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Abstract: Seabed sediment classification is of great significance in acoustic remote sensing. To
accurately classify seabed sediments, big data are needed to train the classifier. However, acquiring
seabed sediment information is expensive and time-consuming, which makes it crucial to design a
well-performing classifier using small-sample seabed sediment data. To avoid data shortage, a self-
attention generative adversarial network (SAGAN) was trained for data augmentation in this study.
SAGAN consists of a generator, which generates data similar to the real image, and a discriminator,
which distinguishes whether the image is real or generated. Furthermore, a new classifier for seabed
sediment based on self-attention densely connected convolutional network (SADenseNet) is proposed
to improve the classification accuracy of seabed sediment. The SADenseNet was trained using
augmented images to improve the classification performance. The self-attention mechanism can scan
the global image to obtain global features of the sediment image and is able to highlight key regions,
improving the efficiency and accuracy of visual information processing. The proposed SADenseNet
trained with the augmented dataset had the best performance, with classification accuracies of 92.31%,
95.72%, 97.85%, and 95.28% for rock, sand, mud, and overall, respectively, with a kappa coefficient of
0.934. The twelve classifiers trained with the augmented dataset improved the classification accuracy
by 2.25%, 5.12%, 0.97%, and 2.64% for rock, sand, mud, and overall, respectively, and the kappa
coefficient by 0.041 compared to the original dataset. In this study, SAGAN can enrich the features of
the data, which makes the trained classification networks have better generalization. Compared with
the state-of-the-art classifiers, the proposed SADenseNet has better classification performance.

Keywords: acoustic remote sensing; seabed sediment classification; small-sample; side-scan sonar;
self-attention generative adversarial network; self-attention densely connected convolutional network

1. Introduction

Seabed sediment classification is of great significance in the fields of acoustic remote
sensing [1], marine engineering [2], seabed mapping [3], and mineral resource develop-
ment [4]. With the development of society and the economy, the significance of the ocean
has received increased attention. Traditional seabed sediment data acquisition is mainly
through sediments sampling, such as a clam sampler, a gravity sampler, etc. These sampling
methods have obvious disadvantages, such as being time consuming and expensive and
having difficulty to obtain large-area and continuous data and to sample sediments in the
deep sea [5]. Compared with traditional methods, the acoustic seabed classification (ASC)
not only reduces the cost of seabed sediments data acquisition but also greatly improves
the efficiency [6]. Moreover, continuous and large-area seabed sediment information can
be obtained. Furthermore, ASC has been proven by many researchers to be a very effective
method for seabed sediment classification [7]. Some classifiers are constructed using these
acoustic echo data, since different types of seabed sediments have different reflection and
absorption coefficients for acoustic waves [8].
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In recent years, many network structures with powerful classification capabilities have
been proposed. GoogLeNet has been proposed to improve the feature expression ability
by increasing both the depth and width of the network. Inception makes the network
more sparse and has a better classification performance with an appropriate increase in
computational requirement [9]. The proposed residual connection allows the input of
each layer of the network to include the output of all previous layers, which can solve
the problem of gradient disappearance and degradation. ResNet can be easily optimized
and its performance can be increased with depth [10]. DenseNet has a more powerful
performance than GoogLeNet [9] and ResNet [10]. The introduction of dense connections
allows DenseNet to enhance the propagation of features, encourage feature reuse, mitigate
gradient disappearance, and allow for a more concise structure of the network [11]. The
emergence of Transformer has broken the dominance of the convolutional neural network
(CNN) in the field of image classification. The attention mechanism used in Transformer
is able to filter out a small amount of important information from a large amount of
information and ignore the mostly invalid information. Transformer performs very well
on large-scale datasets, but its performance on the classification of small-scale datasets is
average [12]. Ding et al. proposed a novel local preserving dense graph neural network
with an autoregressive moving average filter and context-aware learning method for
hyperspectral image classification. This method has the advantages of better capturing
the global graph structure, being more robust to noise, retaining local features in the
convolutional layer, and making feature extraction easier [13]. A novel multifeature fusion
network was proposed to solve the problem that most graph neural networks ignore pixel-
wised spectral spatial features in hyperspectral image classification. This method uses a
multiscale graph neural network to refine multiscale spatial features and deal with the
problem of insufficient labeling, and uses a multiscale convolutional neural network to
extract multiscale pixel-wised local features [14].

In recent decades, most seabed sediment classifiers are based on traditional machine
learning or deep learning [15], which are inspired by decision trees (DT) [16], random forests
(RF) [17], support vector machine (SVM) [18], CNN [19], etc. ASC mainly uses seabed
sediment information collected by multibeam echosounder systems (MBES), sub-bottom
profiler (SBP), and side-scan sonar (SSS) to achieve seabed sediment classification.

Combining the MBES bathymetric data with the backscatter intensity data, multisource
data were used to construct a classification model based on the SVM with the Askey–Wilson
kernel function. This method can improve the performance of the prior sample input
classifier [20]. The curve of incidence angle and backscattering intensity was fitted by the
least squares method using a genetic algorithm, after which four characteristic parameters
were extracted from the MBES data with a good fitting effect, and these four characteristic
parameters were input into the K-medoids clustering model [21]. Zhao et al. constructed a
classification model based on RF, which can achieve good classification results with fewer
computational resources. A feature extraction method called Weyl transform was used
to characterize MBES backscattered images and discussed the effects of different feature
extraction methods at different scales. The final experimental results showed that the
RF classification method based on the Weyl transform has better performance than some
traditional features [3]. A Bayesian classification method using multifrequency MBES data
was proposed by Gaida et al. Using multiple frequencies allows better identification than
using single-frequency for seabed sediment classification [22]. Pang et al. extracted multiple
features from MBES data and selected the features using RF, and then fed the selected
features into three classifiers, i.e., SVM, K-Nearest Neighbor (KNN), and DT, respectively,
and the experimental results showed that all three classifiers performed well with no less
than 99% accuracy [23].

