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Abstract: Rapid and accurate identification of mangroves using remote sensing images is of great
significance for assisting ecological conservation efforts in coastal zones. With the rapid development
of artificial intelligence, deep learning methods have been successfully applied to a variety of
fields. However, few studies have applied deep learning methods to the automatic detection of
mangroves and few scholars have used medium-resolution Landsat images for large-scale mangrove
identification. In this study, cloud-free Landsat 8 OLI imagery of the Indus Delta was acquired using
the GEE platform, and NDVI and land use data were used to produce integrated labels to reduce
the complexity and subjectivity of manually labeled samples. We proposed the use of MSNet, a
semantic segmentation model fusing multiple-scale features, for mangrove extraction in the Indus
Delta, and compared the performance of the MSNet model with three other semantic segmentation
models, FCN-8s, SegNet, and U-Net. The overall performance ranking of the deep learning methods
was MSNet > U-Net > SegNet > FCN-8s. The parallel-structured MSNet model was easy to train,
had the fewest parameters and the highest validation accuracy, and provided the best results for
the extraction of mangrove pixels with weak features. The MSNet model not only maintains the
high-resolution features of the image and fully learns the pixels with weak features during the
training process but also fuses the multiple-scale underlying features at different scales to enhance the
semantic information and improve the accuracy of feature recognition and segmentation localization.
Finally, the areas covered by mangroves in the Indus Delta in 2014 and 2022 were extracted using
the best-performing MSNet. The statistics show an increase in mangrove-covered areas in the Indus
Delta between 2014 and 2022, with a reduction of 44.37 km2, an increase of 170.48 km2, and a net
increase of 126.11 km2.

Keywords: Landsat 8; semantic segmentation; deep learning; mangrove identification; Indus Delta

1. Introduction

Mangroves are widely found in the coastal wetlands of tropical and subtropical
regions. Mangroves provide a natural habitat for many birds, fish, shrimps, and insects, as
well as provide wind and wave protection, soil and water retention, and carbon storage
and sequestration, serving as both an “animal paradise” and a “coastal defender” [1,2].
However, remote sensing has revealed that the global decline in mangroves from 1985–2020
exceeded 10,000 km2, and the ecological functions of wetlands were degraded significantly,
with the most pronounced shrinkage occurring in South Asia [3]. Direct and indirect human
activities (road construction, agricultural land reclamation, aquaculture, etc.) [4] and natural
factors (storms, floods, fires, etc.) [5] place mangroves at a high risk of destruction.
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The Indus Delta is one of the most important areas of mangrove growth in South
Asia [6]. The area is dominated by a single species, Avicennia marina, also known as
gray or white mangrove, which accounts for over 95% of the total mangrove growth [7].
The Pakistan Forest Act 1972 was enacted by the Government of Pakistan in 1958, and
afforestation activities have been carried out on various scales; however, large areas of
mangrove forests in the Indus Delta are still dying out [8]. Although a very small proportion
of other mangrove species was once found at the mouth of the Indus River at Keti Bunder,
most of them are now extinct in Pakistan [9]. To achieve the UN 2030 Agenda faster
and better (protecting and sustainably using oceans and marine resources for sustainable
development (Sustainable Development Goal 14.2, SDG14) [10]), it is important to use
a more efficient and accurate method for monitoring mangroves in the Indus Delta for
ecological conservation in coastal wetlands.

