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Abstract: Floods are the most frequent natural disasters, occurring almost every year around the
globe. To mitigate the damage caused by a flood, it is important to timely assess the magnitude of the
damage and efficiently conduct rescue operations, deploy security personnel and allocate resources
to the affected areas. To efficiently respond to the natural disaster, it is very crucial to swiftly obtain
accurate information, which is hard to obtain during a post-flood crisis. Generally, high resolution
satellite images are predominantly used to obtain post-disaster information. Recently, deep learning
models have achieved superior performance in extracting high-level semantic information from
satellite images. However, due to the loss of multi-scale and global contextual features, existing deep
learning models still face challenges in extracting complete and uninterrupted results. In this work,
we proposed a novel deep learning semantic segmentation model that reduces the loss of multi-scale
features and enhances global context awareness. Generally, the proposed framework consists of
three modules, encoder, decoder and bridge, combined in a popular U-shaped scheme. The encoder
and decoder modules of the framework introduce Res-inception units to obtain reliable multi-scale
features and employ a bridge module (between the encoder and decoder) to capture global context.
To demonstrate the effectiveness of the proposed framework, we perform an evaluation using a
publicly available challenging dataset, FloodNet. Furthermore, we compare the performance of the
proposed framework with other reference methods. We compare the proposed framework with
recent reference models. Quantitative and qualitative results show that the proposed framework
outperforms other reference models by an obvious margin.

Keywords: flood segmentation; remote sensing; deep learning; disaster assessment; scene understanding

1. Introduction

The rapid growth in urban population and severe atmospheric conditions lead to
floods. Floods cause major societal and economic disruption, lead to the loss of life of
humans and animals and cause severe damage to property. Due to the frequent occurrence
of floods and the severity of damage cause by floods, several researchers and government
agencies devised different methods and techniques for flood monitoring. However, most
of the current flood monitoring techniques are based on manual analysis and require an
expert to manually analyze huge amounts of data acquired through different sensors. This
manual analysis of data is a tedious job and is always prone to errors due to limited human
capabilities. Another traditional way of flood monitoring is to exploit optical imagery
(acquired through optical sensors) to compute different water indices. These techniques
adopt different threshold methods to identify water bodies in the image [1]. However, these
methods suffer from the following limitations: (1) These methods provide information
only about the existence of water bodies. (2) These methods do not provide real-time and
automated flood monitoring analysis.

Due to rapid advancement in sensing technologies, significant amounts of data (in
the form of satellite or aerial images) are readily available. These high resolution satellite
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images contain detailed information which facilitates response teams to timely analyze the
whole scene. They use this information to generate impact maps which summarize the
magnitude of the damage in flooded area [2,3]. Currently, much analysis of satellite images
is performed manually by an expert, which is a tedious and time consuming job. Due to
the availability of large amounts of satellite images and increased demand for extracting
crucial information from images, researchers have employed computer vision techniques to
automate the process. To automatically extract detailed information from satellite images,
researchers have adopted different image segmentation techniques. Image segmentation is
a field of computer vision which predicts the confidence score of each pixel and transforms
the input image into high-level semantic information.

Image semantic segmentation is a high-level computer vision task that provides an aid
to scene understanding. Due to the high demand for scene understanding, image semantic
segmentation is the center of interest for many researchers. Image semantic segmentation
has numerous applications, including urban planning, smart agriculture, building mapping,
etc. A comprehensive review of different segmentation models aimed at solving different
computer vision tasks can be found in [4]. Despite the success of segmentation models in
various computer vision tasks, few efforts have been made towards flood segmentation in
satellite images.