He et al. proposed a wavelet back propagation (BP) neural network classification
model based on the preferred characteristic parameter selection method by using the rela-
tive backscatter intensity difference and the attenuation compensation residual in the SBP
data [24]. In order to overcome the problem of unsoundness in attribute calculation of SBP
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data properties, a classification method was constructed based on a combination of relax-
ation time, Wigner–Ville distribution, and modified variational mode decomposition [25].
Zheng et al. proposed a classification method for seabed sediments based on the Biot model
and SBP data. This method only performed well in classifying soft seabed sediments, such
as mud and sand. Unfortunately, this method is not applicable if the seabed sediments are
hard sediments, such as rock [26]. In addition, Wang et al. used the grain size parameters
of offshore seabed sediments sample as the input features of the classifier, and finally, an
efficient sediment classification model was proposed using the XGBoost [27].

The entropy, standard deviation, and intensity of SSS image pixel values were used
as the input to the classifier to effectively identify different types of seabed sediments [28].
Multiple first-order and second-order features of SSS images were extracted, and after
feature selection, the three features of standard deviation, kurtosis, and correlation were
combined. Furthermore, this combined feature was used as the input of SVM and DT,
respectively. The SVM using a linear kernel has the best performance [29]. Compared with
optical images, acoustic images have a lower resolution, which was solved by Annalakshmi
et al. using a super-resolution method. First, low-resolution SSS images were converted to
high-resolution images using super-resolution techniques. Then, the texture features of the
image were extracted using the local orientation mode. Finally, the super-resolution images
were classified by using SVM. Furthermore, using super-resolution images for seabed
sediment classification has better classification performance than the original low-resolution
images [30]. Traditional seabed sediment classification is performed by feature extraction
from acoustic data and then using the extracted features for classification. Berthold et al.
achieved effective seabed sediment classification by directly feeding SSS images into a
CNN, which can automatically select effective features during training and then use them
for classification. This approach also has good results [31]. Xi et al. discussed the effect of
different training functions of the BP network on convergence time and seabed sediment
classification accuracy. According to extensive experiments, the trainlm function network
using the Levenberg–Marquardt algorithm converges faster and has good accuracy [32].

SSS has the following advantages: first, it can provide high-resolution images [33],
which is particularly important for seabed sediment classification. Second, it can obtain
continuous two-dimensional underwater acoustic images. Third, compared with the MBES,
the cost is lower. Thus, SSS is widely used in underwater archaeology [34], underwater
target recognition [35], and underwater building inspection [36]. These are also the reasons
why SSS data are used by us for seabed sediment classification.

Furthermore, if the sample size in the dataset is small, many deep learning algorithms
will find it difficult to learn the exact mapping relationships. To solve the problem of small-
sample size in the dataset, many data augmentation methods have been proposed. Data
augmentation based on basic image processing mainly includes geometric transformations,
flips, cropping, rotation, translation, etc. [37]. These methods have solved the problem of
data shortage to some extent. However, they still have the disadvantages of adding a limited
amount of information, repeated memorization of data, and inappropriate operations that
may change the original semantic annotation of the image. The development of deep
learning techniques in recent years has provided a new solution for data augmentation [38].
Goodfellow et al. have proposed generative adversarial networks (GAN) that learn data
distributions to achieve data augmentation [39]. Zhang et al. proposed SAGAN, which can
use cues from all feature locations to generate details [40]. GAN or SAGAN can generate a
large number of new high-quality image samples, but the training of the model consumes
a lot of computing resources.

To sum up, it is extremely time consuming, expensive, and difficult to collect large
amounts of seabed sediment data. Deep learning classification algorithms are data driven,
so it is particularly important to obtain a large amount of training data through image
augmentation. Previous researchers have made substantial contributions; however, how
to use small-sample data to establish an effective seabed sediment classifier has not been
considered. In addition, compared to the data in CIFAR-10 and ImageNet, the features of
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the seabed sediment image are relatively abstract, and some images are visually similar
to noise, making it difficult to extract their image features. In order to resolve the data
shortage and build a classifier with better performance, SAGAN was introduced, and a new
classifier called SADenseNet was proposed. SAGAN aims to generate more images using
small-samples, and finally, the generated and original images are used together to train the
classifier. SADenseNet aims to raise the accuracy of seabed sediment classification.

There are three contributions of this study: (1) The self-attention mechanism is intro-
duced for the first time in the classification of small-sample seabed sediments; (2) SAGAN
was used to achieve the augmentation of the training data, and the classifier can be better
trained with both original and generated images; (3) A novel seabed sediment classifier
called SADenseNet is proposed, which has better classification performance compared
with the state-of-the-art methods.

We use SSS and sampling data collected in the Weihai sea area to validate our proposed
methods. The remainder of this paper is organized as follows. Section 2 describes our
survey area, data, and the proposed methods. Section 3 presents the experiments and
results. The experimental results are discussed in Section 4. The conclusions are given in
Section 5.

