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Abstract: Underwater gravity gradient detection techniques are conducive to ensuring the safety of
submersible sailing. In order to improve the accuracy of underwater obstacle detection based on
gravity gradient detection technology, this paper studies the gravity gradient underwater obstacle
detection method based on the combined support vector regression (SVR) algorithm. First, the gravity
gradient difference ratio (GGDR) equation, which is only related to the obstacle’s position, is obtained
based on the gravity gradient equation by using the difference and ratio methods. Aiming at solving
the shortcomings of the GGDR equation based on Newton–Raphson method (NRM), combined
with SVR algorithm, a novel SVR–gravity gradient joint method (SGJM) is proposed. Second, the
differential ratio dataset is constructed by simulating the gravity gradient data generated by obstacles,
and the obstacle location model is trained using SVR. Four measuring lines were selected to verify
the SVR-based positioning model. The verification results show that the mean absolute error of
the new method in the x, y, and z directions is less than 5.39 m, the root-mean-square error is less
than 7.58 m, and the relative error is less than 4% at a distance of less than 500 m. These evaluation
metrics validate the reliability of the novel SGJM-based detection of underwater obstacles. Third,
comparative experiments based on the novel SGJM and traditional NRM were carried out. The
experimental results show that the positioning accuracy of x and z directions in the obstacle’s position
calculation based on the novel SGJM is improved by 88% and 85%, respectively.

Keywords: SVR–gravity gradient joint method; underwater obstacle detection accuracy; gravity
gradient difference ratio; Newton–Raphson method; higher order nonlinear equations

1. Introduction

Underwater submersibles have been widely used in defense and scientific fields, such
as underwater operations, marine research and mineral exploration, due to their ability
to be concealed and high mobility [1,2]. For the smooth implementation of military and
civilian technology, it is very necessary to ensure the safety of the underwater navigation of
submersibles [3]. However, since the beginning of the 20th century, there have been nearly
500 accidents involving submersibles, of which about 20% were collision–sinking accidents,
and these caused 84 submersibles to sink to the bottom of the sea [4]. Due to the complexity
of the seabed environment, the imperfection of existing detection methods is one of the
important reasons for the occurrence of many underwater accidents. In order to maintain
concealment, submarines usually do not use active detection methods such as active sonar.
As a result, it is difficult for the submarine to discover unexpected obstacles, causing
collision accidents. Therefore, developing real-time, accurate, and passive underwater
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obstacle detection technology is crucial to ensure the safety of the underwater navigation
of submersibles [5].

Underwater obstacle detection is an important part of underwater safety navigation;
underwater obstacle detection technology uses acoustic signals, optical signals, electromag-
netic signals, and gravity gradient signals for underwater obstacle detection [6]. The acoustic
signal method mainly records the propagation time and phase difference of acoustic signals
through sonar detection to estimate the azimuth and distance of underwater obstacles, which
has the advantages of a large working range and is not affected by water turbidity. However,
the acoustic signal method actively emits signals outward, resulting in the exposure of the
submersible’s own position, which limits the practical application of the acoustic signal
method [7]. The optical signal method obtains environmental information by receiving
light from the surrounding environment with a high resolution and refresh rate. However,
underwater light conditions (such as light absorption and scattering) are complex, and the
detection range of optical signal methods is limited [8]. The electromagnetic sensor method
can be applied in the underwater environment to achieve the estimation of underwater
distance [9]. However, ambient electromagnetic fields can interfere with measurement accu-
racy [10]. The abovementioned underwater obstacle detection technologies have their own
advantages and disadvantages, and researchers need to combine a variety of underwater
detection technologies to complete various underwater obstacle detection tasks in practice.
Based on this, as a passive detection method, the gravity gradient signal method has the
characteristics of high sensitivity, can be concealed and can used in all weather types and
in real time, which meets the requirements of the safe navigation of submersibles under
concealed conditions and has an important application value [11–13].

Gravitational gradients reflect subtle changes in the gravitational field, and for high-
density objects, accurate mass estimates can be made by measuring the gravitational gradient
they cause [14]. Wu et al. [15–17] proposed an automatic full-tensor gravity gradient algo-
rithm to estimate the mass, direction, and distance of underwater obstacles. Cheng et al. [18]
combined gravity and gravity gradient information to detect the position and density of
obstacles and concluded that the relative error of obstacle detection is within 5% under the
condition that the accuracy of the gravimeter is 10−2 mGal and the accuracy of the gravimeter
is 10−4 E. Wu and Cheng proposed that the method is feasible if the gravity gradient reference
map in the detection area is known. Aiming at the obstacle detection problem in unknown
sea areas (such as missing gravity gradient reference map or insufficient resolution). Yan
et al. [19,20] proposed a gravity gradient difference ratio method without a gravity gradient
reference map, which established a gravity gradient difference ratio (GGDR) equation only
related to the obstacle’s position and used the Newton–Raphson method (NRM) to solve
GGDR equation to obtain the obstacle’s position. However, if the initial value selected is
not suitable when one is using NRM to solve the GGDR equation, the calculation result
will not converge, and the detection accuracy will not be high. Nowadays, many articles
focus on developing new submersibles and applying the regression surrogate model to solve
some submersible problems. Chen et al. [21,22] were the first to apply machine learning algo-
rithm to submersible fluid mechanics calculation and proposed the integration of multiple
surrogate models, which improved the robustness of the model.