Remote sensing technology provides powerful support for mangrove identification
owing to its advantages of low cost, high efficiency, and wide range of observations [11].
The most of the common methods for mangrove extraction using remote sensing images are
the index methods and supervised machine learning classification. Regular indices such as
the normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and
visible atmospheric resistance index (VARI) are widely used in vegetation studies [12,13].
Sudip et al. [14] used Sentinel-2 imagery to develop a discriminant normalized vegetation
index (DNVI) based on two short-wave infrared (SWIR) bands and used the DNVI to map
the interspecific distribution and health of mangroves in the Sundarban Delta, Bangladesh.
Pujiono et al. [15] assigned NDVI images from different years to RGB colors and used the
additive color theory to form an RGB-NDVI index to explain mangrove variation in the
Maubesi Nature Reserve, Indonesia. Jia et al. [16] effectively extracted mangrove forests
inundated by tidal flooding near Zhenzhu Harbor, Guangdong Province, China, using
the reflectance of the red band and short-wave near-infrared band of Sentinel-2 as a linear
baseline. Further, they combined the average reflectance values of the four red-edge bands
on top of this linear baseline to establish the mangrove forest index (MFI). Supervised
classification relies on computer mathematical models to learn and train manually labeled
sample features to extract different types of ground objects from remote sensing images [17].
Supervised machine learning classification methods commonly used for mangrove extrac-
tion include K-nearest neighbor (KNN) [18], support vector machines (SVMs) [19,20], and
random forest (RF) [21,22]. Some scholars have combined index methods with machine
learning methods. Luis et al. [23] constructed several vegetation index series images (EVI2,
NDVI, and VARI series images) based on Sentinel-2 time series images to effectively assess
the seasonal patterns of mangroves in the Gulf of Mexico, and demonstrated the feasibility
of extracting mangroves in semi-arid coastal systems based on time series vegetation in-
dices using the Google Earth Engine (GEE) platform’s random forest algorithm. However,
the index methods are usually based on the spectral features of the image but ignore other
underlying features (texture, color, structure, etc.); traditional supervised machine learning
classification methods are susceptible to “same spectrum with different ground objects”
and “same ground objects with different spectrums”, resulting in low accuracy of mangrove
extraction [24].

Since the successful application of the AlexNet convolutional neural network [25] in
image recognition in 2012, computer vision has been widely used in the field of remote
sensing, and various convolutional neural networks (CNNs) such as FCN [26], SegNet [27],
and U-Net [28], etc. have been widely used for semantic segmentation of remote sensing
images, and these semantic segmentation models have also made some progress in ex-
tracting mangroves. Ariel et al. [29] used UAV imagery as training data to successfully
identify five mangrove species in the northern coastal area of Clarin, Bohol, by introducing
convolutional neural networks using the transfer learning approach. Jamaluddin et al. [30]
extracted the spatial–spectral–temporal deep features of mangroves before and after a
hurricane from Sentinel-2 images and then used FCN as a classifier to effectively assess
the area of degraded mangroves affected by Hurricane Irma along the southwest coast of
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Florida, USA. Guo et al. [31] proposed the ME-Net semantic segmentation model inspired
by deep learning techniques. The model is based on the FCN structure with global attention
modules, multiple-scale context embedding, and boundary fitting units. The model was
very effective at extracting mangroves with an overall accuracy of 97.48%. Li [32] obtained
the physical structural features of mangroves by adding a set of convolutional neural net-
works and combining them with features extracted from UAV images to train an improved
SegNet semantic segmentation model for the automatic extraction of mangroves in the
Pearl River Delta, China. Davide and Minerva [33] proposed a cloud-based mangrove
monitoring framework in which U-Net, ResNet, and RF were used to extract mangrove
distributions in Southeast Asia. Finally, the F1-Score was compared to confirm that U-Net
had the highest extraction accuracy. Moreno et al. [34] built a U-Net architecture with three
backbone networks (ResNet-101, VGG16, and Efficient-net-B7) based on Sentinel-1 time
series imagery and effectively monitored the temporal patterns of mangroves along the
southeastern Brazilian coast. However, these semantic segmentation models involve a large
number of parameters, lose a lot of semantic information, and are difficult to train [35].

To date, few studies have applied deep learning to medium-resolution images to
extract mangroves on a large scale. Most samples required for deep learning rely on
manual annotation, which is time-consuming and highly subjective. In addition, traditional
semantic segmentation models not only contain a large number of parameters, but also use
a large number of pooling layers in their structure, resulting in a substantial loss of image
spatial information. It is easy to overlook feature-sparse pixels during the training process,
and the recovered images do not correspond well to the original image after upsampling.

To solve these problems, this study set the Indus Delta as the study area to enrich the
theory and methods of applying deep learning to mangrove extraction. The integration
of land use and NDVI data from previous years was used to produce integrated labels
to improve the efficiency and accuracy of producing mangrove label data. We propose a
parallel, fewer-parameter semantic segmentation model, Multiple Scale Network (MSNet),
which fuses the multiple-scale underlying features, and evaluate the effectiveness of this
model with other semantic segmentation models for mangrove extraction.