2. Materials and Methods

The contents of this section are as follows. (1) A brief introduction to the acquisition
and simple processing of seabed sediment information. (2) Self-attention mechanism,
SAGAN, and the proposed SADenseNet are described in detail. (3) Several state-of-the-art
methods are chosen as our baseline methods that have been proven to perform well on
seabed sediment classification or image classification, such as the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC).

2.1. Data Acquisition and Processing

The SSS data were collected in the Yellow Sea waters of China to validate our proposed
methods. The surveyed area is presented in Figure 1.

SSS data were acquired using Klein4000 SSS. When working at 100 kHz, it can scan the
width of more than 600 m on one side. The images we used are the resolved images of the
sonar working at 100 kHz. To ensure that information on seabed sediments can be obtained
for the entire area, the area scanned by two adjacent survey lines must overlap by at least
25%. Time variable gain was applied to eliminate the effect of different water depths on
SSS imaging. After the sonar data were preprocessed, the SSS images were segmented,
screened, and labeled to make the dataset for our experiments.

We also conducted a seabed sediments sampling survey in the areas. In this survey,
clam grab samplers were used. They are capable of sampling various surface sediments
in different waters and water depths, such as ports and oceans. This technique has been
widely used in surface sediments investigation and other fields.

In order to obtain the real distribution of seabed sediments in the survey area, a total
of about 500 seabed sediments samples were collected, and the distance between adjacent
sediments samples was not more than 200 m. If the collected sample is less than 500 g, we
will repeat the grab at the same position. If the total sample mass of five collections at the
same location is less than 500 g, we will mark the seabed surface at that location as rocky or
an invalid sampling. The collected seabed sediment samples were confirmed to be their
type by expert observation and particle size analysis. Figure 2 shows the three types of
seabed sediment samples we collected.
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Figure 1. The area of data collection is situated in the northern part of Weihai City, Shandong Province,
China. The area is approximately 20 square kilometers. In this area, a total of three types of sediment
were collected, namely rock, sand, and mud.

(a) Rock (b) Sand (c) Mud

Figure 2. The three types of seabed sediment samples we collected in the investigation.

2.2. Self-Attention Mechanism

In recent years, the self-attention mechanism has made great breakthroughs in the
fields of natural language processing and machine translation [41]. Since the self-attention
mechanism has the advantage of being able to focus on significant characteristics and
neglect immaterial characteristics, and constantly change the weights in different tasks,
self-attention mechanisms have been extensively applied to image classification [42].

The self-attention mechanism is a special attention mechanism that reduces depen-
dence on other knowledge. Compared with the convolutional kernel, it has better perfor-
mance in identifying the relevance of knowledge. The self-attention mechanism can be
defined as a function that maps three vectors of query, key, and value to the output. The
output of this function is a weighted sum of values, each weighted by the compatibility
of its corresponding query and key. The function of the self-attention mechanism and its
output are presented in Equations (1) and (2), respectively:

Sel f Attention(Q, K, V) = so f tmax(QKT)V (1)
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where Q is a tensor concatenated by multiple queries, while K and V are tensors concate-
nated by multiple key-value pairs, respectively.

outSel f Attention = Sel f Attention(Q, K, V) + x (2)

where x is the input of the attention function.
Figure 3 shows the principle and calculation process of the self-attention mechanism.

1×1 Conv

1×1 Conv

1×1 Conv

Q

K

V

Transposed

Softmax

Attention

maps

Self-attention

feature maps

x

Out SelfAttention

Matrix

multiplication

Matrix

multiplication

Figure 3. The data processing flow of the self-attention mechanism.

2.3. SAGAN

It is well known that deep learning is data-driven. In the case of small-samples,
many image classifiers can perform poorly in classification. For the same classifier, in
most cases, more training data can achieve better classification results. The sonar images
of seabed sediments are low-resolution grayscale images, mainly composed of grayscale
and sediment texture information. Furthermore, some types of sediment images are
visually more like noise, and these sediment images usually do not contain enough feature
information as images of human faces or buildings. Therefore, it is necessary to use a large
amount of training data to improve the classification accuracy of the model. However,
since the acquisition of seabed sediments data is very expensive and difficult, we can only
use a small amount of data to build and train a seabed sediment classifier. To solve the
above-mentioned issues, SAGAN [40] is used for data augmentation.

Figure 4 shows the network structure of SAGAN. SAGAN consists of two sub-
networks, the generator and the discriminator. The task of the generator is to continuously
learn the distribution of data and create fake data to deceive the discriminator. The task of
the discriminator is to continuously determine whether the data are real or generated. The
two networks co-evolve in a constant game until the discriminator cannot tell whether the
data are real or generated by the generator, or until the set number of training epochs is
completed. The purpose of this study is to obtain a trained generator for data augmentation
to enrich data features and improve the performance of the sediment classifier. The training
of SAGAN is detailed in Algorithm 1.

The generator network we adopt contains a total of five transposed convolutional
layers and a self-attention layer. The output of every transposed convolutional layer is
subjected to the batch normalization (BN) operation [43] to increase the convergence speed
of the network. In addition, only the convolutional and self-attention layers were used.
The fully-connected layer does not contribute significantly to the quality of the generated
images and increases the number of network parameters. Removing the fully connected
layer does not reduce the quality of image generation and can improve the parameter
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adjustment speed of the SAGAN. We did not select spectral normalization in the generator,
but we did in the discriminator. Equation (3) shows the loss function:

Lossgenerator = − E
D(G(z))∼Pg

[D(G(z))] (3)

where Pg is the distribution of the generated image, z is the input noise, and D, G are the
functions of the generator and discriminator, respectively.