Different from previous research, this paper combines the characteristics of the gravity
gradient difference ratio method and the characteristics of the SVR algorithm to propose a
novel SVR–gravity gradient joint method (SGJM). The novel SGJM uses the gravity gradient
difference ratio method to convert the obstacle detection problem into a higher order
nonlinear equation solving problem, and then solves the higher order nonlinear equation
using an SVR algorithm to determine the location of underwater obstacles. Firstly, the gravity
gradient differential ratio data generated by simulated obstacles are calculated by the gravity
gradient difference ratio method, and the differential ratio dataset is constructed by using
the gravity gradient difference ratio data and the corresponding obstacle locations as the
input and output, respectively. Then, based on the differential ratio dataset, the SVR obstacle
localization model is trained, tested, and verified for reliability. Finally, the underwater
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obstacle’s positioning results of SGJM and NRM are compared in the same experimental
environment, which verifies the improvement of obstacle’s positioning accuracy of SGJM
in this paper. The novel SGJM ingeniously combines the gravity gradient with machine
learning, which simplifies the conditions required for obstacle detection and improves the
detection accuracy, and thus, it is a simple and practical method.

2. Methods

Earth is an irregularly shaped ellipsoid with uneven density distribution of its surface
areas, resulting in differences in gravitational gradients throughout [23]. For example, the
gravitational vertical gradient can be divided into two main parts: one part is the normal
gravitational vertical gradient, assuming that it is caused by a rotating ellipsoid with uniform
density distribution; the other part is the gravitational vertical gradient anomaly, which is
caused by the difference between the gravitational vertical gradient and the normal gravi-
tational vertical gradient caused by Earth. Similarly, the density of underwater obstacles
and the surrounding environment will cause differences in gravity gradients, which include
information such as the location and mass of underwater obstacles [24]. Therefore, under the
condition that the accuracy of the gravity gradiometer is high enough, it is feasible to detect
underwater obstacles by analyzing the gravity gradient caused by underwater obstacles.

2.1. Gravity Gradient Difference Ratio Method

The gravity gradient difference ratio method transforms obstacle detection problems
into higher order nonlinear equation solving problems [20]. Suppose there is an obstacle
with a uniform density distribution and a submersible carrying a gravity gradiometer in a
seawater environment. The Cartesian coordinate system (right-handed system) is used to
establish the obstacle at the origin of the center, and the x-axis is parallel to the submersible
motion route and takes the submersible motion direction as the positive direction. Then,
the center of mass coordinate of the obstacle in the Cartesian coordinate system is O(0, 0, 0),
and the coordinate of the submersible position is P(x, y, z) (the coordinates of the gravity
gradiometer measurement are relative to the obstruction material center, reflecting the
position of the obstacle). The t time gravitational gradient recorded by the submersible at
point P can be described as [24]:

To(t) ≈



To(t)xx

To(t)yy
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To(t)xy

To(t)xz

To(t)yz
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+


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2)
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−5(3yt

2 − rt
2)
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−5(3zt
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2)
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+ Tn (1)

where To is the gravity gradient caused by the obstacle, To(t)D is the component of the
gravity gradient caused by the obstacle in the D = xx, yy, zz, xy, xz, yz direction, Tn is the
underwater environmental noise, Tn(t)

D is the value of underwater environmental noise in
the D = xx, yy, zz, xy, xz, yz direction, G is the universal gravitational constant, m is the
mass of the obstacle, (xt, yt, zt) is the coordinates at point P of the submersible position at the

time of the t time measurement, and rt =
√

x2
t + y2

t + z2
t is the distance from the submersible

position P point to the O point of the obstacle’s center at the t time measurement.
If two gravity gradient data are recorded in a short period of time during underwa-

ter navigation of the submersible, it can be considered that the difference between the
two gravity gradient data is mainly caused by the relative change in position that occurs be-
tween the submersible and the underwater obstacle [24]. Therefore, the difference between
the two adjacent gravity gradient data can eliminate underwater environmental noise Tn,
thereby isolating the submersible and obstacles from the surrounding environment. The
gravity gradient difference ∆T is calculated as follows:
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∆T(t) = To(t+1) − To(t)