2. Materials
2.1. Study Area

The Indus River is the largest river in South Asia, flowing through several countries
(Pakistan, China, India, etc.), and is approximately 2900 km long [36]. As the upper reaches
of the Indus are mostly glaciers and snow-capped mountains, snowmelt carries a large
amount of sediment that accumulates in the riverbed, resulting in a fan-shaped delta
approximately 250 km wide at the estuary of the Indus, called the Indus Delta [37]. The
Indus Delta is located in the city of Hyderabad, in the southern province of Sindh, Pakistan.
It is bordered by the Arabian Sea to the south, and lies between 23◦30′0”–25◦0′0”N and
67◦0′0”–68◦30′0”E (Figure 1), with a total area of approximately 57,000 km2. The Indus
Delta coastline is approximately one-quarter of the total length of Pakistan’s coastline [38].
The delta contains dozens of rivers and streams that support the sixth-largest mangrove
forest in the world (the Indus Delta Mangroves) [39].

2.2. Data

The satellite images used in this study were selected from the Landsat 8 Operational
Land Imager (Landsat 8 OLI), which has nine bands and a spatial resolution of 30 m [40].
As subtropical mangrove forests are most abundant between February and April and
rainfall is minimal during this period [41], remote sensing images of the Indus Delta from
15 February 2022 to 15 April 2022 were acquired using the GEE cloud-computing platform.
We selected the visible and infrared bands (Band 1–7) (Table 1) that were favorable for
mangrove extraction, excluding the bright temperature bands (Band 10–11), limited the
cloud content in the study area to less than 5%, and used the CFMASK masking algorithm
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to eliminate the interference of extraneous factors such as clouds, water vapor, and shadows
in the images [42].
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Table 1. Image information of Landsat 8 OLI.

Sensor Spectral Band Wavelength Resolution Date

OLI

Band 1 0.433–0.453 µm

30 m 15 February 2022–15 April 2022

Band 2 0.450–0.515 µm
Band 3 0.525–0.600 µm
Band 4 0.630–0.680 µm
Band 5 0.845–0.885 µm
Band 6 1.560–1.660 µm
Band 7 2.100–2.300 µm

The GEE platform was used to calculate the NDVI (Formula (1)) for the study area [43]
and to obtain annual-scale land use data (2020 and 2021) for the study area.

NDVI = (NIR− Red)/(NIR + Red) (1)

where Red is Band 4 in the Landsat 8 OLI sensor and NIR is Band 5 in the Landsat
8 OLI sensor.

The land use data were generated by the ESA World Cover project with a spatial resolution
of 10 m and contained 17 land types with an overall accuracy of approximately 75%.

3. Methods

The steps of mangrove identification in this study were divided into the following
main parts: image acquisition, sample labeling, model training and prediction, and model
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evaluation (Figure 2). First, the Landsat 8 OLI was used as the data source to obtain images
of the study area and area of interest (AOI), and the integrated labels of the AOI were used
to produce the mangrove training dataset required for the deep learning model. MSNet
was then compared with three other semantic segmentation models, FCN-8s, SegNet, and
U-Net, to determine the best method for extracting coastal mangroves. To evaluate the
performance of the deep learning models, the training parameters of different models and
the loss curves in the training were compared, and eight accuracy evaluation metrics were
selected to assess the validation accuracy of the four methods. Finally, the best-performing
semantic segmentation model was applied to extract the mangrove-covered areas of the
Indus Delta.
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3.1. Label Building

To reduce the misinterpretation and misclassification that occurs when mangrove
samples are traditionally labeled manually, we used multiple sources of data to produce
mangrove labels, which improved the accuracy of the mangrove sample dataset [44]. The
land use data for 2020 and 2021 were reclassified into two categories, “Mangrove” and
“others”, and then a suitable threshold was selected to extract the mangrove-covered areas
from the NDVI images (NDVI > 0.12). The areas where the mangrove categories intersected
in the three images were extracted using the ArcGIS software (Figure 3). To increase the
readability of the “Mangrove” labels by the deep learning model, two different AOI images
of the study area were acquired through the GEE platform (both AOI images are from 2022).

To verify the accuracy of the integrated labels, we used ArcGIS software to generate
1000 random verification points within the mangrove labels of each of the two AOI images
(AOI-1 and AOI-2). The label values were then compared with the ground truth values,
and finally, the confusion matrix of the integrated labels was calculated (Table 2). The
Precisions of AOI-1 and AOI-2 were calculated to be 99.80% and 99.70%, respectively, and
could be used as training labels.
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Table 2. Confusion matrix of integrated labels (“M” indicates “Mangrove”; “O” indicates “Others”).