There are several fully connected layers, four convolutional layers and one self-
attention layer, in the discriminator network. Likewise, we also minimized the parameters
of the fully connected layers to make the network easier to train. The loss function of
the discriminator network of Wasserstein generative adversarial network with gradient
penalty (WGAN-GP) is widely used due to its good performance [44]. WGAN-GP makes
the network satisfy Lipschitz-1 continuity by using a penalty. The loss of the discriminator
network of WGAN-GP is shown in Equation (4):

LossWGAN−GP = λE
[
max(0, (‖∇x̂D(x̂)− 1‖2))

2
]

︸ ︷︷ ︸
gradient penalty

+ E
D(G(z))∼Pg

[D(G(z))]− E
D(x)∼Pr

[D(x)] (4)

where Pr is the distribution of the real data, x is the original data, λ is the penalty coefficient,
and x̂ = G(z).

However, in our network, the spectral normalization [45] was used on the discrimi-
nator network to make it satisfy Lipschitz-1 continuity. Therefore, the penalty term in the
loss function could be removed. The discriminator function in our network is given in
Equation (5):

Lossdiscriminator = E
D(G(z))∼Pg

[D(G(z))]− E
D(x)∼Pr

[D(x)] (5)

Input:

100,1, 1

Transposed 

Convolution1

Transposed 

Convolution2

Transposed 

Convolution3
Self Attention
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Convolution4
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Output

:
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Output:
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Calculate loss
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Figure 4. The overall structure and calculation process of SAGAN. The input of SAGAN is a
100 × 1 × 1 tensor of noise and the output is a 64 × 64 gray-scale image.
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Algorithm 1: SAGAN

for number of training epochs do
for k steps do

Sample mini-batch of t samples {z1, z2, z3, ......} from noise prior Pg;
Sample mini-batch of t samples {x1, x2, x3, ......} from data distribution Pr;
Update the Lossdiscriminator of the discriminator with the RMSProp
algorithm.

end
Sample mini-batch of t samples {z1, z2, z3, ......} from noise prior Pg;
Update the Lossgenerator of the discriminator with the RMSProp algorithm.

end

2.4. SADenseNet

Although many well-performing classification networks have been proposed, the
accuracy of seabed sediment classification still needs to be improved. Due to the power-
ful advantages of the self-attention mechanism (see Section 2.2 for details) and the good
classification performance of DenseNet, we introduced the self-attention mechanism into
DenseNet, thus proposing SADenseNet to improve the accuracy of seabed sediment classi-
fication. The overall structure of SADenseNet containing four dense blocks is shown in
Figure 5. The training process of SADenseNet is shown in Algorithm 2.

Dense connectivity has been proposed to better utilize the characteristics of different
layers in the network as well as to improve the flow of information between the layers.
In ResNet, the output of a layer was derived by summing the input of that layer with its
nonlinear transformation. Conversely, in SADenseNet, the output of a layer was determined
by all its preceding layers, and the features were combined by concatenation.

yl = Hl([y0, y1, y2, ..., yl−1]) (6)

where [y0, y1, y2, ..., yl−1] refers to the concatenation of the feature maps generated at layers
0, 1, 2, ..., l − 1 and Hl() is a composite function of BN, rectified linear unit (ReLU), 1 × 1
convolution (Conv), BN, ReLU, and 3 × 3 Conv, in that order.
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Figure 5. The proposed SADenseNet has four dense blocks. There is a transition layer between
adjacent dense blocks, which reduces the dimensionality of the features and makes them uniform in
size, which greatly improves computational efficiency.
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The number of channels of the output of Hl() was c0 + c(l − 1), where c0 was the
number of channels of the input and l referred to the lth layer of the network. We defined
the hyperparameter c as the growth rate of SADenseNet. The channels of each 3 × 3 Conv
in the dense block were 32. Before each 3 × 3 Conv, we used BN-ReLU-Conv (1 × 1), which
aimed to make the channels of the feature map lower to accelerate the convergence speed of
the network and also to fuse the features of each channel. The number of output channels
for each 1 × 1 Conv was 4c.

The transition layer is an important module that connects two dense blocks. It includes
2 × 2 average pooling, 1 × 1 Conv, BN, and ReLU. Here, the role of 1 × 1 Conv is to compress
the number of channels of feature maps to half of the input, and the average pooling was
used to change the size of each feature map to half of the original, which improve the
computational speed and computational efficiency of the network. Moreover, the size of
each output feature map was the same as the next dense block.

Global average pooling is the calculation of the average of the features in each channel,
reducing their size to 1 × 1. It can scan the global knowledge of each channel and greatly
simplify network structure, effectively suppressing network overfitting.

The cross-entropy loss function was used in our proposed network ((7)).

LossSADenseNet = −
N

∑
j=1

yr
j ∗ log ŷr

j (7)

where j represents a particular seabed sediment type and N is the number of types of
seabed sediments. yr

j is a one-hot vector, indicating that the true sediments type of this
sample is type j. ŷr

j means the probability that this sample is predicted to type j.

