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Abstract: Moving object detection in remote sensing image sequences has been widely used in
military and civilian fields. However, the complex background of remote sensing images and the
small sizes of moving objects bring great difficulties for effective detection. To solve this problem, we
propose a real-time moving object detection method for remote sensing image sequences. This method
works by fusing the semantic information from a single image extracted by the object detection branch
with the motion information of multiple frames extracted by the motion detection branch. Specifically,
in the motion detection branch, we design a motion feature enhancement module (MFE) to improve
the interframe motion information. Then, we design a Motion Information Extraction network (MIE)
to extract motion information. Finally, the moving object information is directly output by fusing the
motion and semantic information extracted by the object detection branch. Based on the experimental
results of the two datasets, the proposed method achieves an accuracy rate of 93.21%, a recall rate
of 92.72%, an average frame rate of 25.25 frames (fps), and a performance of 96.71% in terms of
AP@0.5. The performance of the proposed method is better than that of other methods, and the
overall detection effect is better; therefore, it meets the needs of the detection task.

Keywords: remote sensing image sequences; moving camera; moving object detection (MOD);
convolutional neural network (CNN)

1. Introduction

With the rapid development of aerospace remote sensing technology, the applica-
tion range of remote sensing images has become extensive. Moving object detection
(MOD) in aerial remote sensing image sequences is one of the most critical tasks in mil-
itary surveillance and civil navigation. The MOD task refers to the detection of change
regions in an image sequence and the extraction of the moving object from the background
image. The extracted moving object can provide a reference area for subsequent tasks,
such as action recognition [1,2], tracking [3–7], behavior analysis [8], and intelligent video
surveillance [9,10]. Recently, advances in UAV technology have made it easy to acquire
remote sensing images, and relatively inexpensive UAVs have a wide range of applica-
tions. Therefore, as the use of moving cameras grows, so does the need to detect moving
objects, which makes it critical to develop robust moving object detection methods for
moving cameras.

MOD tasks can be divided into static and motion camera tasks depending on whether
the camera is in motion. Currently, research on static camera tasks is more mature [11–13],
but more research on motion camera tasks is required [14,15]. Compared with a static
camera, a stationary object appears to be in motion in the image sequence obtained by a
moving camera due to the movement of the camera. In remote sensing image sequences,
camera motion relative to the ground can be characterized as translation, rotation, and
scaling. When using a MOD algorithm designed for static cameras on an image sequence
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obtained from a moving camera, the algorithm will fail due to the appearance of motion in
the image background. For motion cameras, MOD methods need to consider not only all
problems that arise when the camera is stationary, but also the difficulties caused by camera
motion compensation. Additionally, motion targets in remote sensing image sequences
are typically far from the shooting platform, which leads to problems such as small target
sizes and inadequate object color and texture features. Moreover, the target is susceptible to
background interference, which leads to noise and motion blur, making detection difficult.
Therefore, detecting motion targets in remote sensing image sequences involves many
challenges and difficulties. Here, we present these challenging problems in detail.

Moving background: In a static camera, only the moving objects appear to be moving,
but in the case of a moving camera, everything seems to be moving as the camera moves.
Additionally, parts of the scene disappear over time. In this case, separating the moving
objects from the stationary background becomes more difficult.

Shadows: The shadow of a moving object is often treated as the background, rather
than the moving object itself. However, many classical moving object detection algorithms
fail to separate the shadow from the moving object itself.

Few target pixels: In the remote sensing image sequence, the field of view is large. The
moving target occupies very few pixels, requiring the moving target detection algorithm to
focus more on small targets.

Complex background: There are many irrelevant backgrounds with similar character-
istics to moving targets, as well as static targets with the same characteristics as moving
targets in remote sensing images. Therefore, it is necessary to use motion and the semantic
features of moving objects for moving object detection.

In recent decades, many MOD algorithms for stationary cameras have been proposed,
but there has been relatively little research on MOD algorithms that directly target moving
cameras. For motion target detection under camera motion conditions, traditional MOD
methods include three main types: the frame difference method, the optical flow method,
and the background subtraction method [16–20]. The frame difference method usually
compensates for moving backgrounds before detecting them using a static camera. This
method is simple to calculate, but it is susceptible to changes in lighting conditions and
has high requirements for background motion compensation algorithms. The optical flow
method is accurate, as it can calculate the magnitude and direction of the displacement
of each pixel in the image. However, it requires a lot of computation and cannot achieve
real-time calculation. The background subtraction method identifies the moving target
by subtracting the background model from the current frame. However, it requires the
construction of a robust background model. The method is the most commonly used motion
target detection method. It achieves motion target detection by constructing a universal
background, such as a mixture of Gaussian models and the kernel density estimation [21,22].
However, its application effect in the case of background movement is not ideal. These
algorithms cannot adapt well to the needs of complex scenes and require a better balance
between robustness and real-time performance. In addition, these methods can only detect
the contours of the motion target and cannot obtain the precise coordinates and categories
of each motion target.

With the rise of deep learning, the object detection method based on the convolu-
tional neural network (CNN) has been widely used in various fields [23–25]. Two-stage
algorithms, such as R-CNN, Fast R-CNN, and Faster R-CNN [26–28], which achieve state-
of-the-art performances in terms of accuracy, and the YOLO series [29–34] of end-to-end
algorithms, which achieve the highest detection speed, have been proposed.