AOI-1 AOI-2
Sum

M O M O

M 998 0 997 0 1995
O 2 0 3 0 5

Sum 1000 0 1000 0 2000
Precision 99.80% 99.70% 99.75%

As the training sample size required for deep learning models must be uniform, and
to consider the fairness of comparing the performance of different models, this study
used the sliding window crop method to simultaneously crop the AOI images and labels
into a 256 × 256 × 7 size [45]. To obtain more training samples, the coverage repetition
rate of adjacent windows was set to 0.5 during the cropping process. Using the sliding
window cropping method, 1056 images of the training samples were obtained directly.
Considering the heterogeneous distribution of “Mangrove” in the labeled images (the
number of “Mangrove” pixels in some training labels is much smaller than the number
of “Others” pixels), we excluded samples with few mangrove labels from the training
data, to avoid the loss of the “Mangrove” category being ignored during the training
process. In addition, deep learning models usually require large amounts of training data
for training; therefore, we augmented the acquired training data (augmentation methods
include horizontal flipping, vertical flipping, and mirror flipping). After data augmentation,
4224 training sample images were obtained. Some of the training sample images and label
data are shown in Figure 3.
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3.2. Deep Learning Models

Classical semantic segmentation models, such as FCN, SegNet, and U-Net, are based
on a structure of encoding followed by decoding, where convolutional and pooling layers
are usually used in the encoding part to quickly obtain the feature information of the target.
Although pooling methods such as maximum pooling, hole pooling, or average pooling can
increase the efficiency of the model and highlight the edges and background of the image,
much spatial information is lost in the image, some tiny pixels are ignored for learning,
and the outline of the objects after upsampling does not correspond well to the field
conditions. Dong et al. [46] reduced the loss of image spatial information by constructing
convolutional layers with different step sizes; however, this significantly increases the
number of parameters in the model and requires a high level of hardware. Thus, this study
proposes the MSNet model with fewer model parameters and the ability to fuse multiple
scales of underlying features while maintaining high-resolution features and then extracts
mangroves using four models: FCN, SegNet, U-Net, and MSNet. All these four semantic
segmentation models use the rectified linear unit (ReLU) [47] activation function for the
convolutional layers, the SoftMax [48] activation function for the output layer to normalize
the high-dimensional vectors (calculate the probability of each pixel being of a certain
class), and cross-entropy [49] for the loss function to measure the difference between the
true and predicted values. The model code used in this study can be found on GitHub,
https://github.com/9MorningStar9/MSNet (accessed on 3 February 2023).

3.2.1. FCN-8s

The FCN is based on VGG16, where the fully connected layers are replaced by con-
volutional layers and the network output is no longer a category but a heat map. To
address the effect of convolution and pooling on the image size, an upsampling ap-
proach is proposed to recover the image (Figure 4). The FCNs are divided into FCN-32s
(×32 upsampling), FCN-16s (×16 upsampling), and FCN-8s (×8 upsampling), depending
on pooling result at different multiples. The upsampling process of FCN-8s is performed
three times, and the skip structure is used to add the features of the third and fourth pooling
layers to the upsampling layer features to improve the prediction accuracy. The 8-fold
upsampling of FCN-8s is much better than the 32-fold and 16-fold upsampling models
(FCN-32s, FCN-16s) [50].

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 20 
 

 

The FCN is based on VGG16, where the fully connected layers are replaced by con-
volutional layers and the network output is no longer a category but a heat map. To ad-
dress the effect of convolution and pooling on the image size, an upsampling approach is 
proposed to recover the image (Figure 4). The FCNs are divided into FCN-32s (×32 up-
sampling), FCN-16s (×16 upsampling), and FCN-8s (×8 upsampling), depending on pool-
ing result at different multiples. The upsampling process of FCN-8s is performed three 
times, and the skip structure is used to add the features of the third and fourth pooling 
layers to the upsampling layer features to improve the prediction accuracy. The 8-fold 
upsampling of FCN-8s is much better than the 32-fold and 16-fold upsampling models 
(FCN-32s, FCN-16s) [50]. 

 
Figure 4. Structure of FCN-8s. 

3.2.2. SegNet 
The encoding part of SegNet also follows the model of VGG16 but replaces the fully 

connected layer with a convolutional layer in the decoding part (Figure 5). SegNet uses 
encoding followed by a decoding structure, but uses maximum-pooling indices to per-
form the upsampling process in the decoding part. This approach preserves location in-
formation at the time of pooling, reduces the scope of error during upsampling, improves 
the delineation of boundaries, and reduces the number of parameters for end-to-end train-
ing [51]. 

  

Figure 4. Structure of FCN-8s.