=


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(2)

where ∆T(t)
D (D = xx, yy, zz, xy, xz, yz) is the component of the gravity gradient difference

in the D direction.
From Equation (2), the gravity gradient difference ∆T still contains the mass of the

obstacle after eliminating the ambient noise. Because the quality of the obstacle cannot
be determined in advance, the influence of the quality of the obstacle can be eliminated
by ratio, and the two gravity gradient difference data are divided to obtain the gravity
gradient difference ratio function [20], which is only related to the position of the obstacle:
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(3)

where r∆T is gravity gradient difference ratio, and r∆T(t)
D (D = xx, yy, zz, xy, xz, yz) is the

component of the gravity gradient difference ratio in the D direction.
Equation (3) is further expanded into the integral form, and the gravity gradient differ-

ence ratio integral function, which is only related to the position of the obstacle, is obtained:
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(4)
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where the integral area of the integral function is the space surrounded by the out-
line of the obstacle; (a, b, c) is the product element coordinate of the obstacle object;

rt =
√
(xt − a)2 + (yt − b)2 + (zt − c)2; if ∆s is the gravity gradient recording distance

interval, then xt+1 = xt + ∆s, yt = yt+1, and zt = zt+1.
Equation (4) is converted to the following:
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= 0 (5)

Equation (5) is a high-order nonlinear equation. Traditional NRM is generally used
to solve higher order nonlinear equations. However, as NRM is an iterative algorithm,
the selection of initial values is very important, and inappropriate initial values will lead
to nonconvergence of the calculation results and a low detection accuracy. Therefore, in
order to improve the accuracy of obstacle detection, the SVR algorithm is used to solve the
GGDR equation.

2.2. Support Vector Regression

The SVR algorithm is a machine learning algorithm that was proposed by Vapnik et al. [25]
in the 1990s, which is used to solve regression problems. The SVR algorithm takes structural
risk minimization as the basic idea of machine learning, and compared with the traditional
statistical theory, this algorithm specializes in the statistical law of machine learning in
the case of small samples [26]. In addition, the SVR algorithm is able to approximate the
solution of higher order nonlinear equations. Thus, SVR was chosen as a surrogate model in
this study [27]. As shown in Figure 1, the idea of the SVR algorithm is to find a hyperplane
so that as many points as possible are concentrated in a space that is as small as possible on
both sides of the hyperplane.

Given a dataset A = {mi}n
i (where mi represents the 6-dimensional input vector,

i = 1, 2, · · · n, n is the length of the dataset), the nonlinear kernel function is mapped to
the high-dimensional feature space to complete linear regression. In the high-dimensional
feature space, the SVR algorithm uses the following approximation function [28]:

h = f (m) = ωφ(m) + l (6)

where φ(m) represents the high-dimensional feature space of the input vector, m, for
nonlinear mapping. The weight factor ω and constant l are solved with the optimization
model of the optimal regression function [28]:
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Minimize : 1
2‖ω‖

2 + C
n
∑

i=1
(ξi + ξ∗i ), C > 0

Subjectto :


hi − (ωφ(mi) + li) ≤ ε + ξi
(ωφ(mi) + li)− hi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0

(7)

where C is the penalty factor for balancing empirical risk and model flatness, ξi and ξ∗i are
relaxation variables that constrain the output of the system, and ε is the tube size constant [29].

Equation (7) is a convex optimization problem, which can be solved by the Lagrange
multiplier method. The Lagrange multiplier is introduced, and the regression function of
SVR algorithm is calculated as follows [30]:

f (m) =
n

∑
i=1

(λi, λ∗i )K(m, mi) + l (8)

where λi and λ∗i are Lagrange multipliers, λi ≥ 0, λ∗i ≥ 0, i = 1, 2, · · · n. K(m, mi) is a kernel
function, K(m, mi) = φ(m)T × φ(mi).
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Kernel functions help researchers to deal with feature spaces of any dimension without
explicitly calculating mapping, φ(m). Any function that satisfies the Mercer condition can
be used as a kernel function [31]. Table 1 describes the categories and expressions of several
commonly used kernel functions [32]:

Table 1. General kernel function types and expressions.

Type Equation

Linear K(mi, mj) = mi
Tmj

Polynomial K(mi, mj) = (γmi
Tmj + η)

d, γ > 0
Radial basis function (RBF) K(mi, mj) = exp(−γ

∣∣∣∣∣∣mi −mj

∣∣∣∣∣∣2), γ > 0
Sigmoid K(mi, mj) = tanh(γmi

Tmj + η)

where γ, η, and d are kernel parameters.