Algorithm 2: SADenseNet

for number of training epochs do
Sample mini-batch of t samples {y1, y2, y3, ......} from training dataset;
The data are randomly adjusted and cropped to 224 × 224 pixels size;
Mapped to half the original size by the convolutional layer;
The features of mapped data are extracted using a self-attention mechanism,

dense blocks, and transition blocks;
The extracted features are downscaled and fed into the fully connected layer

for classification;
Update the LossSADenseNet and parameters of the network with the stochastic
gradient descent algorithm.

end

2.5. Baseline Methods

In order to prove the significance of SADenseNet, many methods, such as SVM [30],
KNN [46], RF [3], LeNet [47], AlexNet [48], VGG [49], GoogLeNet [9], ResNet [10],
DenseNet [11], Vision Transformer (ViT) [12], and Swin Transformer (SwinT) [50],
were selected as baseline methods. These methods have been proven effective in some
classification tasks.

3. Experiments and Results
3.1. Original Dataset

The collected data were preprocessed, segmented, and labeled to create our original
dataset, with a total of 686 SSS images. In order to prove the significance of SAGAN and
SADenseNet, the amount of data in the training set are far less than that in the test set.
There are 110 SSS images in the training set and 576 images in the test set. The size of each
image is 64 × 64 pixels. The specific details of the dataset are shown in Table 1, and some
SSS images are presented in Figure 6.
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Table 1. The original dataset includes 686 samples of mud, rock, and sand.

Dataset
Type

Rock Sand Mud Overall

Training set 30 50 30 110
Test set 156 187 233 576
Overall 186 237 263 686

(a) Rock (b) Sand (c) Mud

Figure 6. Three types of original SSS images of seabed sediments.

3.2. Experimental Setup

Tables 2 and 3 show the network parameters of the generator and discriminator of
SAGAN, respectively. The initial learning rate was set to 1× 10−4. The network structure of
our proposed SADenseNet is shown in Table 4. The initial learning rate was set to 1× 10−3.

Table 2. The structure and parameters of the generator.

Generator

Layer name T-Conv1 T-Conv2 T-Conv3 Self-attention T-Conv4 T-Conv5
Channel 512 256 128 128 64 1
Padding 0 0 0 × 0 0

Kernel size 5 5 5 × 5 4
Stride 2 2 2 × 2 1

Activation ReLU ReLU ReLU × ReLU Sigmoid
Normalization Batch Norm Batch Norm Batch Norm × Batch Norm ×
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Table 3. The structure and parameters of the discriminator.

Discriminator

Layer name Conv1 Conv2 Conv3 Self-attention Conv4 Linear
Channel 64 128 256 256 512 1
Padding 0 0 0 × 0 ×

Kernel size 5 5 5 × 5 4
Stride 2 2 2 × 2 1

Activation ReLU ReLU ReLU × ReLU Sigmoid
Normalization Spectral Norm Spectral Norm Spectral Norm × Spectral Norm ×

Table 4. The growth rate of the network is c = 32, and all “conv” in the table refers to executing
BN-ReLU-Conv in order.

Layers Output Size Parameters Output Channels

Convolution 112 × 112 7 × 7 conv, stride = 2 64

Self-attention 112 × 112 so f tmax(QKT)V + x 64

Pooling 56 × 56 3 × 3 max pooling,
stride = 2 64

Dense Block 1 56 × 56 (1 × 1 conv, 3 × 3
conv) × 6 256

Transition Layer 1-1 56 × 56 1 × 1 conv 128

Transition Layer 1-2 28 × 28 2 × 2 average pooling,
stride = 2 128

Dense Block 2 28 × 28 (1 × 1 conv, 3 × 3
conv) × 12 512

Transition Layer 2-1 28 × 28 1 × 1 conv 256

Transition Layer 2-2 14 × 14 2 × 2 average pooling,
stride = 2 256

Dense Block 3 14 × 14 (1 × 1 conv, 3 × 3
conv) × 24 1024

Transition Layer 3-1 14 × 14 1 × 1 conv 512

Transition Layer 3-2 7 × 7 2 × 2 average pooling,
stride = 2 512

Dense Block 4 7 × 7 (1 × 1 conv, 3 × 3
conv) × 16 1024

Global Average Pool 1 × 1 global average
pooling 1024

Fully Connected
Layer 1 × 3 fully-connected,

softmax 1

3.3. Images Augmentation with SAGAN

SAGAN was trained for 5000 epochs and the images generated by the network at
different epochs are presented in Figure 7. A total of 30,000 images have been generated.
The generated images gradually change from fuzzy to clear and from abstract to concrete as
the number of training increases in Figure 7. Finally, we manually selected the 880 images
generated by SAGAN based on the image visual effects. These images were used to
augment the original dataset, and the new dataset is called the augmented dataset. Table 5
describes the augmented dataset in detail. Figure 8 shows some of the generated seabed
sediment images that were ultimately selected. We did not find the difference between
the generated image and the original image by visual observation. To further validate the
similarity of the generated images to the original data, the Fréchet Inception Distance (FID)
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between these generated images and the real images was calculated. FID is a measure of
the distance between the feature vectors of the real image and the generated image [51].
The smaller the FID, the more similar the two sets of images are, or the more similar their
statistics are. When FID is 0, it indicates that the two sets of images are the same. In addition,
110 real images were selected as the training set and 880 generated images were selected
as the test set to verify the effectiveness of SAGAN. The results of these experiments are
shown in Table 6. The FID of images that have not been manually selected is 60.61, while
the FID of images that have been manually selected is 47.29.

Table 5. The augmented dataset was also divided into a training set and a test set. The generated
sediment images are assigned to the augmented training set, and the test set is the same as the original
test set.

