those achieved by semantic segmentation algorithms, respectively.
The results of the polygon-based accuracy evaluation indicated that the object represen-
tation accuracy of the RF method was the lowest, as reflected in its lowest Mean values
and significantly higher Std values. The poor performance of the RF method confirms
the limited ability of traditional machine learning methods to learn complex features and
patterns in VHR remote sensing images.
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Yangjiang, Guangzhou, and Shantou, respectively.

Among the semantic segmentation models evaluated, HRRS-U-Net exhibited the best
agreement with the actual cropland boundaries, particularly in fragmented landscapes.
Furthermore, HRRS-U-Net achieved the highest accuracy, surpassing the other models
by 0.58% to 2.08% in OA, 2.3% to 8.1% in F1, and 2.6% to 9.2% in Kappa. Moreover,
the cropland maps of HRRS-U-Net provide the highest Mean values (cropland: 0.891,
non-cropland: 0.966) and the lowest Std values (cropland: 0.148, non-cropland: 0.092),
confirming the excellent boundary delineation ability and generalization of the model. The
cropland results of U-Net significantly deviated from the ground truth and demonstrated
the worst performance. U-Net++ and U-Net3+ exhibited improved performance, with
OA increasing by 0.17% to 0.92%, F1 value growing by 1.3% to 3.7%, and Kappa value
rising by 1.3% to 4.2% and cropland Std value reducing by 7.58% to 10.61%, compared to
U-Net. Additionally, U-Net++ and U-Net3+ produced more visually favorable results with
more precise boundaries and less noise. Notably, U-Net3+ had many omission errors in
mountainous areas and around built-up areas, with a lower cropland PA than the other
models, including U-Net. MPSPNet achieved comparatively good performance with an
OA of 97.00%, F1 of 0.915, and Kappa of 0.901. The cropland results of MPSPNet were
visually consistent with the results of HRRS-U-Net, but the boundary localization and
robustness were inferior. The Mean value of cropland for MPSPNet is 3.36% lower, while
the Std value of cropland is 6.33% higher compared to HRRS-U-Net.

3.3. Results of Cropland Extraction

We conducted accuracy assessments of cropland results for the four study areas.
Figure 9 shows the confusion matrixes, and Table 3 summarizes the results of accuracy
assessments in each study area. The OA was 97.85%, F1 was 0.915, Kappa was 0.901,
cropland Mean was 0.891, and cropland Std was 0.148 over all study areas. The crop-
land category had UA and PA values of 86.67% and 96.89%, respectively, whereas the
non-cropland category had UA and PA values of 99.51% and 97.69%, respectively. The
accuracy of cropland results differed among study areas, with an OA of 97.00–98.33%, an F1 of
0.830–0.940, and a Kappa of 0.814–0.929. All cropland results were reasonably accurate, indi-
cating that our cropland extraction method was generally reliable. Qingyuan (OA: 98.33%,
F1: 0.938, Kappa: 0.929) and Shantou (OA: 98.00%, F1: 0.940, Kappa: 0.928) had the high-
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est accuracies, whereas Yangjiang (OA: 97.00%, F1: 0.916, Kappa: 0.898) and Guangzhou
(OA: 97.00%, F1: 0.830, Kappa: 0.814) had the lowest accuracies. Generally, the accuracy
of cropland extraction was higher in single-topography areas than in mixed-topography
areas. Specifically, cropland UAs significantly differed across the four study areas. Shantou
had the highest cropland UA of 92.16%, followed by Qingyuan, with a slightly lower UA
of 90.48%. Yangjiang exhibited a comparatively low cropland UA of 85.97%, with some
mudflats misclassified as cropland. Guangzhou had the lowest cropland UA at 73.33%, with
many commission errors mainly concentrated in artificial greenbelts. The PAs and Means
of cropland in all four study areas exceeded 95.00% and 0.850, respectively, indicating that
HRRS-U-Net detected the most cropland areas. The results indicated that the Std values for
cropland exhibited variability across the study areas, with the smallest value observed in
Shantou (0.118) and the largest in Guangzhou (0.175). However, the overall Std values were
observed to be satisfactory, which demonstrated the reliability and stability of our model
when applied to different regions.
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Figure 9. Normalized binary confusion matrixes of cropland mapping results in four study areas:
(a) Qingyuan, (b) Yangjiang, (c) Guangzhou, and (d) Shantou.

Table 3. Extraction accuracy of the four study areas using the proposed method (CL: cropland,
Non-CL: non-cropland).