Motivated by the success of CNNs in target detection tasks, CNNs have been applied to
MOD tasks with some good results. Compared with traditional methods, CNN-based MOD
methods show significant advantages in terms of their accuracy and robustness. In [35],
F. LATEEF et al. proposed a CNN-based moving target to detect vehicular video sequences.
This consisted of two deep learning networks, an encoder–decoder-based network (ED-
Net), and a semantic segmentation network (Mask R-CNN). Mask R-CNN detects the
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objects of interest, and ED-Net classifies their motion (moving/static) in two consecutive
frames. Finally, the two networks are combined to detect the motion targets. In [36],
C. Xiao et al. proposed a motion target detection method for satellite video. They proposed
a two-stream detection network divided into dynamic and static fusion networks (DSF-Net).
The DSF-Net extracts static contextual information from single frames and dynamic motion
cues from consecutive frames. Finally, the two networks are fused in layers for moving
target detection. In [37], H. ZHU et al. proposed a framework consisting of coarse-grained
detection and fine-grained detection. A connected region detection algorithm is used to
extract moving regions, and then a CNN is used to detect more accurate coordinates and
identify classes of objects. In [38], J. ZHU et al. combined a background compensation
method to detect moving regions with a neural network-based approach to localize moving
objects accurately, and finally, fused the two results to determine the moving target. In [39],
D. Li et al. used CNNs exclusively for single-strain estimation and target detection. Motion
information is used in consecutive frames as an additional input to the target detection
network to effectively improve the detection performance.

As mentioned above, traditional motion detection methods can achieve good detec-
tion accuracy levels. However, they are time-consuming and can only obtain regional
information instead of specific target information, such as the object class and location. The
CNN-based approach solves this problem by enabling the network to determine the specific
location and target class of the moving target. Most CNN-based algorithms divide the
MOD task into two steps: first, they extract motion information, compensate for or extract
optical flow information from the moving background, and then input it into the object
detection network to obtain motion targets. These methods have achieved good results,
but they require additional preprocessing, resulting in a complex detection process. The
computation cost of optical flow information is expensive, making it unsuitable for remote
sensing image sequences. Therefore, under stationary camera conditions, MOD methods
cannot be well applied to moving camera scenes. Traditional image-registration-based
MOD methods rely heavily on the accuracy of the registration algorithm. In contrast,
deep-learning-based algorithms often need to extract motion information as an auxiliary
input to the network.

To address the above problems, inspired by the two-stream network combining motion
and semantic information, we propose an end-to-end MOD method for an aerial remote
sensing image sequence, which fuses enhanced motion information based on dual frames
with semantic information based on a single frame. Specifically, we introduce a Motion
Feature Enhancement (MFE) module to extract and enhance motion information between
two frames preliminarily. Then, the enhanced motion features are fed into a 3D convo-
lutional Motion Information Extraction (MIE) network to further extract motion features
at different convolution depths. Finally, the extracted motion information is fused with
semantic features based on a single frame at corresponding feature levels and decoded
by a detection head to identify moving targets. In summary, the main contributions are
as follows:

(1) We propose a feasible MOD model, motion feature enhancement module, and mo-
tion information extraction network (MFE-MIE), which enhances motion features by
feature differences and then extracts multilayer motion information using 3D convo-
lution and finally fuses the multilayer motion information with the corresponding
semantic information to accurately detect moving targets. The proposed method is
powered entirely by CNN and implements end-to-end detection. Only two frames are
input to realize the detection without additional auxiliary information. In addition, it
meets the requirements of MOD task real-time detection.

(2) We propose an MFE module, which highlights motion features between two frames
and calculates the difference between features. This difference is used as a weight to
suppress the background to highlight the foreground. The MFE module can enhance
the motion features and provide clues for subsequent processing.
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(3) We designed an MIE network that uses three groups of lightweight improved 3D
convolutional layers to extract further motion information from the enhanced mo-
tion information. Compared with directly using 3D convolution to extract motion
information, our MIE network achieves more lightweight detection with a better
detection effect.

(4) We conducted a series of experiments to validate the effectiveness of the proposed
method. Experiments on two benchmark datasets demonstrated that our MFE-MIE
outperforms other state-of-the-art models, achieving real-time detection and meeting
the needs of the detection tasks.

The rest of this paper is organized as follows: Section 2 presents the details of the
proposed MOD model. In Section 3, we first introduce the adopted dataset and the data
processing methods used, and then the proposed method is evaluated and discussed
through several experiments. Section 4 presents the discussion. Finally, the conclusions are
given in Section 5.

2. Methods

In this section, we first present the overall structure of the proposed method. Then,
we introduce the proposed MFE module and the MIE network.

In our work, we propose a moving object detection method named MFE-MIE in which
motion information based on two frames and object information based on a single frame
are fused. The overall framework of the method is shown in Figure 1. It is composed of
three main parts: motion detection, object detection, and temporal–space fusion. For the
motion detection module, a pair of registered images, Tk and Tk−n, are first integrated with
motion information by the proposed motion feature enhancement (MFE) module and then
encoded by the proposed motion information extraction (MIE) network, which consists of
improved 3D convolutions and obtains three layers of motion features with different con-
volutional depths. The object detection module uses the generic CSPDarknet53 [31] object
feature extraction network to extract three layers of object semantic information at different
convolutional depths. The temporal–space fusion module fuses the motion information
extracted by the motion detection branch and the object semantic information extracted by
the object detection branch at the corresponding level to facilitate the subsequent extraction
of moving objects. Finally, the fused information is decoded using two convolutional layers
to output the motion target information.
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2.1. Motion Detection Module

Previous motion detection methods usually only used the simple difference between
two frames or the overhead of extracting the optical flow to obtain motion feature informa-
tion during operation. However, these two operations are less adaptive to motion target
detection tasks and often result in insufficient motion information extraction or a huge
overhead. To solve this dilemma, a motion detection network consisting of the MFE module
and the MIE network is proposed in this paper. It aims to effectively capture the motion
information between two frames and provide detection cues to identify moving targets.
The MFE module is responsible for integrating and enhancing the motion information
between the two images. The MIE network is responsible for further extracting the motion
information between the outputs of the features with the MFE module.