The kernel parameters are manually set, and when the parameters are determined, it
means that the kernel function is determined. The parameter selection of the kernel function
directly affects the prediction accuracy of SVR [33]. The selection of kernel parameters should
be cautiously performed because it implicitly defines the structure of high-dimensional
feature space, thus controlling the complexity of the final solution [34]. In this paper, RBF is
used as the kernel function of the SVR algorithm.
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As a machine learning algorithm, the SVR algorithm is a supervised learning al-
gorithm that regresses the target samples according to the current sample information.
SVR implicitly expresses the mathematical relationship between the input vector and
output value.

2.3. SVR–Gravity Gradient Joint Method

From the analysis in Section 2.1, the mathematical relationship between the gravity
gradient difference ratio and the position of the obstacle is established by the GGDR
equation, and the obstacle detection problem is transformed into the problem of solving
higher order nonlinear equations [20]. From the analysis in Section 2.2, it can be seen that
the SVR algorithm simplifies the mathematical relationship between the gravity gradient
difference ratio and the position of the obstacle to some extent [35], and it can better
approach the solution of the equation for higher order nonlinear equations [27]. Therefore,
this paper combines the characteristics of the gravity gradient difference ratio method and
the SVR algorithm and proposes the novel SVR–gravity gradient joint method (SGJM).

In the composition of SGJM, the simulated gravity gradient data are transformed into
a gravity gradient difference ratio by Equation (3). Then, the gravity gradient difference
ratio and the position of obstacles are used as the input and output of the SVR algorithm,
respectively, to construct the difference ratio dataset, and the SVR obstacle location model
is obtained by training. Finally, the location model is used to solve the GGDR equation and
evaluate the positioning accuracy. As shown in Figure 2, the novel SGJM consists of three
parts: data simulation, positioning model training, and accuracy evaluation.
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In SVR obstacle location model training, this paper uses the grid search method [36]
and the 5-fold cross-validation method [37] to optimize the SVR regression model, and the
super parameters are penalty parameter, C, kernel function coefficient, γ, and tube size, ε.

The result of obstacle location is compared with the real position of the obstacle, and
the reliability of underwater obstacle location based on SGJM is evaluated by mean absolute
error (MAE), root-mean-square error (RMSE), coefficient of determination (R2), relative
error (RE), and signal-to-noise ratio (SNR). The smaller the MAE and RMSE are, the closer
the result is to the real value. The closer R2 is to 1, the higher the fitting degree of the SVR
regression model is. The relative error reflects the credibility of the measurement, and the
smaller the RE is, the higher the credibility is. The signal-to-noise ratio reflects the influence
of noise in the signal, and the larger the SNR is, the smaller the noise is. The corresponding
definition is [38–41]:

MAE =
1
n

k

∑
i=1
|gi − hi| (9)
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RMSE =

√√√√ 1
n

k

∑
i=1

(gi − hi)
2 (10)

R2 = 1− SSE
SST

(11)

RE =

∣∣∣∣ gi − hi
gi

∣∣∣∣ (12)

SNR = log 10(S/N) (13)

where gi is the true value of the obstacle coordinates, hi is the calculated value of the
obstacle coordinates, i = 1, 2, · · · k, k is the length of the test set, SSE is the square sum of
the residuals, SST is the total square sum, S is the gravity gradient signal power, and N is
the noise power.

3. Novel SGJM Verification

The reliability of the novel SGJM is verified by simulation experiment. First, the
gravity gradient anomaly caused by obstacles is simulated and converted into the gravity
gradient difference ratio to construct the difference ratio dataset for the training of the SVR
algorithm. Second, the SVR obstacle location model is trained. Finally, four measuring
lines are designed, and the gravity gradient data on the simulated lines are input into the
SVR positioning model to verify the positioning reliability of SGJM.

3.1. Data Simulation

Using protruding rocks on the seabed as reference objects to construct simulated obsta-
cles, a size equivalent to the length of a large submersible and regular-shaped obstacles are
selected for the ease of calculation. The simulated obstacle is constructed. The simulated
obstacle is a solid cube prism with 50 m × 50 m × 50 m, and the density distribution is
uniform and set to σ = 2.7 t/m3, as shown in Figure 3. (This article does not consider the im-
pact of errors caused by uniform density, which will be discussed in the team’s subsequent
research.) The gravity gradient data simulation area range is 1000 m × 1000 m × 200 m, the
centroid of the model is located in the vertical projection center of the data simulation area,
and the data simulation point parameters are shown in Table 2. Each point can separately
generate a set of gravity gradient difference ratio data according to Equation (4). Here, the
sensitivity of the gravity gradiometer is assumed to be 10−5 E. Therefore, environmental
noise with a root-mean-square error of 10−5 E is added to the initial simulated gravity
gradient data to verify the reliability of the novel SGJM. Simulated data with noise are used
to train and verify the regression model.
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Table 2. Data simulation point coordinate parameters.