Flood segmentation in aerial images is a challenging task compared to generic se-
mantic segmentation in ground-level images due to following reasons: (1) Satellite images
contain complex textures, since the images are acquired from a distant camera at an oblique
angle. (2) Due to the complex background, patterns from the same class appear different
(intra-class heterogeneity), while different patterns share similar features (inter-class homo-
geneity) [5]. (3) The size of objects in satellite images is very small and covers only small
portion of the whole image. (4) In satellite images, there are significant variations in shape
and scale of the same/different objects. Despite the success of deep learning models in
various semantic segmentation from satellite images, few efforts have been made towards
flood segmentation from satellite images. Recently, Rahnemoonfar et al. [6] proposed a
dataset, FloodNet, and evaluated and compared the performance of different deep learning
models, including PSPNet [7], ENet [8] and DeepLabv3 [9] on a proposed dataset. From
experimental results, we have observed that due to aforementioned problems, existing seg-
mentation models, including U-Net [10], U-Net++ [11], DeepLabv3 [9], FCN [12], ENet [8],
SegNet [13], PSPNet [7] and Tiramisu [14] face challenges in characterizing patterns and
identifying their boundaries.

To mitigate the aforementioned challenges, a novel framework is proposed that ex-
ploits both multi-scale and contextual information. To extract multi-scale information, the
framework introduces Res-inception units and employs a pyramid scene pooling network
to capture global context. Generally, the framework consists of three modules, encoder,
decoder and bridge, combined in a popular U-shaped scheme as adopted in U-Net [10].
This scheme enhances the receptive field of the network, which enables the network to
combine the local multi-scale feature and global contextual information to produce a precise
segmentation mask.

The contribution of this work is summarized as follows:

1. For flood segmentation in satellite images, it is crucial to extract multi-scale features.
For this purpose, the proposed framework introduces Res-inception units that extract
multi-scale features from multiple layers of the network.

2. The framework integrates a pyramid scene parsing network as bridge between the
encoder and decoder modules to capture global contextual information.

3. The effectiveness of proposed framework is gauged on the challenging publicly
available FloodNet dataset. From quantitative and qualitative comparisons, it is
demonstrated that the framework achieves the best performance and is better than
the other reference methods.

We organize the rest of paper as follows: Section 2 discusses the related work. The
technical details and architecture of proposed framework are provided in Section 3. Sec-
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tion 4 discusses the performance of proposed framework along with comparison with
reference methods. Finally, conclusions are given in Section 5.

2. Related Work

Due to superior performance of deep learning models, researchers have also made
several strides towards employing deep learning models for scene understanding in satellite
images. In this section, we discuss different segmentation models in satellite images.
For convenience, we categorize the semantic segmentation methods into two categories.
In the first category, we discuss the handcrafted feature-based methods developed for
semantic segmentation in satellite images, while in the second category, we discuss the
deep learning models.

2.1. Handcrafted Feature-Based Models

Before the advent of deep learning networks, most of best performance algorithms relied
on handcrafted features. These models extract handcrafted features, for example, Histograms
of Oriented Gradients (HOG) [15], Scale Invariant Feature Transform (SIFT) [16], Local Binary
Pattern (LBP) [17] and Gray Level Cooccurrence Matrix (GLCM) [18] use features to train
a statistical classifier that obtains a semantic segmentation map by classifying the pixels of
the input image. Low-level features, namely, semantic textons are proposed in [19], which
combines decision trees to classify image pixels. The authors of [20] combine appearance
and motion features and employ a probabilistic model based on conditional random field
for semantic segmentation in road scenes. Markov Random Field (MRF) is employed
in [21] to segment objects in street scene images. In [22], color and texture descriptors
are computed for superpixels and train two separate classifiers based on KNN classifiers
to classify superpixels to generate the segmentation map. Similarly, in [23], color and
texture features are extracted from different regions of the image and train an SVM model
to classify the pixels. LBP features are extracted from each region from the image, which
are combined with spectral features in [24] for segmentation of high resolution satellite
images. An entropy-based technique is proposed in [25] for automatic segmentation of
color aerial images. The authors also evaluated the performance of the model on grey
aerial images and conclude that the model performed better on color images than grey
images. A non-supervised multicomponent aerial image segmentation model is proposed
in [26] that employs a self-organizing map (SOM) and hybrid genetic algorithm (HGA).
The self-organizing map is used to extract discriminating features from the image. Based on
extracted features, different regions of the image are clustered into homogeneous regions
by employing the hybrid genetic algorithm (HGA). A land cover segmentation model is
proposed in [27] that employs the Structured Support Vector Machines (SSVM) model to
learn appearance features and local class interactions. An adaptive mean-shift clustering
algorithm is employed in [28] for semantic segmentation in satellite images. The model
first extracts color and texture features from different areas of the image and then employs
a mean-shift clustering algorithm to combine the homogeneous region of the image. A
semantic segmentation model is proposed in [29] for urban aerial images. The model
embeds geographic context in a pairwise CRF model and trains the random forest model
on multiple descriptors to obtain class likelihood of superpixels.