Dataset
Type

Rock Sand Mud Overall

Training set 330 330 330 990
Test set 156 187 233 576
Overall 186 237 263 1566

(a) Generated Rock (b) Generated Sand (c) Generated Mud

Figure 7. From left to right, from top to bottom, the different types of seabed sediment images
generated by SAGAN are shown in turn with the increasing number of epochs. As the epochs
increases, the three types of seabed sediment images generated by SAGAN gradually change from
fuzzy and abstract to clear and concrete.
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Table 6. Classification accuracy and kappa coefficient using the original training set and the generated
images as the test set.

Model
Accuracy

Rock Sand Mud Overall Kappa

SVM 79.00% 92.14% 98.67% 89.89% 0.848
KNN 86.00% 86.79% 93.67% 88.86% 0.833

RF 81.00% 78.21% 83.00% 80.80% 0.710
LeNet 83.67% 88.57% 95.33% 89.21% 0.838

AlexNet 85.67% 90.00% 99.33% 91.70% 0.876
VGG 81.00% 87.86% 99.00% 89.32% 0.840

ResNet 89.33% 93.93% 92.67% 91.93% 0.879
GoogLeNet 86.00% 93.93% 99.00% 92.96% 0.894
DenseNet 93.00% 86.43% 98.33% 92.73% 0.891

ViT 89.33% 78.57% 83.33% 83.86% 0.758
SwinT 75.00% 91.43% 99.00% 88.41% 0.826

SADenseNet 93.33% 94.64% 99.33% 95.80% 0.937

(a) Rock (b) Sand (c) Mud

Figure 8. The filtered generated seabed sediment images.

3.4. Comparison of Classification Accuracy Using Original SSS Images

To demonstrate the effectiveness of our proposed SADenseNet, eleven classification
methods were selected for comparative analysis, and the number of parameters based on
different deep-learning-based classification models is given in Table 7. The classification
results of the classification methods are detailed in Figure 9 and Table 8. In Table 8,
we can find that SVM, KNN, RF, LeNet, AlexNet, VGG, ResNet, DenseNet, GoogLeNet,
SADenseNet, ViT, and SwinT all have good classification performance. Among all the
baseline methods, the best classification performance for overall, sand, rock, and mud was
92.19%, 90.37%, 90.38%, and 97.00%, respectively. RF has the worst result for identifying
rock, with only 64.10% classification accuracy. KNN and RF do not identify rock very
well. The worst performers for sand classification are VGG and ViT, with only 71.66%
classification accuracy. The worst performer for mud classification is ResNet, which still
has a classification accuracy of 90.56%. All of these 12 models are able to identify mud
very well, and specifically, all of them are no less than 90% accurate for the classification of
mud. In addition to classification accuracy, we also selected the kappa coefficient as our
evaluation index. The kappa coefficient is an indicator used for consistency testing and
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can also be used to measure the effectiveness of classification [52]. ViT produces the worst
overall classification accuracy and the smallest kappa coefficient of 0.744.

Whether it is the identification of any type of sediment, SADenseNet has the best
performance. As can be seen from the confusion matrix of each model in Figure 9, these
models may identify some of the rock or mud as sand or may identify sand as rock or mud,
but will rarely identify rock as mud and vice versa.

Table 7. Parameters of different classifiers based on deep learning.

Models LeNet Alexnet VGG GoogLeNet ResNet DenseNet ViT SwinT SADenseNet

Parameters 0.6 M 61 M 138 M 7 M 22 M 8 M 86 M 29 M 10 M

Table 8. Classification accuracy and kappa coefficient of different classifiers trained using the original
training set.

Model
Accuracy

Rock Sand Mud Overall Kappa

SVM 85.26% 89.30% 94.42% 90.28% 0.852
KNN 70.51% 82.89% 95.71% 84.72% 0.767

RF 64.10% 87.70% 95.71% 84.55% 0.764
LeNet 85.90% 89.84% 93.13% 90.10% 0.849

AlexNet 87.82% 87.70% 93.56% 90.10% 0.850
VGG 82.05% 71.66% 96.14% 84.38% 0.761

ResNet 87.18% 88.77% 90.56% 89.06% 0.834
GoogLeNet 84.61% 89.84% 97.00% 91.32% 0.867
DenseNet 90.38% 90.37% 94.85% 92.19% 0.881

ViT 82.05% 71.66% 93.13% 83.16% 0.744
SwinT 83.33% 80.75% 97.00% 88.02% 0.817

SADenseNet 92.31% 91.44% 97.85% 94.27% 0.913
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Figure 9. Confusion matrices of different classifiers trained with the original dataset.

3.5. Comparison of Classification Accuracy Using Augmented SSS Images

The confusion matrix and classification accuracy of the network trained with the
augmented dataset are presented in Figure 10 and Table 9, respectively. The best classifi-
cation performance of the baseline methods for overall, sand, rock, and mud was 93.75%,
93.58%, 90.38%, and 97.85%, respectively. RF performs the worst in identifying rock, with
only 66.67% classification accuracy. However, rock and mud are not misclassified by RF.
The worst performer for sand classification is KNN, with 82.35% classification accuracy,
although rock and mud are not misclassified by KNN, similar to RF. The classifier with the
worst ability to identify mud is LeNet, which still has a good performance of 93.56%. In
general, KNN and RF have the worst overall classification accuracy of 85.42% and a kappa
coefficient of 0.778. In the case of misclassification, rock and sand are misclassified or sand
and mud are misclassified, while rock and mud are hardly ever misclassified. Moreover, all
the metrics of SADenseNet are the best among these 12 methods.
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Figure 10. Confusion matrices of different classifiers trained with the augmented dataset.
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Compared to using the original dataset, the majority of the overall classification
accuracy, kappa coefficient, and classification accuracy of particular sediments were all
somewhat improved when we used the augmented dataset to train these 12 classifiers. The
average improvement in classification accuracy was 2.25% for rock, 5.12% for sand, 0.97%
for mud, 2.64% for overall, and 0.041 for the kappa coefficient. The overall accuracy of the
models in order from top to bottom in Table 9 increased by 0.69%, 0.70%, 0.87%, 1.05%,
1.29%, 9.37%, 3.13%, 1.39%, 1.56%, 6.94%, 3.65%, and 1.01%, respectively.