Axis Start/m End/m Step/m Heart 1/m

x −500 500 10 0
y −500 500 10 0
z 0 200 10 0

1 Obstacle material heart.

Combined with Equation (1), the gravity gradient distribution caused by the simulated
obstacle (cube prism) in the z = 100 m plane is obtained, as shown in Figure 4. The gravity
gradient caused by the simulated obstacle at the level of 100 m above it shows a very
regular distribution and different trends for different gravity gradient components. The
maximum value of gravity gradient anomaly is 44.5 E, the minimum value is −22.3 E, the
mean value is −6 × 10−8 E, and the resolution is 10 m × 10 m. When the submersible
vehicle sails along the direction parallel to the x-axis toward the obstacle, the coordinate
of the submersible vehicle is always negative relative to the x direction of the obstacle.
Therefore, it is only necessary to establish the relationship between the gravity gradient
characteristics of the obstacle in the negative direction of the x-axis and the position of the
obstacle. Assuming that the obstacle is located on the left side of the forward direction of
the submersible, the gravity gradient difference ratio data generated by the points in Table 2,
in the range of x ∈ [−500,−130], y ∈ [−200,−10], and z ∈ [10, 200], are selected as the
data of the reliability verification experiment. As shown in Figure 4, the area surrounded
by the dotted line is the selected area in the experiment.
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In order to understand the relationship more intuitively between the detection accu-
racy and the detection distance of the gravity gradiometer, the relationship between the
gravity vertical gradient accuracy and the detection distance is obtained by calculating
and simulating the gravity vertical gradient produced by the obstacle on different straight
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line distances, as shown in Figure 5. According to Figure 5b, the underwater obstacle
detection method based on gravity gradient can detect underwater obstacles within a
straight line distance of 700 m when the accuracy of the gravity gradiometer is 10−2 E,
underwater obstacles within a straight line distance of 1200 m when the accuracy of the
gravity gradiometer is 10−3 E, and underwater obstacles within a straight line distance
of 1700 m when the accuracy of the gravity gradiometer is 10−4 E. Therefore, the gravity
gradient data caused by simulated obstacles with the accuracy of 10−5 E meet the accuracy
requirements of underwater obstacle detection method based on gravity gradient to detect
obstacles within a straight line distance of 700 m.
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The simulated gravity gradient data are transformed into the gravity gradient differ-
ence ratio with Equation (3). The gravity gradient difference ratio is used as the input,
and the corresponding obstacle’s position is used as the output to construct the difference
ratio dataset to prepare for SVR obstacle location model training in the following step.
The sample size of the difference ratio dataset is 15,200, and each sample contains six
features (the component of the gravity gradient in the D = xx, yy, zz, xy, xz, yz direction)
and three expected values (x, y, z). The construction method of differential ratio dataset
for positioning model training is shown in Figure 6. In the first step, the full tensor gravity
gradient anomaly caused by obstacles is calculated and simulated by Equation (1), and
the environmental noise with root-mean-square error of 10−5 E is added. The second step
is to calculate the gravity gradient difference ratio, r∆T, input the gravity gradient data
into Equation (3), and output the gravity gradient difference ratio, which correspond to
the calculated point coordinates. In the third step, the difference ratio dataset is divided
into three datasets according to different coordinate components, and r∆T is combined
with x, y, and z, respectively, to obtain dataset 1 (for training the model positioned in the x
direction), dataset 2 (for training the model positioned in the y direction), and dataset 3 (for
training the model positioned in the z direction).

3.2. Verification of SVR Positioning Model

The reliability of underwater obstacle detection based on the novel SGJM is verified
by simulation experiments. Four lines are designed according to whether the underwater
obstacle is on the forward path or not, and the gravity gradient difference ratio generated
on the four lines is used as the input vector. The obstacle location was obtained by the SVR
positioning model (containing three positioning models in the x direction, y direction, and
z direction), and then the reliability of the novel SGJM was verified by comparing the true
value of the obstacle’s location and the calculated value.
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3.2.1. Data Preprocessing

In the process of data simulation, the gravity gradient value spans several orders
of magnitude, and the quotient of the difference between large order and small order
gravity gradients will lead to outliers in the calculation results of gravity gradient difference
ratio. Outliers will have a negative impact on the regression results of the SVR positioning
model [42]. In order to produce a better training model, it is necessary to control the data
in a stable interval. First of all, the gravity gradient difference ratio data are analyzed, and
the initial threshold is selected to eliminate the large outliers for the first time; then, the
absolute median deviation algorithm (MAD) is used to determine the outliers by judging
whether the deviation of each element and the median is within a reasonable range, and then
eliminate the outliers. The specific calculation formula of the median deviation algorithm is
as follows [43]:

MAD = median|r∆Ti −median|r∆T|| (14)

where median(Ψ) is the median of all the elements in Ψ.
The data are adjusted through MAD as follows:

r∆Ti
′ =

{
r∆Ti, median|r∆T| − νMAD ≤ r∆Ti ≤ median|r∆T|+ νMAD
∅, others

(15)

where ν is the parameter, the value of which in this paper is three. This value is an empirical
value, which means a median deviation of three times [44].