2.1.1. MFE Module

The framework of the MFE module is shown in Figure 2. It enhances the motion
features between two frames, initially extracts the motion information, and suppresses the
background information. It was inspired by the frame difference method [40]. We extend
the difference between two frames of the frame difference method to the difference between
the feature map of two frames to make it more applicable to the network. Note that our
goal is to find a motion representation paradigm that can help to identify motion efficiently,
rather than calculating the exact pixel displacement between two frames, as in optical flow.
Therefore, we only use two RGB frames as the input and do not add precomputed optical
flow images.
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First, the two input images are encoded by two weight-sharing 2D convolution
modules as

Fk = Conv7×7(Tk), Fk ∈ RN×C×1×H×W (1)

Fk−n = Conv7×7(Tk−n), Fk−n ∈ RN×C×1×H×W (2)

where Tk and Tk−n denote the 3D tensor of the two input images, Conv7×7(·) represents
a convolutional layer with a 7 × 7 filter, a batch normalization layer, and a ReLU acti-
vation function, Fk, Fk−n represents the feature map of the k frame and the feature map
of the (k − n) frame, respectively. Not only is the moving target moving relative to the
background between the two frames, there is also relative motion between the background
and the moving camera. We continue to use the convolutional layer transform feature to
compensate for the background motion for the (k − n) frame feature to obtain F′k−n. This
procedure can be denoted as

F′k−n = Conv3×3(Fk−n) (3)

where Conv3×3(·) denotes a convolutional layer with a 3 × 3 filter, a batch normalization
layer, and a ReLU activation function. Then, the difference in the feature maps between
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two frames was used to approximately represent the motion significance. We calculate
the difference between the two feature maps by an element-wise subtraction operation,
followed by taking the absolute value of the difference as

Dk =
∣∣Fk − F′k−n

∣∣ (4)

where Dk represents a motion difference feature, and |·| denotes an absolution operation.
Dk contains rich motion information, so we further put it through a 2D convolutional layer
with 3× 3 filters followed by a sigmoid function, which transforms the motion features into
weights Rk. Then, the motion features of the two feature maps Fk and Fk−n are enhanced
with an element-wise multiplication operation. The original feature maps are added to the
enhanced features to obtain the refined motion features, which suppress the background
and highlight the foreground. This process can be illustrated as

Rk = Conv3×3(Dk) (5)

F′k = Fk ⊕ (Fk ⊗ Rk) (6)

F′′k−n = Fk−n ⊕ (Fk−n ⊗ Rk) (7)

where ⊕ and ⊗ are element-wise addition and multiplication operations, respectively.
Finally, we concatenate F′k, F′′k−n, and Dk along the time dimension. This can be

represented as
Out = Cat(F′k, F′′k−n, Dk), Out ∈ RN×C×3×H×W (8)

where Cat(·) is a feature concatenation operation along the time dimension, and Out
denotes the output feature map of size N × C× 3× H ×W, where N is the batch size, C is
the number of channels in the feature map, 3 is the number of feature maps, and H and W
are the feature map’s height and width.

Since the shallow features of the image mainly contain the precise position and motion
information while the deep features mainly contain semantic information, the MFE module
is only used for the shallow features and the refined motion features are extracted using an
improved 3D convolution implementation. In addition, all filters used in the MFE module
are essentially 2D convolutional kernels, so it is lightweight.

2.1.2. MIE Network

For the 3D convolution-based motion information extraction (MIE) network, as shown
in Figure 3, the output of MFE module Out ∈ RN×C×3×H×W is fed to a self-developed
3D network, which consists of three 3D convolutional layers, to generate motion features
Fi ∈ RN×Ci×3×Hi×Wi with three different convolutional depths. Since the computational
overhead of 3D convolutional blocks is too expensive, to increase the speed and reduce the
cost of computation, we use three convolutional layers with kernels 3 × 1 × 1, 1 × 3 × 3,
and 1 × 1× 1, instead of each 3D convolutional block.

First, we decompose a 3D convolutional layer with 3 × 3 × 3 filters into a 1D temporal
convolutional layer with 3 × 1 × 1 filters and a 2D spatial convolutional layer with
1 × 3 × 3 filters. Then, the features are integrated through a convolutional layer with a
1 × 1 × 1 filter. Finally, to further reduce the computational cost, the number of channels in
the second and third 3D convolutions is halved and then adjusted using the convolutional
layer with 1 × 1 × 1 filters. The details of the MIE network are shown in Table 1.

We denote the spatiotemporal size by C× T× S2, where C is number of channels, T
is the temporal length, and S is the height and width of a square spatial crop. The MIE
network was inspired by SlowFast [41]. It takes T = 3 frames of feature maps as the input,
which are the k frame feature, the (k − n) frame feature, and the feature difference between
them. No temporal down-sampling is performed in this example, because it would be
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harmful to do so when the number of input frames is small, so the output of each improved
3D convolutional block has a temporal dimension of T = 3.
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Table 1. The details of the MIE network.