Although these handcrafted feature-based models perform well in simple semantic
segmentation tasks, these models exhibit poor performance in complex scenes. This may
be attributed to the following reasons: (1) These models reply on manual computation of
complex features which increases the computational cost. (2) Handcrafted features are
not robust and are prone to noise and illumination changes. (3) These models lack global
context and multi-scale features, because of which these models generally confuse different
patterns, leading to misclassification.
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2.2. Deep Learning Models

Deep learning models achieved tremendous success in various visual tasks, including
object detection [30], image recognition [31] and semantic segmentation [12]. With the
success of deep learning models in natural images, researchers have explored and applied
various deep learning models in aerial image analysis to extract meaningful information
for scene understanding.

Generally, semantic segmentation from aerial images can be categorized in the follow-
ing categories: (1) road extraction, (2) building extraction and (3) land-cover segmentation.

Road extraction from satellite images offers crucial information for intelligent traf-
fic monitoring. This information can be utilized to detect newly constructed roads and
automatically update maps accordingly. Because of this reason, a significant amount of
work [32–37] is reported in the literature regarding road extraction from satellite images. A
detailed survey of road extraction from satellite images is reported in [38].

Building extraction from satellite images has wide range of applications in urban
planning [39], disaster management [40,41] and population estimation [42]. Although
several models [43–47] have been proposed in recent years for automatic building footprints’
extraction from satellite images, these models suffer from a scale problem. Due to the
different sizes of buildings, it becomes challenging for the models to precisely extract
building footprints from satellite images. For example, the MFBI model is proposed in [48]
to address the problem of multiple scales. For multiple region extraction, an attention
module with multi-scale guidance framework is proposed in [49]. A multi-scale encoder–
decoder framework is reported in [50] to extract local and global features to model the
complex and diverse shapes of buildings from satellite images.

Land cover segmentation provides high-level semantic information about the land
classified into forests, vegetation, grasslands and barren lands. Such information is useful
for land use management [51] and precision agriculture [52]. Due to immense advan-
tages of land cover segmentation, several researchers have developed various deep learn-
ing models [53–57] for automatic segmentation of land cover types from high resolution
satellite images.

In addition to the above-mentioned methods, several methods have been reported to
extract high-level semantic information for other tasks, including slum segmentation [58],
farmland segmentation [59,60] and segmentation of residential solar panels [61,62]. A
fully convolutional network (FCN) is proposed in [63] to identify slums in satellite images.
Similarly, a deep fully convolutional network is proposed in [64] for sea–land segmen-
tation in satellite images. The network follows a similar pipeline as that of the popular
U-Net [10] (initially introduced for bio-medical image segmentation); however, instead
of using convolutional layers in the encoder and decoder parts, DeepUNet introduced
DownBlocks in the encoder part and UpBlocks in the decoder part. These two blocks are
connected via U-connection and Plus connections to obtain more precise segmentation
results. TreeUNet [65] extended DeepUNet by introducing skip connections to discriminate
the pixels of apparently similar classes for land cover segmentation in satellite images.
Similarly, a deep learning framework, ResUNet-a, is proposed in [66] that integrates atrous
convolution layers, pyramid scene parsing and residual connection with UNet to identify
the boundaries of different patterns. Recently, an attention mechanism has been introduced
in deep learning networks to model long range dependencies and further refine the feature
maps. In this strategy, the network focuses more on the object of interest and pays little
attention to the background. A channel attention mechanism that is integrated with FCN is
proposed in [67] for semantic segmentation of aerial images. Similarly, a hybrid attention
mechanism is introduced in [68] to capture global relationships for a better representation
of features.