Region

Point-Based Polygon-Based

UA (%) PA (%)
OA (%) F1 Kappa

Mean Std

CL Non-CL CL Non-CL CL Non-CL CL Non-CL

Qingyuan 90.48 99.61 97.44 98.47 98.33 0.938 0.929 0.895 0.958 0.154 0.057
Yangjiang 85.97 99.59 98.00 96.80 97.00 0.916 0.898 0.918 0.963 0.136 0.045

Guangzhou 73.33 99.63 95.65 97.11 97.00 0.830 0.814 0.862 0.962 0.175 0.043
Shantou 92.16 99.20 95.92 98.41 98.00 0.940 0.928 0.888 0.980 0.118 0.036

Total 86.67 99.51 96.89 97.69 97.58 0.915 0.901 0.891 0.966 0.148 0.092

Figure 10 shows the cropland extraction results for each of the four study areas; (a) shows
the cropland results for cities, and (b) contains six typical sub-regions with magnified details.
These sub-regions spanned different seasons and had different landscapes, cropping systems,
and environmental conditions. The spatial pattern of the cropland results from HRRS-U-Net
was visually consistent with climate factors and topographical characteristics. Qingyuan
and Yangjiang are dominated by mountainous and hilly areas; in these areas, cropland is
characterized by small field sizes and fragmented distribution of land parcels. In the results,
small fields were sensitively recognized, and irregular boundaries were explicitly determined.
In Guangzhou, most cropland is concentrated in the southern plains and interspersed with
built-up land. Similar to Guangzhou, cropland in Shantou are distributed in clusters and
interspersed with other land uses. In the cropland maps, although there were many grassland
and bare land areas, which had spectral, textural, and shape characteristics similar to the char-
acteristics of cropland, most were effectively identified and filtered. In particular, dense field
ridges in cropland fields were clearly distinguished and delineated. Additionally, although
the training dataset did not span all seasons, different periods of cropland were accurately
recognized. In summary, HRRS-U-Net accurately identified the cropland extent and explicitly
located the boundaries in different periods and locations.
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4. Discussion
4.1. Maintaining High-Resolution Representation to Improve Boundary Delineation

Previous studies of cropland identification mainly relied on medium- and low-resolution
images, which resulted in data products that were unable to distinguish individual fields.
However, because agricultural statistics are generally field-based, precise field boundary
delineation is critical for cropland extraction [78]. Therefore, our study utilized VHR im-
ages, which provided fine-grained spectral and spatial information regarding the ground.
However, down-sampling in CNN-based models loses high-resolution, detailed informa-
tion that is not fully recoverable. Strategies to solve this issue can be classified into four
categories: (1) refining boundary prediction through post-processing [79]; (2) improving
the loss function to focus more on the boundary [80,81]; (3) aggregating low-level local
features into high-level semantic features to enhance boundary delineation (e.g., U-Net,
U-Net++, U-Net3+, and MPSPNet); and (4) maintaining high-resolution representations
throughout the network (e.g., HRNet).

Strategies (1) and (2) require long inferential time and high computational costs and are
difficult to implement in large-area mapping applications. Strategy (3) usually relies on skip
connections, which are sometimes ineffective and may even negatively affect segmentation
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performance. MPSPNet, U-Net++, and U-Net3+ reduce the information gap between the
encoder and decoder by increasing skip connections between blocks at different levels.
However, these models still partially rely on up-sampling to recover information, which
is insufficient for a complete reconstruction of local information. Additionally, some skip
connections are ineffective because of incompatible features in the encoder and decoder [82].
As mentioned in Section 3.3, U-Net3+ has high omission errors and demonstrated a lower
cropland PA compared with U-Net.

We adopted strategy (4) to improve the accuracy of the cropland boundary and
obtained the most competitive cropland maps with complete internal and continuous
boundaries. Even in fragmented landscape areas, the irregular boundaries of small fields
were precisely located and completely delineated. To understand the effectiveness of
model improvements, we visualized shallow and deep feature maps within the model.
Figure 11 presents the feature maps resulting from the process of cropland extraction, where
(d–h) are feature maps generated by the module in the highest resolution streams. From
x0, 0 to x0, 4, fine details were adequately preserved after feature extraction. Shallow feature
maps (closer to the inputs) and deep feature maps (after massive stacked transformations)
both had fine visual characteristics and accurate local representation. These findings
indicate that HRRS-U-Net effectively solved the problem of location information loss and
improved boundary delineation.
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4.2. Extracting Representative Features to Generalize Highly Spatio-Temporal
Heterogeneous Cropland

In southern China, cropland has complex characteristics in both spatial and temporal
domains. The VHR images further increase cropland extraction difficulty because of
substantial intra-class variations and subtle extra-class similarity. The traditional statistical
methods (e.g., RF) find it difficult to capture complex spatial and spectral relationships in
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VHR images. Previous studies using deep learning-based methods have demonstrated
unreliable performance in heterogeneous and fragmented landscape areas. U-Net, U-
Net++, U-Net3+, and MPSPNet produced high commission errors (17.22–24.44%) and
omission errors (3.25–10.00%), and their results estimated croplands with comparatively
large deviations. To enhance the generalization and robustness of cropland extraction,
HRRS-U-Net introduced RL and CAM to sufficiently extract more representative and
discriminative features. With fewer commission and omission errors (13.33% and 3.11%,
respectively), HRRS-U-Net was able to identify cropland accurately in different periods
and locations.