Stage Kernel Dimension
T × S2, C

Output Sizes
C × T × S2

Input \ 3 × 2 × 6082

MFE \ 64 × 3 × 1522

MIE

3D CBL_1

3× 12

1× 32

1× 12

64
64

256

 256 × 3 × 762

3D CBL_2

3× 12

1× 32

1× 12

256
128
512

 512 × 3 × 382

3D CBL_3

3× 12

1× 32

1× 12

512
256

1024

 1024 × 3 × 192

Note that the designed MIE network is lightweight and computationally efficient,
since it consists of only three layers of improved 3D convolution blocks. Moreover, since
the 3D convolution can extract the motion information from the features, we can extract
more effective motion cues from the designed MIE network.

2.2. Object Detection Module

For the MOD task, the motion features between multiple frames can help to discover
the boundaries of moving targets. The semantic information of a single image can help
to locate the locations of moving targets and identify object classes. Therefore, single-
frame-based target semantic information is also vital for the MOD task. Since YOLO series
algorithms have satisfactory results in object detection, we use the backbone network
CSPDarknet53 in the object detection module to extract semantic information at three
different convolutional depths from a single image frame. CSPDarknet53 consists of
five CSP modules. Each CSP module is down-sampled by a convolutional layer with
3 × 3 filters, and we use the output of its last three layers as the output features of the
object detection branch.



Remote Sens. 2023, 15, 2230 8 of 21

2.3. Temporal–Space Fusion Module

In this section, we fuse information from both branches of motion detection and target
detection to identify moving targets using both motion and semantic information. Each of
the two branches extracts three layers of feature maps with different convolutional depths.

First, we feed the third output F3 of the motion detection into the nonlocal block [42]
to further integrate the motion characteristics of the T channel. The nonlocal block is good
for integrating information between channels, but it is expensive, so we only use it for
the last motion feature. Then, the first two features of the motion branch and the motion
information of the time dimension in the third motion feature of the nonlocal block fusion
are fused into the channel. This study tested two different pooling methods to fuse motion
information from the temporal dimension into the channels. Finally, we obtained three
motion features with different convolutional depths, and the spatial dimensions of the
three motion features corresponded to the three object features obtained by object detection.
Since the corresponding features on the layer to be fused have the same spatial resolution,
referring to the findings of C. Feichtenhofer [43], we tried to fuse the features using two
methods to compute the sum of two feature maps at the same spatial location and stack
features in the channel direction.

3. Dataset and Results

In this section, we first introduce the datasets, including multiple image sequences.
Secondly, we present the evaluation metrics, evaluate the proposed method, and finally,
compare it with several state-of-the-art MOD methods.

3.1. Dataset

Two datasets were used in this study, namely VIVID [44] and MDR105 [38]. The details
of the datasets are given in Table 2.

Table 2. The datasets used for the experiment.

Dataset Image Size Number of Frames Sequence Name

VIVID 640 × 480 10,019 EgTest01, EgTest02, EgTest03, EgTest04, EgTest05, Seq01

MDR105 640 × 360 13,931

Car01, Car03, Car04, Car05, Car06, Car07, Car08, Car10, Car12, Car13,
Car15, Car16, Car17, Car19, Car21, Car22, Car23, Car26, Car27, Car28,

Car30, Car33, Person00, Person02, Person07, Person08, Person13, Person11,
Person22, Person30, Person31, Person33, Person34

(1) VIVID: The Defense Advanced Research Projects Agency Video Verification of Identity
(VIVID) datasets, which are widely used in moving object detection algorithms,
contain multiple video sequences containing a variety of moving vehicles captured
by a moving platform. We selected six of these sequences and manually labeled each
moving vehicle.

(2) MDR105: The MDR105 dataset contains 105 videos acquired by UAVs and surveillance
cameras, divided into three categories. We selected 33 video sequences containing
both human and vehicle categories acquired by UAVs as part of the experimental data.

The proposed method was compared with classical algorithms on the VIVID dataset
and the state-of-the-art deep learning-based methods on the MDR105 dataset. We used
the first 80% of all video sequences as the training set, 10% as the validation set, and the
last 10% as the test set. Since our method requires two consecutive images to be input
simultaneously, frames k and k − 4 of the same sequence were fed into the network as
a group according to the dataset’s frame rate and movement speed. At the same time,
after pairing, the data were shuffled during training. In addition, we used random affine
transformation, HSV enhancement, and random inversion in data augmentation and
randomly paired the k frames themselves during the pairing process. At this point, its label
was empty, since no motion occurred between the two identical images.
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3.2. Evaluation Metrics

In this study, we evaluated the performance of moving object detection algorithms
using precision (Pr), recall (Re), average precision (AP), and F1 score, which are defined as

Pr =
number of true detections
number of detected objects

=
TP

TP + FP
(9)

Re =
number of true detections
number of existing objects

=
TP

TP + FN
(10)

F1 = 2× Pr× Re
Pr + Re

(11)

where FP refers to incorrectly detected boxes, TP refers to true detections, and FN refers to
ground truth boxes that were missed by the method. A ground truth bounding box was
considered as TP if it intersected with 50% or more of the detected bounding boxes. FP
refers to the fact that the detected bounding boxes do not overlap, even in 50% of the cases.

The average precision (AP) measures how well the model performs for a given category
and is defined as the area under the Pr–Re curve, which was calculated using interpolation.
The formula for calculating AP is as follows:

AP =
N

∑
k=1

maxk̃≥kP(k̃)∆R(k) (12)

The proposed method was tested and evaluated on a computer with an AMD Ryzen
5 3600X 6-Core Processor CPU, 16 GB of computer memory, and a GeForce RTX 3060Ti
GPU with 8 GB memory, implemented using the open-source Pytorch framework. During
training, the stochastic gradient descent [45] (SGD) was used to optimize the parameters.
The weights were initialized with the Kaiming distribution [46]. The IoU threshold of
nonmaximum suppression (NMS) was 0.5 for inference.