3. Methodology

In this section, we discuss the details of the proposed framework for flood segmenta-
tion in satellite images. The detailed architecture of the framework is illustrated in Figure 1.
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The goal of the framework is to enrich each pixel of the input image with a suitable class
label. Generally, the structure of proposed framework is similar to U-Net [10]. However,
the framework integrates Res-inception units along with a pyramid pooling module to
effectively extract multi-scale features and global contextual information. Generally, the
framework consists of three modules: (1) encoder, (2) decoder and (3) bridge. The encoder
module consists of four Res-inception units, where each unit is followed by max-pooling
layer. The decoder module comprises three Res-inception units. The encoder and decoder
modules are combined with a bridge module, resulting in a U-shaped structure. The
encoder modules takes an image of arbitrary size and extracts multi-scale hierarchical
features. The feature map generated from the fourth Res-inception unit is then passed
through a bridge module, which extracts global contextual information by employing the
pyramid pooling scheme. The decoder module up-samples the feature maps obtained from
the bridge module and concatenates the features maps with respective features maps from
the encoder to recover spatial information. We then employ a convolutional layer followed
by a Softmax layer to obtain a dense semantic map, where each pixel in the map represents
the appropriate class. We discuss each module of the framework as follows:

Figure 1. Detailed architecture of proposed framework for flood segmentation in satellite images.

Generally, the encoder part is considered the feature extractor or reduction part, which
extracts hierarchical features and reduces the feature map after passing through subsequent
pooling layers. Typically, the encoder part of classical U-Net is shallow and cannot extract
multi-scale features, which is crucial for dense segmentation in satellite images [55]. To
remedy this problem, instead of using simple convolutional and pooling filters, we use
Res-inception units to aggregate rich features from multiple branches with different kernel
sizes. We argue that this setting increases the width of the network and makes it capable of
learning multi-scale features.

The structural diagram of the Res-inception unit is shown in Figure 2. As illustrated
from Figure 2, the input feature maps from the preceding layer are provided as input to
three convolutional blocks in parallel. Ωt−1 is the feature map from the previous layer.
αn×n is the convolutional operation of size n× n, and β represents the batch normalization
operation. C1 represents the feature maps obtained from the first convolutional block, C2 is
the output of the second convolutional block and C3 represents the feature maps obtained
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from the third convolutional block. We obtain the current feature map Ωt after passing the
Ωt−1 through the Res-inception module using the following process.

Figure 2. Structural diagram of Res-inception unit.

The feature map of first convolutional block C1 is obtained by employing a convo-
lutional filter of size 1 × 1, followed by a batch normalization layer as formulated in
Equation (1). The purpose of using the batch normalization layer is to eliminate the gra-
dient vanishing problem. Similarly, the input from the previous layer Ωt−1 is applied to
the second convolutional block that employs a 1 × 1 convolutional layer, followed by a
3 × 3 convolutional layer and batch normalization layer as formulated in Equation (2). The
third convolutional block applies a convolutional kernel of size 1 × 1, followed by two
convolutional layers of size 3 × 3 and two batch normalization layers as formulated in
Equation (3). Then the resulting feature map Ωt is obtained by first concatenating the fea-
ture maps of C1, C2, C3 using the operation � and then applying a convolutional operation
of size 1 × 1. The resulting feature map is then summed with the input Ωt−1 as formulated
in Equation (4). Due to this unique structure, the network becomes wider instead of deeper,
which makes the network capable of learning spatial patterns as well as multi-scale features.
We argue that Res-inception learns both depth-wise and spatial patterns by employing
different convolutional operations with different sizes. Res-inception learns depth-wise
patterns by employing a convolutional operation of size 1× 1 and learns spatial patterns by
employing a convolutional layer of size 3 × 3. The unit further increases the representation
power of the learned feature by concatenating feature maps learned from convolutional
blocks. The Res-inception unit also reduces the computation complexity by factorizing the
large convolutional operations into small ones without compromising the performance.