3.2.2. SegNet

The encoding part of SegNet also follows the model of VGG16 but replaces the
fully connected layer with a convolutional layer in the decoding part (Figure 5). SegNet
uses encoding followed by a decoding structure, but uses maximum-pooling indices to
perform the upsampling process in the decoding part. This approach preserves location
information at the time of pooling, reduces the scope of error during upsampling, improves
the delineation of boundaries, and reduces the number of parameters for end-to-end
training [51].

https://github.com/9MorningStar9/MSNet
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3.2.3. U-Net

U-Net uses a fully convolutional neural network to quickly extract image features
using convolutional and pooling layers on the left side of the encoding part and then
performs feature fusion on the right side of the decoding part (Figure 6). The decoding
section directly uses the upsampling layers to convert the low-resolution image into a
high-resolution image with high-level features, and then concatenates the features with the
corresponding low-resolution image on the left [52].
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3.2.4. MSNet

The MSNet model is divided into two parts: underlying feature extraction and fused
feature extraction. In underlying feature extraction, the underlying features (texture,
edge, spectrum, etc.) of multiple-scale images are extracted rapidly by four pooling and
convolution layers (I–IV in Figure 7) to obtain the basis for feature recognition by the
model at different resolutions and are converted into high-resolution feature images by
upsampling ({1}–{4} in Figure 7). In the fused feature extraction part, the spatial resolution
of the image is maintained by building four sets of full-size convolutions ({1}–{4} in Figure 7).
These layers ensure that the model can fully learn from feature-sparse pixels to compensate
for spatial information lost during pooling. Before extracting features from each set of full-
size convolutional layers, feature fusion is performed, in which multiple-scale features less
than and equal to the same stage are concatenated. Taking the third stage as an example: the
first convolutional layer of the full-size convolutional group {3} performs the concatenate
operation with the multiple-scale features {1}–{3}. These upsampling features are used
as secondary features for learning during the fusion process, thus further improving the
model segmentation accuracy. Finally, the fused and re-extracted features are compressed
by a dimensional transformation, and the SoftMax function is used to predict each pixel
class of the image.
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Figure 7. Structure of MSNet.

3.3. Evaluation Metrics

In this study, ten metrics were selected to evaluate the performance of the four models:
Training loss curve, Model parameter count, Training time, Precision, Recall, Overall
accuracy (OA), F1-Score, Intersection-over-union (IoU), Frequency weighted intersection-
over-union (FWIoU), and Kappa coefficient. Precision indicates exactly how many samples
whose predicted outcome is a positive class are true positives, i.e., the ratio of the number
of samples accurately classified as positive to the total number of samples classified as
positive (Formula (2)). Recall indicates how many samples that should have been classified
as positives would have been correctly classified, i.e., the ratio of the number of samples
classified as positives to the number of samples actually classified as positives in the test
dataset (Formula (3)). OA is the probability that the classification result of each random
sample matches the class of the test data (Formula (4)). F1-Score is a balanced value between
Precision and Recall, allowing both to be maximized (Precision and Recall are contradictory
and cannot be maximized simultaneously) (Formula (5)). IoU is the ratio of the intersection
of the actual category samples and the predicted category samples to their concatenation
(Formula (6)). FWIoU is set with weights based on the frequency of occurrence of each
category. The weights are multiplied by the IoU of each category and summed (Formula
(7)). The Kappa coefficient is typically calculated to be between 0 and 1. A larger Kappa
value indicates a higher classification accuracy. It is a measure of classification accuracy
and is often used in conjunction with the OA to check the spatial consistency of image
classification (Formula (8)).

Precision = TP/(TP + FP) (2)

Recall = TP/(TP + FN) (3)

OA = (TP + TN)/(TP + TN + FP + FN) (4)

F1 = (2× Precision× Recall)/(Precision + Recall) (5)

IoU = TP/(TP + FN + FP) (6)
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FWIoU = [(TP + FN)/(TP + FP + TN + FN)]× [TP/(TP + FP + FN)] (7)

Kappa = (OA− Pe)/(1− Pe) (8)

The formula of Pe is shown below.

Pe = [(TP + FN)× (TP + FP) + (FP + TN)× (FN + TN)]/(TP + FP + TN + FN)2 (9)

where true positives (TP) are pixels whose label and prediction are both “Mangrove”; true
negatives (TN) are pixels whose label and prediction are both “Others”; false positives (FP)
are pixels whose label is “Mangrove” but predicted as “Others”; false negatives (FN) are
pixels whose label is “Others” but predicted as “Mangrove”.