3.3. Ablation Experiments

In this section, we present ablation experiments that were conducted to verify the ef-
fectiveness of the proposed MFE module and MIE network and then compare our proposed
MFE-MIE method with other moving object detection algorithms.

Table 3 shows the effectiveness of each part of the MFE-MIE algorithm. Table 3 is
divided into the object detection and motion detection branches. The motion detection
branch has two structures: the MFE module and the MIE network. A check mark (

√
)

indicates that the corresponding module is enabled, and a fork (×) indicates that the
corresponding module is not used.

Table 3. Effectiveness of each part of the MFE-MIE.

Object
Motion

Pr Re F1 AP@0.5
MFE MIE

MFE-MIE

×
√ √

90.64% 36.92% 0.52 64.04%√
× × 90.65% 79.46% 0.85 90.34%√
×

√
90.02% 89.23% 0.90 93.78%√ √ √
93.21% 92.72% 0.93 96.71%

The best results are presented in bold.

Firstly, the proposed algorithm has a low recall rate (36.92%) when only the motion
detection branch is available, indicating that by using only motion information without
the moving target’s semantic information the boundary information of the motion can be
found, but the specific object information cannot be located. In the same way, with only
the object detection branch, the algorithm can detect all objects in the image, but it cannot
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distinguish whether the object is moving or not, so it can obtain a higher recall rate (79.46%).
Only by combining the object detection branch with the motion detection branch can we
achieve good detection results and obtain the highest recall rate (92.72%) and the highest
F1 score (0.93).

At the same time, the effectiveness of our proposed MFE module and MIE network
was demonstrated through experiments, as presented in in Table 3. Rows 2 and 3 of
Table 3 show a 10 percent improvement in recall when using the MIE network to extract
motion information compared with using only the object detection branch. Rows 3 and 4
of Table 3 show that using the MFE module is crucial for the motion detection branch.
This module integrates the motion information interframe well and plays a crucial role in
providing better extraction of motion information for the subsequent MIE network. The
improvements in Pr, Re, F1, and AP@0.5 were 3.19%, 3.49%, 0.03, and 2.93%, respectively.

We also tried to vary the position of the background-compensated convolutional layer
in the MFE module to investigate the effect on motion target detection. The results are
shown in Table 4. The first position (denoted by A in Table 4) uses the approach presented
in Equation (7) to multiply the weight Rk with the Fk−n without background compensation
to obtain the enhanced features. The second position (denoted by B in Table 4) multiplies
Rk with the background-compensated F′k−n to get the enhanced features. Meanwhile, the
other settings of the network remain unchanged.

Table 4. The position of the background-compensated convolution layer in the MFE.

Position Pr Re F1 AP@0.5 FPS

MFE
A 93.21% 92.72% 0.93 96.71% 25.25
B 92.84% 90.95% 0.92 96.63% 25.25

Table 4 shows that the convolutional layer for background compensation is better
detected when placed at position A than at position B. This is because multiplying the
compensated features F′k−n using the weights Rk artificially weakens the motion information
between the subsequent Fk and F′k−n. This is not conducive to the further extraction of
motion information by the subsequent MIE network. In addition, Rk is a relatively coarse
background compensation weight that is available for feature enhancement. However,
artificially compensating the motion background before the MIE network will cause it to
lose some motion information. Our original intention in designing the MFE module was to
make the network pay more attention to the motion information between frames.

Furthermore, as shown in Figure 4, we visualized the results of the frame difference
method, image registered frame difference method, and image feature difference method
to illustrate the advantages of using feature differences to enhance motion features in the
proposed MIE model. The results of feature difference were obtained by visualizing six
randomly selected channel features from Dk.

Figure 4a is from frame 15 and frame 20 in the rg01 sequence of the VIVID dataset. It
shows five moving vehicles. The object moving distance between two frames is small, and
the background motion is small. There is shadow interference. Figure 4b is from frames
281 and 286 of the Car08 sequence of the MDR105 dataset. It illustrates a black car parked
on the side of the road and a white moving car. The background motion amplitude is large,
and the vehicle is moving fast.

Figure 4 shows that the difference image obtained using the frame difference method
has the phenomenon of ghosting, and the background of the difference image is cluttered.
Due to the movement of the background, the contours of the detected moving objects are
relatively large, and the shadows are also detected as targets. This is because the camera’s
motion causes the whole image to be in motion, and the moving background causes the
frame difference method to fail. The registration algorithm can overcome the influence of
the moving background to some extent, but there are still some issues, such as target holes
and large contours. By using convolutional layers to compensate for background motion,
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the proposed MFE model makes the network focus on moving objects (white cars) and
suppresses objects with similar semantic features but without motion (black cars). It makes
object extraction more complete. In addition, the effect of the shadow of the moving target
itself is eliminated.
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In addition, we verified the effectiveness of decomposing 3D convolution into 1D
temporal convolution and 2D spatial convolution for MOD tasks, as shown in Table 5.
Compared with full 3D convolution, the improved 3D convolution improves the AP@0.5
by 2.61% and the FPS by 5.19 frames with a 2.67 M reduction in parameters and a 16.71 G
reduction in computation. This is because the 3D convolutional decomposition introduces
additional nonlinear corrections, while we did not destroy the relevance of its motion
information in the temporal dimension. Three-dimensional convolution can simultaneously
extract interframe temporal and intraframe semantic information, while the improved 3D
convolution focuses more on extracting motion information. Therefore, the proposed model
enhances the representativeness of the extracted motion information while reducing the
computational cost.