Table 9. Classification accuracy and kappa coefficients of different classifiers trained with the
augmented training set. ↑, l, and ↓mean increase, remain the same, and decrease, respectively.

Model
Accuracy

Rock Sand Mud Overall Kappa

SVM 85.90% ↑ 90.91% ↑ 94.42% l 90.97% ↑ 0.863 ↑
KNN 72.44% ↑ 82.35% ↓ 96.57% ↑ 85.42% ↑ 0.778 ↑

RF 66.67% ↑ 88.24% ↑ 95.71% l 85.42% ↑ 0.778 ↑
LeNet 88.46% ↑ 90.37% ↑ 93.56% ↑ 91.15% ↑ 0.865 ↑

AlexNet 87.18% ↓ 90.37% ↑ 94.85% ↑ 91.39% ↑ 0.868 ↑
VGG 89.74% ↑ 93.58% ↑ 96.57% ↑ 93.75% ↑ 0.905 ↑

ResNet 89.10% ↑ 90.37% ↑ 95.71% ↑ 92.19% ↑ 0.881 ↑
GoogLeNet 89.10% ↑ 91.98% ↑ 95.71% ↓ 92.71% ↑ 0.889 ↑
DenseNet 90.38% l 92.51% ↑ 97.00% ↑ 93.75% ↑ 0.905 ↑

ViT 84.62% ↑ 88.77% ↑ 94.85% ↑ 90.10% ↑ 0.849 ↑
SwinT 86.54% ↑ 88.24% ↑ 97.85% ↑ 91.67% ↑ 0.872 ↑

SADenseNet 92.31% l 95.72% ↑ 97.85% l 95.28% ↑ 0.934 ↑

4. Discussion

In seabed sediment classification, to build a classifier with higher classification accu-
racy and kappa coefficient, there are several approaches, as follows:

(1) Improving the data quality of seabed sediments by eliminating the influence of the
disturbance factors during collection.

(2) Constructing a better feature extractor.
(3) Building a better classifier that can better distinguish between different types of

seabed sediments.
(4) Using more data to train the seabed sediment classifier so that the classifier can be

trained better.

In this study, we investigate factors (2)–(4) above as follows.
SAGAN is used for data augmentation, which enables SADenseNet to have more

training samples to better learn the differences between different types of seabed sediments,
thus improving the classification accuracy.

Moreover, a deep-learning-based neural network is constructed called SADenseNet,
which can achieve both characteristic construction and classification of seabed sediment
images. The self-attention mechanism is introduced in SADenseNet, which can enable the
network to better distinguish seabed sediments.

4.1. Image Augmentation

The texture structure presented by SSS images in some sea areas may involve a
large spatial range of neighborhoods, and in addition, some classes of images are even
close to random distribution. Therefore, in order to better acquire global features of
images and generate clear images, larger convolutional kernels as well as deep neural
network structures are required. However, such GAN is often difficult to train and obtain
satisfactory images. In order to obtain good-quality images, the self-attention mechanism
was introduced into the GAN, which is called SAGAN. By adding a self-attention layer
to the GAN, the network has a strong global information extraction capability [39]. In
order to improve the network’s ability to analyze and generalize global features, both
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the discriminator and the generator adopt a deep network structure. The addition of
the self-attention layer also further enhances the network’s ability to process long-range
information, enabling the generated images to reflect the texture patterns of the original
images over a larger spatial range [53].

We can see from Figure 7 that as the number of epochs of the network gradually
increases, the generated images gradually become concrete from abstract and clear from
blurring. Eventually, an image is randomly selected from the selected images, and experts
cannot discern whether the image is generated by the generator. The FID of the generated
image to the real image is 47.29, which is a good result compared to many advanced
GANs [54]. Furthermore, the images that have been manually selected have a smaller FID
than those that have not been manually selected. In addition, the classification results
using generated images are very similar to using real images as the test set. All these can
prove the effectiveness of SAGAN. We divide the generated images into the training set
to increase the feature richness of the dataset, and thus, improve the final classification
performance of the classifier. Although theoretically, it can have the ability to optimize
the processing of seabed sediments data, experiments are still needed to demonstrate its
effectiveness. We will describe and analyze the effectiveness of this method in Section 4.3.