The differential ratio dataset is divided into a training set, a verification set, and a test set.
The training set is used to train the parameters in the SVR positioning model; the verification
set is usually used to adjust the hyperparameters, which has the best performance according
to the performance of several groups of models on the verification set; the test set is used to
evaluate the generalization ability of the model. In this paper, the data of four lines in the
differential ratio dataset are extracted as the test set, 80% of the data is randomly extracted
as the training set, and the remaining 20% is used as the verification set.

3.2.2. Experimental Parameter Setting

The submersible vehicle will collide or not collide underwater. In this paper, four
measuring lines are designed, named as Line 1, Line 2, Line 3, and Line 4, and the obstacles
are in the direction of Line 3. Assuming that there are no other high-density objects in the
environment of the submersible vehicle and the obstacle, the submersible vehicle moves
in the x direction at a speed of 10 m/s, and the built-in gravity gradiometer records data
once a second. In Figure 7, the solid line is Line 1, and the initial position coordinates of the



Remote Sens. 2023, 15, 2188 12 of 19

submersible are (500,−60, 60); the dotted line is Line 2, and the initial position coordinates
of the submersible are (500,−20, 100); the rhomboid line is Line 3, and the initial position
coordinates of the submersible are (500,−20, 20); the triangular line is Line 4, and the initial
position coordinates of the submersible are (500,−100, 20); the cube is the obstacle.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 20 
 

 

and the initial position coordinates of the submersible are  ， ，500 100 20 ; the cube is the 

obstacle. 

 

Figure 7. Schemes follow the same format. 

3.2.3. Results and Analysis 

The gravity gradient difference ratio data of the four lines are input into the SVR 

obstacle location model in turn to obtain the calculation results of the obstacle’s position. 

The MEA and RMSE of the positioning error are obtained by counting the calculated value 

and true value of the obstacle’s position, as shown in Table 3. R2 of the x direction posi-

tioning model of the four lines is 0.993~0.999, which proves that the fi�ing degree of the 

positioning model is high. Because there is no change in the coordinates of the y direction 

and z direction in each line, it is impossible to calculate the coefficient of determination of 

the positioning model in the y direction and the z direction. The three direction positioning 

errors of each measuring line detecting obstacles are shown in Figure 8, and the SNR and 

RE are shown in Figure 9. 

Table 3. Results of obstacle’s location. 

Direction 
Line 1 Line 2 Line 3 Line 4 

MAE/m RMSE/m MAE/m RMSE/m MAE/m RMSE/m MAE/m RMSE/m 

x 1.34 1.63 2.52 6.97 1.96 2.92 2.34 4.42 

y 2.37 2.84 5.39 7.58 2.69 3.67 1.43 1.80 

z 0.94 1.13 0.71 0.99 1.92 3.09 3.39 4.80 

Figure 7. Schemes follow the same format.

3.2.3. Results and Analysis

The gravity gradient difference ratio data of the four lines are input into the SVR
obstacle location model in turn to obtain the calculation results of the obstacle’s position.
The MEA and RMSE of the positioning error are obtained by counting the calculated
value and true value of the obstacle’s position, as shown in Table 3. R2 of the x direction
positioning model of the four lines is 0.993~0.999, which proves that the fitting degree of the
positioning model is high. Because there is no change in the coordinates of the y direction
and z direction in each line, it is impossible to calculate the coefficient of determination of
the positioning model in the y direction and the z direction. The three direction positioning
errors of each measuring line detecting obstacles are shown in Figure 8, and the SNR and
RE are shown in Figure 9.

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 20 
 

 

 

Figure 8. Error distribution of positioning results. 

 

Figure 9. Variation in ER and SNR with distance. 

According to Table 3, the MEA of the underwater obstacle detection results of Lines 

1~4 is about 2.25 m, and the MEA range is 0.71~5.39 m. Among them, the maximum value 

of MAE in x direction is 2.52 m, and the minimum value is 1.34 m; the maximum value of 

MAE in y direction is 5.39 m, and the minimum value is 1.43 m; the maximum value of 

MAE in z direction is 3.39 m, and the minimum value is 0.71 m. The RMSE of Lines 1~4 

for underwater obstacle detection is about 3.48 m, and the range is 0.99~7.58 m. According 

to [45], the MAE of the traditional acoustic underwater positioning algorithm is 7.05 m. 