To be consistent with the temporal dimension of the object detection branch, we
needed to fuse the temporal dimension information of the output motion features of the
MIE network with the channel dimension. Therefore, we also evaluated the influences
of different pooling methods on the temporal dimension of the fused motion features on



Remote Sens. 2023, 15, 2230 12 of 21

the detection results. The results in Table 6 show that, compared with average pooling,
using the maximum pooling method can better retain motion information and is more
suitable for moving object detection, with increases of 6% in recall and 0.04 in F1 score.
This is because the motion information mainly contains the edge change information of
the moving object. At the same time, the average pooling method will weaken the motion
information by averaging the motion information in the temporal dimension with other
irrelevant information in the neighborhood. However, the maximum pooling method will
retain abrupt edge changes and suppress the noise, thus achieving a better performance
than the average pooling method.

Table 5. Improved 3D convolution and full 3D convolution.

MFE-MIE Params(M) FLOPs(G) Pr Re F1 AP@0.5 FPS

Full 3D 27.39 51.39 92.31% 88.98% 0.91 94.10% 20.06
Improve 3D 24.72 34.68 93.21% 92.72% 0.93 96.71% 25.25

Table 6. Pooling approach for the temporal dimension of the motion features.

Pooling Type Pr Re F1 AP@0.5

Avg Pooling 91.76% 86.94% 0.89 94.70%
Max Pooling 93.21% 92.72% 0.93 96.71%

Based on the conclusion of [43], we tested two methods of fusing motion and semantic
information: element-wise summation (denoted by Sum in Table 7) and concatenation
(denoted by Cat in Table 7) along the channels. The results are shown in Table 7, where
the first number under Channel represents the third feature channel number of the object
detection branch, and the second number represents the third feature channel number of
the motion detection branch.

Table 7. Types of fusion of motion and semantic features.

Fusion Type
Channel

Pr Re F1 AP@0.5
Object Motion

Sum
512 512 96.12% 73.68% 0.83 89.98%

1021 1024 93.48% 79.86% 0.86 91.20%

Cat

512 512 97.17% 70.79% 0.82 91.03%
512 1024 91.10% 90.68% 0.91 94.81%
768 1024 93.21% 92.72% 0.93 96.71%

1024 1024 91.59% 94.36% 0.93 96.71%
The best results are presented in bold.

The results show that the concatenation method has a better fusion effect than the
element-wise addition method. Moreover, it can be found from Table 7 that when the
number of channels of the two branches increases, the fusion effect improves. For example,
in the case of the concatenation method, when the numbers of channels are 512 and 1024, the
recall rate is increased by 23.57%, and F1 is increased by 0.11. This is because more channels
retain more information, which also leads to a large computational cost. When the number
of object detection branch channels is 768, and the number of motion detection branch
channels is 1024, the calculation amount and fusion effect reach a balance. The detection
effect at this time is equivalent to that when the number of the two branch channels is
1024. This situation occurs because, in the object detection branch, we can achieve good
results by using the CSPDarknet53 backbone to extract the semantic information from the
target. However, the information extraction ability of the motion detection branch needs
to be improved. Therefore, to balance the computational burden and the detection effect,
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it is wise to extend the number of channels of the motion detection branch to retain more
motion information.

3.4. Comparison with State-of-the-Art Methods

In this section we compare our proposed method with several state-of-the-art methods
on two datasets, VIVID and MDR105. According to the results presented in Section 3.2, our
method uses the maximum pooling approach to fuse motion features in the temporal dimen-
sion and the concatenation method to combine the motion and object detection branches.

3.4.1. Experiments on the VIVID Dataset

We present the results of several other classical algorithms on the VIVID dataset to
evaluate our proposed algorithm objectively. The first algorithm (denoted as Diff in Table 7)
is the frame difference method, which is widely used due to its high computational effi-
ciency in the case of a stationary camera. It subtracts the current frame image directly from
the previous one to obtain the difference image between the two frames and considers that
the moving object causes the main difference. The second method (denoted as Registration
diff in Table 8) detects moving targets by registering the acquired image sequences and then
using the frame difference method, which is modified from the frame difference method.
It uses the registration strategy to compensate for the background of interframe motion.
The third method proposed in [47] increases the image quality evaluation link, further
improving the detection performance using the edge detection algorithm and obtaining
a more accurate motion target. The fourth method is proposed in [48]. It first assumes
the generation of the multiscale target, uses the kernel density estimation to generate the
target likelihood map, and finally, adopts an adaptive threshold algorithm to extract the
motion target. In the fifth method, MCD [49], selected points from consecutive frames are
tracked using the Lucas–Kanade method. The RANSAC [50] method is used to calculate
the homograph matrix representing the camera motion. Then, the background model is
compensated for in the current frame before updating the background model and applying
background subtraction. The method proposed in paper [51] uses a region adjacency graph
to represent image frames. Then, multiple frames of images are used for matching, and
finally, a coloring algorithm is used to assign foreground and background labels to each
region. The last approach is proposed in [52], in which bLPS-HOG features are used to
train a linear SVM classifier to detect moving vehicles in airborne videos.

Table 8. Comparison of detection results on the VIVID dataset.

Method Pr Re F1 FPS

Diff [40] 0.24 0.83 0.37 32.5
Registration diff [53] 0.77 0.85 0.81 14.8

Tian, Y. [47] 0.87 0.82 0.85 1.90
Öz, S. [48] 0.90 0.82 0.86 /

Cao, X. [52] 0.88 0.88 0.88 20.8
MCD [49] 0.90 0.88 0.89 9.28

Kalantar, B. [51] 0.94 0.89 0.91 1.60
MFE-MIE (our) 0.93 0.93 0.93 25.25

The best results are presented in bold.