C1 = β(α1×1(Ωt−1)) (1)

C2 = β(α3×3(α1×1(Ωt−1))) (2)

C3 = β(α3×3(β(α3×3(α1×1)(Ωt−1)))) (3)

Ωt = α1×1(C1 � C2 � C3)⊕Ωt−1 (4)

Although the encoded feature map Ωt obtained from the encoder module captures
multi-scale features by employing Res-inception units, it cannot capture contextual infor-
mation. As mentioned above, flood segmentation in satellite images is a challenging task
due to inter-class homogeneity and intra-class heterogeneity. This is due to the following
reasons: (1) images are acquired from a distant camera, (2) images contain complex textures
(3) and there is uneven distribution of samples of different classes. To precisely character-



Remote Sens. 2023, 15, 2208 7 of 16

ize different patterns with similar appearances and alleviate semantic ambiguity among
different patterns, it is imperative to consider contextual information [69].

To aggregate rich contextual information, we integrate a pyramid scene parsing net-
work (PSPNet) [7] as a bridge between the encoder and decoder modules. PSPNet is a fully
convolutional network (FCN) [12] that employs sub-region pooling operations of different
scales to capture global context. The structural diagram of bridge network is illustrated
in Figure 3. The bridge module takes feature map Ωt as an input and employs pyramid
pooling operations to obtain pooled maps of different sizes. In this work, we choose the
number of levels of the pyramid to be 4, and consisting of different scales, 1 × 1, 2 × 2,
4 × 4 and 8 × 8. These sub-region pooling operations of different scales divide the feature
map into different sub-regions and obtain a pooled representation for each sub-region.
With this pyramid of pooled operations, the network captures both local and global context.
After each pooling operation, the network employs a convolutional operation of size 1 × 1
to reduce the dimension. The pooled feature maps are up-sampled to the size of feature
map Ωt, and are then concatenated together to generate the final global feature map.

Figure 3. Structural diagram of bridge network.

The final global feature map is then provided as an input to the decoder module. The
decoder module projects the global feature map onto a dense segmentation map, where
each pixel of the map represents a class. The decoder module consists of a hierarchy of
three decoder units, where each decoder unit contains a Res-inception unit and dense
upsampling convolution (DUC) [70]. To recover spatial information and boost the feature
representation, the decoder employs the DUC layer (instead of bilinear interpolation) to up-
sample the feature map and then concatenate the up-sampled feature map with the pooled
version of the corresponding encoder. The concatenation step combines high- and low-
quality feature maps to boost the efficiency of the framework and precisely characterize the
boundaries of different patterns [5]. In the end, the decoder employs a 1 × 1 convolutional
layer followed by a softmax layer to generate the dense segmentation map.

For training the framework, we initialize the weights using the strategy adopted
in [71] and employ stochastic gradient descent with a fixed learning rate. Due to the high
resolution of the satellite images and to minimize the computational load on the GPU, we
use a set of 10 images per batch. We train the network for 100 epochs, and after each epoch
we reshuffle the training set to ensure that each image in the training set is seen only once
by the network during entire training process.