We revealed the process of cropland extraction through the feature maps in Figure 11.
The feature map (c) in x0, 0 was the shallowest; it was also insensitive to the boundary be-
tween cropland and non-cropland. The deeper feature map (e) in x0, 1 strongly responded
to non-cropland, which facilitated efficient identification and further filtering of other
objects. However, the responses were inconsistent among cropland fields, indicating that
representative features had not been completely extracted at this stage. The subsequent fea-
ture map (f) in x0, 2 merged fields based on the shallow feature maps; it initially delineated
the cropland and non-cropland extent. Concurrently, the response of non-cropland began
to be suppressed, and cropland received increased attention. With the exploration of more
general representations, the feature maps (g) in x0, 3 and (h) in x0, 4 significantly reduced
the response variation between cropland fields. Moreover, cropland was continuously
enhanced, whereas non-cropland was consistently suppressed. In the final classification
map (c), the estimated extent of cropland was close to the actual extent. HRRS-U-Net
effectively addressed the challenge of identifying highly heterogeneous croplands and
achieved superior cropland extraction performance in southern China.

4.3. Uncertainty Analysis

Despite the successful implementation of our proposed method, there remain some
areas for improvement. First, accurate recognition of cropland in hillside areas remains
challenging. Because of ecological restoration and farming constraints, most cropland on
the slopes of lowland hills has been abandoned, resulting in less intensive farming practices
and indistinct boundaries. Additionally, shadows created by terrain and trees reduce
image information, leading to false boundaries and incomplete patches in classified results.
Second, HRRS-U-Net misidentified some non-cropland objects, including artificial shrubs
and mudflats. Many artificially planted greenbelts with shrubs were classified as cropland
in the resultant maps because the pattern, shape, texture, and spectra of the shrubs were
similar to those characteristics in arable crops. Moreover, the interspersed distribution of
shrubs and crops along roads hindered the identification of shrubs in the greenbelt, thereby
affecting the accuracy of cropland extraction. Because of its high degree of urbanization with
large areas of artificial greenery, HRRS-U-Net produced significantly higher commission
errors (26.67%) in Guangzhou than in other study areas. Additionally, coastal mudflats
were easily confused with post-harvest irrigated cropland, leading to lower-than-average
cropland UA (85.97%) in Yangjiang. Finally, we acknowledged the uncertainty of the
sample datasets, which may contain some incorrect or imprecise boundaries because of the
difficulty involved in the visual interpretation of cropland from VHR images. The effects
of trees, buildings, and their shadows caused some field boundaries to be indistinct or
vaguely visible, which appeared plausible in the images. Despite supplementation with
in situ photos, it was difficult to determine boundaries explicitly. Additionally, the GF-2
images used in this study had fewer images available at some locations, which may have
hindered diverse label production, particularly among different periods.

4.4. Implications and Future Work

The HRRS-U-Net performed well in terms of extracting cropland using VHR remote
sensing images, particularly in heterogeneous and fragmented areas. Because of rapid
economic development and urban expansion, cropland areas in southern China have
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been substantially reduced in recent years. Accurate and detailed information regarding
cropland serves as the foundation for various agricultural operating applications, including
cropland area estimation, dynamic cropland monitoring, and grain productivity prediction.
These applications are essential for agricultural resource monitoring and the formulation of
effective policies to guarantee food security.

It is observed that the accuracy was unbalanced in single topography areas (e.g.,
Qingyuan) and mixed topography areas (e.g., Guangzhou). In future work, we plan
to separate single and mixed topography areas and use individual models for training
and cropland classification. Additionally, HRRS-U-Net will be generalized to extract
cropland at larger scales (e.g., the national scale). To ensure reliable performance, we will
augment the existing dataset with more representative samples, considering the various
characteristics of cropland in other areas. Larger scale applications inevitably require multi-
source image datasets because of the limited observations from GF-2 sensors. Thus, we
plan to incorporate additional sensor data, such as GaoFen-1 and QuickBird, to increase the
temporal resolution of the available images and obtain more diverse samples to improve
the generalization ability of the model. In summary, our future work will use multi-source
image datasets and separate single and mixed topography areas to facilitate larger-scale
cropland extraction.

5. Conclusions

Due to the significant heterogeneity and fragmentation of cropland in southern China,
traditional cropland classification methods are generally ineffective. To address this issue,
we developed a deep learning-based method for extracting cropland from VHR remote
sensing images. Our approach uses an improved HRRS-U-Net model, which overcomes
limitations in localization accuracy loss and spectral information exploitation exhibited by
existing models. The HRRS-U-Net maintains high-resolution details to improve boundary
delineation and introduces RL and CAM to extract representative features. We evaluated
our method using GF-2 images in four cities (Qingyuan, Yangjiang, Guangzhou, and
Shantou) across Guangdong Province and obtained resultant maps with an OA of 97.58%,
an F1 of 0.915, a Kappa of 0.901, and a Mean of 0.891. Our method outperformed existing
methods in accurately identifying the extent and precisely locating boundaries. Despite
the high spatiotemporal heterogeneity of cropland and the limited sample dataset, our
method demonstrated strong generalization and transportability. With support for multi-
source image datasets, our method has significant potential for large-scale VHR cropland
extraction, particularly in fragmented and heterogeneous landscape areas.
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