Table 8 shows the detection performances of the methods being compared. The experi-
mental results prove that the proposed method achieves the best performance compared
with other methods. Among them, the frame difference method achieves the fastest de-
tection rate. However, the moving background will cause many false alarms in different
images, leading to the failure of the frame difference method. In addition, the methods
based on image registration heavily rely on the accuracy of the registration algorithm, and
the computation time of the registration algorithm is often too long to meet the real-time
requirements. The methods proposed in [49,52] have a better detection effect than the
previous ones but still cannot meet the real-time requirement. The method proposed in [51]
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adopts a new region-matching method with higher accuracy and recall. However, its time
overhead is greater, and the frame rate is only 1.6 fps, making it insufficient for practical
tasks. Table 8 shows that our method outperforms the classical methods in terms of the
recall and F1 score. In addition, our method achieves real-time detection (25.25 fps). This is
because the proposed method can obtain better motion information between images, and
the combination of robust object detection information endows the network with a stronger
moving object detection ability.

We also give the detection results for the frame difference method, the registration
frame difference method, the method presented in [47], and MCD on the VIVID dataset
in Figure 5, because they are open-source. The first column in Figure 5 shows the ground
truth. The second column shows the detection results of our method, the third column
shows the detection results of the frame difference method, the fourth column shows the
detection results of the registration frame difference method, and the fifth column shows
the detection results of the method presented in [47].
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As shown in Figure 5, our approach adapts well to various scenes and shows the
best performance. The frame difference method has the worst performance due to camera
motion and hardly works in five scenes. The collinear frame difference method has a better
detection performance, but it is affected by the principle of the method and shows some
inaccuracies, such as the inability to eliminate the ghost, resulting in inaccurate detection
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frames (row 1, column 4 in Figure 5); the appearance of voids, resulting in one object being
detected as two objects (row 2, column 4 in Figure 5); and the severe influence on object
shadows (row 3, column 4 in Figure 5). With the addition of the edge detection algorithm,
the method in [47] further improves the detection performance compared with the isotropic
frame difference method but still cannot reject object shadows. Additionally, adding the
edge detection algorithm brings the problem of rejecting objects that look similar to the
environment (row 4, column 5 in Figure 5).

3.4.2. Experiments on the MDR105 Dataset

We also compared several advanced CNN-based algorithms on the MDR105 dataset.
Among them, Deep-Sort [54] was trained using the same settings as in the paper [38].
YOLOv5 series and YOLOv7 were fine-tuned on the dataset using their published weights.
The results are shown in Table 8. ECO [55] is an excellent single-target tracking algorithm,
but the presence of multiple moving targets in the dataset at the same time leads to poor
performance. Deep-Sort is a multitarget tracking algorithm that has achieved excellent
results in multitarget tracking tasks. The algorithm first extracts all targets from each image
frame by the target detection network and then predicts the motion trajectory of each target
by Kalman filtering and uses a weighted Hungarian algorithm for matching. It can detect
and track all targets in the image simultaneously but cannot distinguish whether the targets
are moving or not. YOLOv5 is a target detection algorithm that can quickly detect all
objects in an image but cannot distinguish whether they are moving or stationary. The
method proposed in [38] (named MDR in Table 9) is consistent with the idea of our method,
which uses the classical alignment algorithm combined with the frame difference method
as the motion detection branch and uses the simplified YOLOv3 algorithm as the target
detection branch. It integrates the detection results of the two branches to obtain the final
motion target. It combines the classical frame difference method and the CNN-based target
detection method to achieve a good detection effect. However, it fails to achieve end-to-end
detection and meet the real-time detection requirements.

Table 9. Comparison of the detection results on the MDR105 dataset.

METHOD Pr Re F1

ECO 0.86 0.73 0.79
Deep-sort 0.82 0.87 0.85
YOLOv5s 0.86 0.74 0.80
YOLOv5m 0.84 0.82 0.83
YOLOv5l 0.89 0.76 0.83
YOLOv7 0.80 0.83 0.82

MDR 0.96 0.85 0.90
MFE-MIE (our) 0.92 0.91 0.92

The best results are presented in bold.

As Table 9 shows, ECO is a single-target tracking algorithm, and its inability to track
multiple targets simultaneously results in it having the worst performance. YOLOv5 series,
YOLOv7, and Deep-sort can only detect the objects in the image and cannot determine
whether they are moving, so their recall rates are relatively low. In addition, from the
experimental results of the YOLOv5 series and YOLOv7, we can see that increasing the
target detection capability of the target detection algorithm cannot achieve better motion
target detection results, which is consistent with our intuition. MDR has the advantage
of combining motion and object detection, and its detection effect is second only to our
method. However, its motion detection branch has a low ability to detect motion, resulting
in a low recall rate. Our method achieves a state-of-the-art performance, achieving the
highest F1 scores while balancing the accuracy and recall rates.

Figure 6 presents a visualization of the partial detection results of the above five
algorithms on the MDR105 dataset. The selected sequences are very representative. Among
them, the Car05 sequence has only one moving target, but the target is similar to the
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background. In addition, the target is tiny. There are three vehicles in the Car08 sequence;
two of them are moving. One of the vehicles has a relatively obvious appearance, and the
other has a tiny target, which makes detection more difficult. In the sequence of Car21,
there are three moving vehicles on the road and many stationary vehicles on the side of
the road. They share the same semantic features as moving vehicles. The Car22 sequence
contains one moving vehicle and one stationary vehicle. In the Person34 sequence, only
one person is moving, while the vehicles on the road are all stationary.
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In Figure 6, column 1 shows the ground truth. Column 2 shows the detection results of
our proposed method, column 3 shows the detection results of MDR, column 4 shows the
detection results of YOLOv5, column 5 shows the detection results of Deep-sort, and column
6 shows the detection results of ECO. YOLOv5 and Deep-sort can detect all objects in the
figure. However, they cannot distinguish whether the target is moving (Figure 6, row 2,
column 4, column 5). MDR combines classical motion detection algorithms with CNN-
based target detection algorithms to obtain good results, but its weak motion detection
capability causes a missed detection (Figure 6, row 2, column 4). Compared with the other
four algorithms, our proposed method achieves the best moving target detection effect.
The reason for this is that our MFE module and the MIE network can extract the motion
information between frames well and then fuse the motion information at three levels with
the semantic information extracted from the target detection branch, which is suitable for
the detection of tiny targets and objects with small displacements.