Cross-entropy loss is a commonly used objective function to minimize the pixel loss
for segmentation problems; however, it alone is not suitable in our case. This because
there is considerable variation in the number of pixels of different classes in the flood
dataset. Furthermore, the number of samples per class is also different. This creates a class
imbalance problem which may change the shape of loss function, and the network may
over-represent the bigger class compared to the smaller one. Therefore, we use the hybrid
loss function [55]. This loss function is the linear combination of both cross-entropy loss
and dice-loss as formulated in Equation (5).

Lhybrid = Lcross + Ldice (5)
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where Lcross and Ldice are given by Equations (6) and (7), respectively

Lcross(k, k̂) = − 1
Tc

Tc

∑
n

k ln(k̂) + (1− k) ln(1− k̂) (6)

where k and k̂ are the ground truth label and the predicted label of the pixel, respectively,
and Tc is the total number of classes.

Ldice =
2|Ψg ∩Ψp|
|Ψg|+ |Ψp|

(7)

where Ψg is the annotated mask with each pixel representing the class label and Ψp is the
predicted segmentation mask, where each pixel represents the predicted label.

4. Experiment Results

In this section, we performed extensive evaluation of the proposed framework and
also compared its performance with other reference methods. We evaluated and compared
the performance of different frameworks on the publicly available challenging dataset,
FloodNet. The FloodNet dataset was first proposed by Rahnemoonfar [6], and is the only
comprehensive dataset available currently . The dataset was collected on August 2017 from
the hurricane landfall that took place in Texas and Louisiana. DJI Mavic Pro quadcopters
were used to collect images from the height of 200 feet. The dataset consists of a total of
2343 images. Each image of the dataset covers a spatial resolution of 1.5 cm with pixel
resolution of 4000 × 3000 pixels.

The dataset contains of 9 different classes and contains complex structures and textures.
These classes are labeled as follows: 1→ Building—flooded, 2→ Building—non-flooded,
3→ Road—flooded, 4→ Road—non-flooded, 5→ Vehicle, 6→ Pool, 7→ Tree, 8→Water,
9→ Grass. Sample images and their corresponding ground truth masks are shown in Figure 4.

Figure 4. Sample images of the dataset. First and third row show the sample images, while second
and fourth row represent the ground truth masks.

The distribution of number of images and distribution of number of instances per
class are shown in Figure 5 and Table 1, respectively. From Figure 5 and Table 1, it is
obvious that the distribution of images per class and instances per class is uneven, which
causes a class imbalance problem. The class imbalance problem will lead the network
to become more biased towards the class that contains a larger number of instances. To
avoid this problem, we randomly selected 200 samples from each class and adopted a data
augmentation technique to generate flipped, scaled and shuffled samples of the original
images. It is worth mentioning that the resolution of satellite images is large, which
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increases computational complexity during the training process. To avoid this problem,
we cropped patches of the size 512 × 512 from each sample of the training set and used
this set of those patches for training the network. For training the network, we adopted
the strategy in [6] and used 70% of the data for training, and the remaining 30% was used
for validation.

Figure 5. Distribution of images corresponding to different classes.

Table 1. Number of instances per each class.

Number of Instances Class

3248 Building—flooded
3427 Building—non-flooded
495 Road—flooded
2155 Road—non-flooded
4535 Vehicle
1141 Pool

19,682 Tree
1374 Water

To evaluate the pixel-wise performance of proposed framework, we computed the
precision, recall and F1-score for each class. Precision is formulated as: TP