4. Results
4.1. Performance of Models

The deep learning models in this study were trained using an NVIDIA RTX3060 GPU
and TensorFlow (GPU version) 2.6.0. The optimizer for all four models was Adam, with
an initial learning rate of 0.001. To better compare the performances of the models, we
eliminated the early stop strategy and trained each model for 100 epochs. Owing to the
memory limitations of the GPU, the training batch size was set to 16, and each epoch was
iterated 264 times. During the training of the deep learning model, if the model loss did not
show a decreasing trend for three consecutive epochs, the learning rate was automatically
halved to fit the model better. Finally, the cross-entropy loss function was used to plot the
loss curves of the four models (Figure 8). The lower the loss value and faster and smoother
the decline in the loss curve, the better the adaptability and robustness of the model.
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Figure 8. Training losses of FCN-8s, SegNet, U-Net, and MSNet.

As shown in Figure 6, FCN-8s, SegNet, and U-Net exhibited similar losses in the first epoch,
whereas MSNet exhibited the lowest initial loss. The losses for FCN-8s and SegNet during the
first 20 epochs were similar. However, the loss of FCN-8s almost stopped decreasing after the
20th epoch, whereas the SegNet loss decreased slowly and converged gradually. The loss of
MSNet decreased at a rate comparable to those of FCN-8s and SegNet in the first 10 epochs.
The loss value of U-Net decreased the slowest; however, its loss was lower than those of FCN-8s
and SegNet at the 36th and 52nd epochs, respectively. Finally, it was the second lowest after
MSNet. The MSNet model maintained the lowest loss value throughout the training process.
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As shown in Table 3, U-Net has the largest number of model parameters; however, its
training time is the shortest at 100 epochs and the most efficient among the four models.
The training time of SegNet was the longest among the four models, and the number of
model parameters was large, with the third highest loss value. Although the number of
model parameters and training time of FCN-8s were similar to those of MSNet, its loss
value was the highest among the four models. MSNet was average in terms of training
time; however, it had the smallest number of model parameters and the lowest loss value.

Table 3. Comparison of model parameters, minimum losses, and training time (the best-performing
one is shown in bold).

Total No. of Parameters Minimum Loss Training Time

FCN-8s 249,594 0.0945 1 h 15 min 3 s
SegNet 463,018 0.0702 1 h 17 min 31 s
U-Net 492,560 0.0397 1 h 11 m 12 s
MSNet 161,312 0.0217 1 h 15 min 19 s

To better compare the results of the four models for mangrove extraction, we generated
2500 random validation points using ArcGIS software to validate the mangrove extraction
results from the images obtained in 2014. The sample points were labeled with attributes with
reference to the higher spatial resolution simultaneous-phase Sentinel-2 imagery (622 points for
the category “Mangrove” and 1878 points for the category “Others”). The confusion matrices of
the four models were calculated using these sample points (Table 4), and their Precision, Recall,
OA, F1-Score, IoU, FWIoU, and Kappa coefficient were obtained (Table 5).

Table 4. Confusion matrix of models (“M” indicates “Mangrove”; “O” indicates “Others”).

FCN-8s SegNet U-Net MSNet
SUM

M O M O M O M O

M 517 105 556 66 562 60 572 50 622
O 19 1859 8 1870 12 1866 9 1869 1878

SUM 536 1964 564 1936 574 1926 581 1919 2500

Table 5. Comparison of validation results (the best-performing one is shown in bold).

Precision Recall OA F1-Score IoU FWIoU Kappa

FCN-8s 96.45% 83.12% 95.04% 89.29% 80.66% 20.07% 86.09%
SegNet 97.91% 89.39% 97.04% 93.76% 88.25% 21.96% 91.83%
U-Net 98.58% 90.35% 97.12% 93.98% 88.64% 22.05% 92.09%
MSNet 98.45% 91.96% 97.64% 95.09% 90.65% 22.55% 93.54%