Finally, the partial detection results of the proposed method on the VIVID datasets
and MDR105 datasets are shown in Figure 7.
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4. Discussion

In this work, inspired by the excellent performance of two-stream networks combining
spatial and temporal information for motion recognition, we proposed an end-to-end
moving object detection model for remote sensing image sequences that operates in real-
time. The experimental results show that our proposed MFE-MIE model achieves a real-
time (25.25 fps) detection speed with the highest F1 scores (0.93). In addition, we performed
a quantitative evaluation by ablation experiments to demonstrate that the proposed MFE
module enhances motion feature extraction. We also proposed an MIE network based on
improved 3D convolution and experimentally demonstrated that it improves accuracy and
reduces false alarm rates.

In Section 3, we analyzed which method is more suitable for motion information
retention when fusing the temporal dimensional information of motion features. The
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experiments show that the maximum pooling method provides more retention than the
average pooling method, and the accuracy, recall, and F1 scores increased by 1.45%, 5.78%,
and 0.04, respectively.

Additionally, we used the convolutional layer for background compensation at dif-
ferent positions and determined the influence on the detection results. The experimental
results show that using the weight Rk to enhance the features without background compen-
sation can achieve better detection results. This is because multiplying the compensated
features F′k−n using the weights Rk artificially weakens the motion information between the
subsequent Fk and F′k−n. This is not conducive to the subsequent further extraction of mo-
tion information by the MIE network. During the process of motion feature enhancement,
the original features should be preserved and enhanced as much as possible instead of
artificially reducing the interframe information, which is harmful to the subsequent motion
information extraction.

At the same time, we studied the impacts of different ways of fusing motion and
semantic information on the moving object detection task. The experimental results show
that the accuracy rate of concatenation along the channel was 1.89% lower than the element-
wise summation for the same feature dimension. Nonetheless, this precision sacrifice is
meaningful, with 0.07 and 14.5% gains in terms of the F1 and recall, respectively. Element-
wise summation is more flexible than concatenation along channels. The element-wise
summation method requires motion features and semantic features to have the same
spatial dimension and number of channels. However, the concatenation along channels
method only requires them to have the same spatial dimension. When we set the number
of semantic feature channels to 768 and the number of motion feature channels to 1024,
we were able to achieve the same F1 (0.93) score as when the number of the two branch
channels was 1024. In addition, this setup reduced the overall detection time.

The experimental results on the VIVID dataset show that the proposed method can
better localize moving objects and achieve real-time detection compared with the classical
moving object detection method. In contrast, the detection effect of the classical algorithm
is affected by the registration method and cannot achieve real-time detection. In addition,
the detection effect depends on postprocessing. The proposed algorithm can obtain the best
detection effect in different image sequences. The idea of combining motion information
with semantic information was proven to be effective for moving object detection tasks.

The detection results on the MDR105 dataset show that our method focuses on the
moving object detection task and achieves the best detection results compared with other
deep-learning-based methods. Unlike the algorithms presented in [38], our method is all
implemented by CNN. The proposed method only needs two RGB images as the input and
no other data are required as additional input to output the detection result in an end-to-end
manner. Both object detection algorithms and multiobject tracking algorithms can detect
all objects in the image. However, they cannot tell whether the object is in motion.

The detection results for the VIVID and MDR105 moving object datasets show that,
in most cases, the proposed method can accurately locate the positions of the moving
objects, even though the target within the VIVID is smaller. Objectively speaking, there are
some misdetections and missed detections in our method. When the displacement of the
target is small, the motion detection branch fails to detect the motion information, so the
moving target is treated as stationary by our method, resulting in a missed detection. This
is due to the lack of motion detection capability. Meanwhile, our method of fusing motion
information with semantic information is relatively simple.

5. Conclusions

Detecting moving objects in remote sensing image sequences is a challenging problem
due to the small sizes of moving objects, the small amplitudes of motion, and the complex
image background. In this work, we proposed a moving object detection model that pro-
vides a feasible solution for moving object detection in remote sensing image sequences. We
use a dedicated branch to extract motion information between frames and design a motion
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feature enhancement module before computing motion information. The extracted motion
information is combined with the powerful target detection capability of deep learning
to achieve an end-to-end solution to the motion target detection task. The experimental
results prove that the proposed method performs well, allowing the rapid detection of
moving objects. At the same time, it was proven that combining semantic information
based on a single-frame image and motion information based on multiple frames is helpful
for moving object detection.

Our future work will focus on two main aspects. First, we will further strengthen the
extraction of motion features and study how to make the network better retain interframe
motion information without adding additional information. For example, we might try to
approximate the optical flow representation using features from two images. Second, we
will explore an approach that can better combine object and motion detection branches to
make them more suitable for the moving object detection task. For instance, feeding two
frames of images directly into a network branch allows the network to learn how to fuse
motion information with semantic information.
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