TP+FP , recall is
formulated as TP

TP+FN , and the F1-score is computed as 2 ∗ Precision∗Recall
Precision+Recall . These evaluation

metrics measure how well the model precisely classifies pixels into different classes. For
computing these evaluation metrics, we computed True Positive (TP), False Positive (FP),
True Negative (TN) and False Negative (FN). TP measures the number of pixels correctly
classified as the given class, FP measures number of incorrectly classified pixels, TN
measures the number of pixels correctly classified as not the given class, while FN measures
the number of pixels incorrectly classified as not the given class. We report the results
in Table 2. It is evident from Table 2 that the proposed framework achieves high precision
and recall values for large and medium patterns, for example, Building—non-flooded,
Road—non-flooded, Water, Tree and Grass. However, the proposed method achieves low
precision and recall values for the Vehicle and Pool classes. This may be attributed to the
fact that the sizes of vehicles and pools are small. The framework utilizes the feature maps
of the last Res-inception unit in the encoder module, which usually leads to the loss of
information about small objects due to subsequent pooling layers.
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Table 2. Pixel-wise performance of proposed method using precision, recall and F1-score.

Precision Recall F1-Score

Building—flooded 0.75 0.71 0.73

Building—non-flooded 0.90 0.94 0.92

Road—flooded 0.82 0.84 0.83

Road—non-flooded 0.92 0.93 0.92

Water 0.94 0.93 0.94

Tree 0.92 0.94 0.93

Vehicle 0.67 0.70 0.69

Pool 0.76 0.69 0.72

Grass 0.94 0.95 0.95

To quantify the performance of the proposed framework and compare its performance
with other reference methods, we used the Jaccard similarity index, also known as In-
tersection Over Union (IoU). The Jaccard similarity index is an evaluation metric widely
used for assessing the performance of segmentation models and is formulated as Ψp∩Psig

Ψp∪Ψg
,

where Ψg is the annotated mask and Ψp is the predicted mask. We computed the Jaccard
similarity index for each class and then computed mean Intersection-over-Union (mIoU) to
summarize the performance of the methods.

For performance comparisons, we chose popular segmentation models, including
U-Net [10], U-Net++ [11], DeepLabv3 [9], FCN [12], ENet [8], SegNet [13], PSPNet [7]
and Tiramisu [14]. These segmentation models achieve superior performance in various
segmentation tasks. We employed pre-trained models of these methods and fine-tuned the
models on the FloodNet dataset. For each method, we computed the Jaccard similarity
index for all classes and also computed the mIoU. The results of the methods, along
with proposed framework, are reported in Table 3. From Table 3, we observe that the
proposed framework outperforms other reference methods by a considerable margin. From
the Table 3, it is observed that FCN achieved a comparatively low performance. This may
be due to the fact that FCN usually lost spatial information during the decoding stage
because of which FCN faces difficulties in detecting small objects such as vehicles and
pools. It is also unable to differentiate between the boundaries of two different patterns.
Furthermore, due to lack of contextual information, FCN is unable to capture inter-class
differences between two different classes such as building—flooded and road—flooded
classes. SegNet, on the other hand, achieved slightly better results than FCN. This is
due to how SegNet, in contrast to FCN, up-samples the feature maps by utilizing the
indices of max-pooling layers saved during the encoding stage. This strategy is useful
to alleviate the problem of insufficient spatial information and also minimizes memory
requirements. However, excessive down-sampling during the encoding stage and lack of
contextual information hurt the performance of SegNet. ENet achieved a good performance
compared to FCN and SegNet. In contrast to SegNet, which overly utilizes down-sampling,
ENet utilizes dilation convolutions to obtain rich contextual information and retain spatial
information. It is worth mentioning that excessive down-sampling leads to the loss of
spatial information such as boundaries and edge information, as well as the details of small
objects. However, down-sampling filters have large receptive fields that may be useful
in capturing the global contextual information and are always useful in differentiating
two different patterns. The proposed framework follows a similar pipeline to that of
U-Net and U-Net++; however, the proposed framework outperforms these models. One
of the reasons for the lower performance of U-Net is that the encoder module of the
network is of limited depth and cannot capture the fine-grained multi-scale information
that is required for semantic segmentation in high resolution satellite images. U-Net++
achieves a performance gain over U-Net by redesigning the skip-connection to obtain fine-
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grained details of foreground patterns by enriching the feature maps of the encoder module
before fusing the feature maps with corresponding feature maps of the decoder module.
PSPNet achieves comparable performance. PSPNet aggregates contextual information from
different regions of the image by employing sub-region pooling operations of different
scales. This model is well-suited for semantic segmentation task in satellite images; however,
the model has limited capability to extract finite features and sometimes ignores semantic
boundary information of different patterns. Compared to reference models, the proposed
model employs Res-inception units in the encoder module to extract multi-scale features,
and integrates a PSPNet as a bridge network to aggregate global contextual information,
which is crucial for differentiating boundaries of different patterns.