Figure 8. Error distribution of positioning results.



Remote Sens. 2023, 15, 2188 13 of 19

Table 3. Results of obstacle’s location.

Direction
Line 1 Line 2 Line 3 Line 4

MAE/m RMSE/m MAE/m RMSE/m MAE/m RMSE/m MAE/m RMSE/m

x 1.34 1.63 2.52 6.97 1.96 2.92 2.34 4.42
y 2.37 2.84 5.39 7.58 2.69 3.67 1.43 1.80
z 0.94 1.13 0.71 0.99 1.92 3.09 3.39 4.80
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According to Table 3, the MEA of the underwater obstacle detection results of Lines
1~4 is about 2.25 m, and the MEA range is 0.71~5.39 m. Among them, the maximum value
of MAE in x direction is 2.52 m, and the minimum value is 1.34 m; the maximum value of
MAE in y direction is 5.39 m, and the minimum value is 1.43 m; the maximum value of
MAE in z direction is 3.39 m, and the minimum value is 0.71 m. The RMSE of Lines 1~4 for
underwater obstacle detection is about 3.48 m, and the range is 0.99~7.58 m. According
to [45], the MAE of the traditional acoustic underwater positioning algorithm is 7.05 m.
Therefore, the positioning accuracy of the novel SGJM is better than that of the traditional
underwater positioning methods.

According to Figure 8, detection errors in the x, y, and z directions in Lines 1~4 are
mostly −5~5 m. According to Figure 8a–d, the positioning effect of measuring Lines 1~2 is
better in the x direction and the z direction; according to Figure 8g,h, the positioning effect
of measuring Line 4 in the y direction is better; according to Figure 8e,f, the positioning
result of measuring Line 3 is relatively poor compared with those of Lines 1, 2, and 4,
but the positioning error is still within the size range of obstacles, and it can still locate
obstacles accurately. Therefore, the positioning results of Figure 8 prove the effectiveness
and reliability of the novel SGJM.

According to Figure 9a–d, the RE of underwater obstacle location errors in the x
direction of Lines 1~4, the z direction of Lines 1~2, and the y direction of Line 4 are less
than 4% when the distance is less than 500 m, and the RE of underwater obstacle location
error in the y direction of Line 1 is less than 8% when the distance is less than 500 m. The
RE in other directions is unstable, and the maximum RE is 24.6%. According to Figure 9e–h,



Remote Sens. 2023, 15, 2188 14 of 19

with the increase in distance, the SNR decreases, and the influence of environmental noise
increases. Table 4 shows the RE averages of the x, y, and z directions in Lines 1~4.

Table 4. Average relative error.

Line 1 Line 2 Line 3 Line 4

x 0.43% 0.42% 0.52% 0.49%
y 3.96% 13.89% 11.0% 1.43%
z 1.57% 0.71% 7.01% 11.29%

According to Table 4, there are differences in the positioning accuracy among different
measuring lines, and the reason for the differences is the different positions of measuring
lines. Because the position of Line 3 in the SVR obstacle location model is closer to the
boundary of the differential ratio dataset used for training, the fitting effect is not as strong
as that of Line 1, which is close to the simulated data center; the y direction of Line 2
and the z direction of Line 4 are also close to the boundary of the dataset, and the data
imbalance leads to relatively poor positioning results in the corresponding direction. The
reason for the large RE in some directions in Lines 2~4 is that the true values of y and z are
small, which leads to the large RE. A large relative error does not necessarily mean poor
positioning results in the y and z directions. According to MAE, the positioning results in
the y and z directions are comparable to those in the x direction. The optimal application
range of the novel SGJM is between 20 m and 500 m.

4. Application

The novel SGJM is applied to an underwater obstacle detection task, and the traditional
NRM [20] is used as a comparison to prove that SGJM has better detection accuracy. The
simulation experiment is established, and the underwater obstacle is a cuboid prism of
80 m × 40 m × 20 m with a density of 2.7 t/m3. Taking the center of the obstacle matter as
the coordinate origin, the Cartesian coordinate system (right-handed system) is established.
The motion direction of the submersible is parallel to the positive direction of the x-axis, the
coordinates of the starting point are (400, 70,−60), and the velocity is 10 m/s. The gravity
gradiometer records data once a second. The environmental noise with RMSE of 10−5 E
is added to the simulated gravity gradient data, and a total of 23 sets of gravity gradient
differential ratio data are obtained.