4.2. Classification Accuracy Using Original SSS Images

We can see from the data in Table 8 that the traditional machine learning methods
have good classification results, especially SVM, which has better performance than many
deep-learning-based classification models. Deep-learning-based classification models are
data-driven, and a large amount of training data is required to make these networks learn
the characteristics of different types of sediments adequately. Furthermore, the training
samples for this set of experiments were small, so a portion of the deep-learning-based
classification models performed worse than traditional machine models. In contrast, SVM
requires only a small amount of data to determine the segmentation hyperplane, so it will
also have good performance under small-sample conditions. ViT has the worst performance.
The number of parameters for the deep learning model is given in Table 7. Compared to
other deep-learning-based classification models, ViT is a very large model, which means
that more data are needed to train it to achieve satisfactory performance. Our training set
is a very small dataset, which makes it difficult to train ViT adequately. Furthermore, the
data dependence of ViT is much greater compared to convolutional neural networks of
various structures. GoogLeNet and DenseNet introduce the inception module and dense
connection, respectively. Inception module concatenates feature maps of different sizes,
and dense connection improves feature flow between layers and enhances feature reuse.
Inception module and dense connectivity reduce the data dependency of the network to
some extent. In small-sample data classification tasks, a network with an inception module
or dense connection will have better classification performance and kappa coefficients
compared to a network without inception modules or dense connection.

The proposed SADenseNet has higher accuracy of sediment classification and larger
kappa coefficients compared with the state-of-the-art models. The self-attention mechanism
is introduced into the proposed SADenseNet. With the current development of deep learn-
ing technology, the feature extraction ability of deep networks is becoming more and more
powerful, which inevitably causes a large amount of feature redundancy while improving
network performance. The self-attention is similar to human vision, which can automati-
cally distinguish important information from global information, reduce the interference
of unimportant information, and reduce the waste of computational resources caused by
some redundant features. In addition, the self-attention mechanism can better acquire
the global features of images and improve the classification performance of the network.
The proposed SADenseNet also introduces dense connectivity. The dense connectivity
improves the information flow between layers, with each layer obtaining input from all
previous layers and passing its output to each subsequent layer, which greatly enhances
feature reuse and thus improves the performance of the network. Moreover, each layer of
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the network is designed to be narrow, which also reduces the number of parameters of the
network, decreases the computational cost, and makes the network easier to be trained.

As can be seen from the confusion matrix of each classification model in Figure 9, the
models rarely identify rock as mud or identify mud as rock. This is because there is a large
difference in the physical grain size as well as the texture characteristics between rock and
mud. Sand with a larger grain size will have more similar features to rock, which will
cause the models to misclassify rock and sand. Similarly, sand with a smaller grain size has
similar characteristics to mud, which will also cause misclassification of the model.

4.3. Classification Accuracy Using Augmented SSS Images

Figure 10 and Table 9 show the classification performance of all models, and we can
see that the proposed SADenseNet also has the best performance. Meanwhile, the models
basically do not misidentify rock and mud with each other. Most of the misidentifications
consist of identifying rock or mud as sand or sand as rock or mud, which is consistent with
the results using the original dataset.

By analyzing the performance of the classification models listed in Tables 8 and 9, it can
be seen that only very few of the classification accuracy decreased slightly or remained the
same, and the vast majority of the classification accuracy, as well as all kappa coefficients,
increased. Artificial intelligence algorithms are data-driven; SAGAN was used for data
augmentation, which produced more information not available in the original dataset
and enriched the number of features in the data. This allows the classification models to
be better trained and more accurately map the acoustic images to the correct sediments
type. The model with the largest improvement compared to the original training set was
VGG, which improved the overall accuracy by 9.37% and the kappa coefficient by 0.144.
VGG has the largest number of parameters in these networks (Table 6) and is more data-
dependent, so VGG trained with the augmented training set had the largest improvement
in performance. These experimental results demonstrate that data augmentation of the
training set using SAGAN can indeed improve the performance of the classification model.

Training each classification model with the augmented dataset, the deep-learning-
based classification models performed better than the traditional machine learning-based
ones, which can also indicate that deep-learning-based classification models can better fit
the function that maps sediment images to sediments types when the dataset is larger.

5. Conclusions

In this study, SAGAN is used to learn the data distribution of the original dataset and
generate new SSS images to perform data augmentation on the original dataset. Through
our experiments, We demonstrate that the images generated by SAGAN are very similar
to real images and can augment the features of the original dataset, enabling the classifi-
cation model to better learn the mapping of SSS images to real sediments types, and the
classification model has higher classification accuracy and kappa coefficients.

The self-attention mechanism is introduced into the proposed SADenseNet. The self-
attention mechanism can automatically scan the SSS images to obtain the key information
of the images and highlight the key features of the images, which can reduce the waste
of computational resources caused by feature redundancy. Besides, the self-attention
mechanism can also better capture the correlation of the internal information and global
features of the images, which contributes to raising the performance of SADenseNet. Dense
connectivity is also used in SADenseNet. Dense connectivity enhances feature propagation
and feature reuse. The output of each layer will be the input of all the subsequent layers
so that the input of each layer is jointly determined by all the preceding layers, which
can alleviate the gradient disappearance of the network and improve the classification
performance. The transition layer reduces the size of the feature map, which improves the
computational efficiency of the network.

The data augmentation method, SAGAN, can also be transferred to other data-starved
tasks, and SADenseNet can be extended to challenging tasks, such as underwater target
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recognition. However, our proposed methods have several limitations, as follows: (1) The
quality of data generated by SAGAN is unstable and requires manual selection; (2) SAGAN
was trained for more than 30 days in order to generate visually appealing images of seabed
sediments, which consumed a large amount of computational resources; (3) In order to
make our proposed SADenseNet achieve good classification results, it took about 20 days
on parameter tuning, which is time-consuming.

In our future research, we will investigate designing a less computationally expensive
and more stable data generator, and build a classifier with a relatively simple structure
and better classification performance. In addition, image super-resolution reconstruction
technology can effectively solve the problem of low resolution of sonar images, which will
be the focus of our research in the future.
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