Table 5 shows that FCN-8s is the worst performer, ranking last in all metrics. In the
Precision metric, U-Net has the highest Precision at 98.58%. The Precision of MSNet is
slightly lower than U-Net’s Precision, with a difference of only 0.13%. The Precisions
of SegNet and FCN-8s are 97.91% and 96.45%, respectively. In the other metrics, the
performances of U-Net and SegNet are similar, while MSNet outperforms the other models.
In particular, the difference between MSNet and the second-ranked U-Net is significant
for Recall, Kappa, and IoU. MSNet’s Recall is 91.96%, 1.61% higher than that of U-Net.
The Kappa of MSNet is 93.54%, 1.45% higher than U-Net’s. The metric with the largest
difference between MSNet and U-Net is IoU, which is 90.65% for MSNet, 2.01% higher than
U-Net. Compared to the worst-performing FCN-8s, MSNet’s Recall and Kappa are 8.84%
and 7.45% higher than those of FCN-8s, respectively. There is also a significant difference in
the IoU metric, with FCN-8s’s IoU being only 80.66% and MSNet’s IoU being 9.99% higher
than that of FCN-8s. Combining a total of ten metrics from Tables 3 and 5, it can be seen
that the MSNet model is the best performer among the four models.
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4.2. Extraction Results of Mangroves

To understand the accuracy of the four models in extracting mangroves in greater detail,
we selected several typical mangrove distribution areas for comparative analysis. Figure 9
shows remote sensing images of the study area and the extraction results of the four models.
The images included mangroves, bare ground, rivers, and a small areas of building land. The
main areas covered by mangroves were extracted using the four models. However, mangroves
in the intertidal zone or those with a low cover density did not show significant features in
the images. FCN-8s was unable to effectively learn mangrove pixels with sparse features,
and the boundaries of the mangrove extraction results were severely jagged, with a large
amount of spatial information being lost (Row B). The mangrove boundaries extracted using
SegNet were smoother and clearer, with a slight improvement in performance in identifying
intertidal mangroves (Row C, Columns 2 and 3), but it was less sensitive to mangrove pixels
with lower cover density (Row C, Columns 4–7). SegNet tends to ignore tiny ground objects
and classify them as “Mangrove”, which results in a slight incoherence in the “Others” class
of the extraction results (Row C, Columns 1 and 8). U-Net shows a large improvement in
distinguishing the boundary between fine rivers and mangroves (Row D, Columns 1 and
2, 7 and 8), but has no significant advantage in identifying mangrove the pixels with low
cover density (Row D, Columns 4–7). MSNet can effectively distinguish pixels of intertidal
mangroves from those of water bodies because of its ability to fully learn detailed features
and fuse multiple scales of the underlying features. It was more sensitive to mangrove pixels
with a lower cover density and could correctly identify more mangrove-covered areas.
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4.3. Spatial Variation of Mangroves

Figure 10 shows the results of mangrove extraction in the Indus Delta using MSNet
and the changes in mangrove-covered areas over 8 years. In general, mangrove area in
the Indus Delta has increased. The stable growth area was mainly concentrated in the
west section near Karachi, and the decreased area was also mainly concentrated in the
western section with a high mangrove cover density, while the increased area was mainly
concentrated near Keti Bandar, and a small part of the increased area was distributed in the
eastern section near India. According to statistics, the mangrove area of the Indian Delta in
2014 was approximately 579.87 km2. By 2022, the mangrove area increased to 705.98 km2.
During this period, the mangrove-covered area increased by approximately 170.48 km2,
the decreased area was 44.37 km2, and the net increased area was 126.11 km2.
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5. Discussion

Owing to the multiple pooling and downsampling of the FCN-8s model, the spatial
information of the feature image was significantly lost. In the decoding part, continuous
upsampling is adopted, and the upsampling feature is not learned as in other models,
which results in fuzzy upsampling. Finally, FCN-8s restores the underlying features to
the resolution of the original image using 8-fold upsampling. This further widens the gap
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between the upsampling feature and the original image feature and leads to unsatisfactory
segmentation results of the model. The boundary of the SegNet segmentation results is
clearer, mainly because of the maximum pooling indices. Only the boundary information
was obtained and stored in the feature mapping in the encoding part, and the accuracy of
the boundary was guaranteed by the coordinate index in the decoding part. However, this
structure overemphasizes the importance of object boundaries and ignores the detailed
information of the image. Misclassification and missing classification often occur at the
junctions of rivers and mangroves. U-Net adopts a completely symmetrical U-shaped
structure and fuses low-level features with high-level features at the same resolution to
improve the segmentation accuracy, which has been improved in distinguishing small
rivers and mangroves. However, after the continuous downsampling of mangrove pixels
with sparse features, the feature information is significantly lost, and the model cannot
learn the information of these pixels. As a result, U-Net identified only a small portion
of mangroves when predicting areas with low mangrove density. The extraction result
of MSNet was the best, slightly better than that of U-Net in distinguishing small rivers
and mangroves. It recognized most mangroves with sparse features. During the training
process, the model constantly fuses the upsampling features of the multi-resolution images
to fill in the underlying information of the image. This enhances the basis for ground object
recognition, segmentation, and positioning. In the fused feature extraction, no pooling
operation was performed; however, feature extraction was performed on the premise of
maintaining the spatial resolution of the original images so that the model could learn more
detailed feature information. In addition to the disadvantage of spatial information loss
caused by the pooling operation, the lack of universality is one of the reasons for the poor
extraction of mangroves by FCN-8s, SegNet, and U-Net. In medium-resolution remote
sensing images, a single pixel typically contains several features of various ground objects.
It is difficult to distinguish between these complex pixels using these models. These models
are often used for indoor object recognition, unmanned driving, and medical diagnosis [52].
Objects such as human bodies, vehicles, and cells usually have high-resolution images.
These images usually have clear textures, colors, and structural characteristics. Compared
with the other three classical semantic segmentation models, the MSNet model with fewer
parameters is more suitable for remote sensing images and is easy to train.