In this experiment, 23 simulated localizations were performed, and after statistical
analysis, the MAE, RMSE, and standard deviation (STD) of the localization results were
obtained, and the results are shown in Table 5. t-test was carried out based on the normal
distribution, and the difference level of positioning error between SGJM and NRM was
obtained, as shown in Table 6. The positioning error of the novel SGJM is shown in Figure 10.
The positioning error of the traditional NRM is shown in Figure 11. The SNR of SGJM and
NRM is shown in Figure 12a, and the RE comparison is shown in Figures 12b and 13.

Table 5. MAE and RMSE with different methods.

Direction
SGJM NRM

MAE/m RMSE/m STD/m MAE/m RMSE/m STD/m

x 0.94 1.29 1.31 7.93 8.91 8.95
y 1.02 1.51 1.55 1.09 1.35 1.37
z 0.60 0.92 0.92 4.25 7.33 7.23

Table 6. Result of independent 2-sample t-test.

x y z

t 0.78 0.20 2.08
α 0.5 >0.5 0.05
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Figure 10. The SGJM positioning result error: (a) Positioning error in x and y directions; (b) z-directional
positioning error.
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Figure 11. The NRM positioning result error: (a) Positioning error in x and y directions; (b) z-directional
positioning error.
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Figure 13. Comparison of RE between NRM and SGJM.

According to Table 5, both MAE and RMSE of SGJM are smaller than NRM is, the MAE
and RMSE of SGJM in the y direction are slightly better than NRM is, and the MAE and
RMSE of SGJM in the x direction and z direction are obviously better than those of NRM.
Among them, the precision in the x direction has been improved by 88%, the precision
in the y direction has been improved by 6%, and the precision in the z direction has been
improved by 85%. The improvement of positioning accuracy in the y direction is lower
because the positioning accuracy of NRM in the y direction is higher.

According to Table 6, the positioning accuracy of SGJM is better than that of NRM
in x and z directions. There is no significant difference in the positioning results in the
y direction.

According to Figures 10 and 11, the positioning error of SGJM is obviously better
than that of NRM. The positioning error of SGJM increases with the increase in distance,
but it is still within the range of −4~4 m. According to Figure 12a, with the increase in
distance, the SNR decreases, and the influence of environmental noise increases. According
to Figures 12b and 13, the RE of NRM is less than 6% when the distance is less than 360 m;
the RE is less than 4% when the distance of SGJM is less than 410 m, and the RE is less
than 2% when the distance is less than 290 m. The obstacle location accuracy of SGJM is
higher than that of NRM.

In summary, the average MEA of the obstacle localization results obtained by the novel
SGJM is only about 1/5 of that of NRM. The relative error of SGJM is less than 4%, which is
better than 6% of NRM. Therefore, the novel SGJM effectively improves the positioning
accuracy of the traditional NRM.

5. Conclusions

The detection of underwater obstacles based on the gravity gradient is studied in this
paper. A novel combined SVR–gravity gradient method (SGJM) is proposed to locate the
abnormal obstacles in the range of 150~450 m. The underwater navigation concealment and
the safety of the underwater vehicle are ensured. The specific conclusions are as follows:

(1) A novel SVR–gravity gradient joint method (SGJM) is constructed. Firstly, based on
the gravity gradient calculation formula, the difference method and ratio method
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are used to eliminate the environmental and mass effects, and the gravity gradient
difference ratio (GGDR) equation is obtained. In order to solve the problem of NRM
being difficult to converge, thereby leading to low accuracy in obstacle location
when solving high-order nonlinear equations, the SVR algorithm is introduced to
solve GGDR equations. The SVR algorithm is a machine learning algorithm that can
approach the solution of higher order nonlinear equations well. This paper combines
the gravity gradient difference ratio method and the SVR algorithm, constructs the
difference ratio dataset for machine learning training through the gravity gradient
difference ratio method, and trains the SVR obstacle location model to be suitable for
specific obstacles based on the SVR algorithm.

(2) The reliable verification of obstacle location detection is based on the novel SGJM.
Firstly, the gravity gradient data generated by a simulated obstacle (cube) with a
size of 50 m × 50 m × 50 m, and uniform density distribution is calculated, and the
difference ratio dataset for machine learning is constructed by the gravity gradient
difference ratio function. Then, the SVR obstacle location model is trained based on
the SVR algorithm. Finally, the positioning accuracy of the positioning model is tested
with four measuring lines. The experimental results show that the MAE and RMSE
of the positioning results are less than 5.39 m and 7.58 m in the x, y, and z directions,
respectively, and the RE in x direction is less than 4% when the distance is less than
500 m.

(3) The positioning results of the novel SGJM, compared with those of NRM, in the
x, y, and z directions are 1.31 m, 0.92 m, and 1.14 m under the same experimental
conditions, which are 88%, 6%, and 85% higher than those of NRM. The RMSE in the
x, y, and z directions are 1.92 m, 1.54 m, and 1.69 m, and the RE is less than 4% within
a 400 m distance.
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