We report qualitative comparisons of different methods in Figure 6. The first row of
Figure 6 shows sample input satellite images (randomly sampled from test set). The second
column represents the ground truth annotation, while the remaining columns display the
output of different methods. From Figure 6, it is obvious that the proposed framework
obtains results close to the ground truth. The performance of SegNet is relatively lower
than the other competing methods. PSPNet, on the other hand, produces comparable
results; however, PSPNet faces challenges in identifying small objects, for example vehicles.

Table 3. Comparison of different methods using Jaccard index and mIoU. BF: Building—flooded,
BnF: Building—non-flooded, RF: Road—flooded, RnF: Road—non-flooded, W: Water, T: Tree, V:
Vehicle, P: Pool, G: Grass.

Method BF BnF RF RnF W T V P G mIoU

U-Net 21.83 69.49 23.84 72.45 63.62 70.19 21.48 37.52 77.16 50.84

DeepLabv3+ 28.1 78.1 32 81.1 73 74.5 33.6 40 87.1 58.61

FCN 18.75 28.42 20.64 37.84 42.01 40.95 19.24 22.94 52.49 31.48

U-Net++ 24.34 71.46 27.61 74.96 69.78 72.6 25.16 38.64 80.75 53.92

ENet 21.82 41.41 14.76 52.53 47.14 62.56 26.21 16.57 75.57 39.84

SegNet 17.82 38.54 10.81 48.76 34.97 55.23 19.32 21.53 68.74 35.08

PSPNet 65.61 90.92 78.69 90.9 91.25 89.17 54.83 66.37 95.45 80.35

Tiramisu 31.53 75.68 24.72 78.61 72.85 74.97 23.74 40.18 84.62 56.32

Proposed 72.71 91.27 84.62 92.34 93.64 93.72 67.82 71.49 94.86 84.72
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Figure 6. Qualitative comparison of different methods for flood segmentation.

5. Conclusions

In this work, we proposed a novel framework for flood segmentation in high resolution
satellite images. We observed that multi-scale features and learning global context are
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crucial for flood segmentation in satellite images. The proposed framework addressed
these problems by introducing a Res-inception unit in the encoder and decoder modules
and utilizes PSPNet as a bridge module. Although the framework follows a similar pipeline
as that of U-Net, it achieves better performance, enhances global context awareness and
reduces the loss of multi-scale features. The encoder module extracts multi-scale features by
incorporating Res-inception units, while the decoder recovers the spatial information lost
during the down-sampling operations in the encoder module. The framework effectively
integrates a bridge module between the encoder and decoder modules which enhances
the global contextual intelligence. The framework was evaluated on the publicly available
benchmark dataset, FloodNet. From the experiment results, we show the effectiveness of
the proposed framework, and demonstrate that the proposed framework achieves superior
results compared to the reference methods.

Despite achieving good performance, the framework also suffers from some limita-
tions. Inclusion of Res-inception units in encoder and decoder modules, and integration
of a bridge module increase the complexity of the framework. Furthermore, too many
parameters increase the training time. To remedy these issues, the proposed framework
needs to be optimized, which is an iterative process and involves extensive experimenta-
tion of trying different combinations of optimization algorithms, learning rates, weight
initialization techniques, regularization methods, hyperparameters and careful tuning of
these parameters to achieve optimal results without compromising the performance of the
proposed framework.
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