In addition, the classification results of MSNet were compared with those of the
semi-automatic classification plugin (SCP) in QGIS, where the minimum spectral distance
(MSD) and maximum likelihood (ML) classification methods were used [53,54]. MSD
and ML were comparable to MSNet in their ability to distinguish between rivers and
mangroves boundaries. However, these two machine learning methods have difficulty
distinguishing between wetlands and mangrove pixels with sparse features, resulting in
significant misclassification of wetland as mangroves. This is because they can only learn
the superficial features of the image, which further highlights the superiority of MSNet
over traditional machine learning methods in mangrove extraction.

Although MSNet can identify most feature-sparse mangrove pixels, we identified
some problems that needed to be solved during our research. First, the image bands selected
for the study may contain a large amount of redundant information and the responses of
individual bands to vegetation are unclear. Second, the integrated labels obtained from the
NDVI and land use maps may not be sufficiently precise (a few labeled areas contain other
classes), allowing the model to learn the incorrect feature information. This integrated label
is currently used only in medium-resolution images and is not necessarily applicable to
images of other resolutions. In future research, we plan to combine multi-source satellite
data, spatial–spectral fusion, and multi-factor features (NDVI, NDWI, MFI, etc.) to enhance
the capacity for different mangrove type extractions. In addition, the applicability and
accuracy of the integrated labels for images of different resolutions will be further improved,
and the deep learning model structure will be optimized. We believe this approach can
be applied for the interspecific classification of mangroves or other types of land cover in
more delta or coastal regions with rich biodiversity.
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6. Conclusions

This study proposed a deep learning model based on integrated labels, using the Indus
Delta in Pakistan as the study area. The effectiveness of MSNet in extracting mangroves
was demonstrated by comparing it with three deep learning methods, FCN-8s, SegNet,
and U-Net, and by using MSNet to monitor mangrove changes in the Indus Delta. The
following conclusions were drawn: (1) among the mangrove results extracted by the
four deep learning models, MSNet extracted mangroves the best. U-Net was poor at
discriminating areas with low mangrove cover densities. SegNet formed clear boundaries
but had difficulty distinguishing intertidal mangroves from water. FCN-8s was the least
effective at extracting mangroves. (2) The integrated labels produced using NDVI and
land use data greatly reduced the cost of manually labeling the samples. This method
can eliminate the potential for manual labeling of incorrect samples owing to subjective
assumptions. (3) MSNet had the fewest parameters and the lowest training loss. This
remains the leader in the evaluation metrics. Even with the parallel network structure,
the training time of this model was not significantly different from those of the other
models. MSNet not only maintains the spatial resolution of the image and learns the
feature-sparse pixels but also fuses the multiple-scale features to improve the accuracy of
ground object recognition and segmentation. (4) From 2014 to 2022, the area covered by
mangroves increased from 579.87 km2 to 705.98 km2, a net increase of about 126.11 km2.
Overall, although the area of mangrove cover in the Indus Delta has increased, large areas
of mangrove forests are still dying.

MSNet, based on integrated labels, is a deep learning method for efficient and accurate
mangrove extraction suitable for large-scale mangrove extraction studies. This can help
authorities in the Indus Delta to make accurate decisions regarding sustainable planning
for mangrove conservation to prevent further damage to mangroves.
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