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Abstract: The global navigation satellite system-reflectometry (GNSS-R) field has experienced an
exponential growth as it is becoming relevant to many applications and has captivated the attention
of an elevated number of research scholars, research centers and companies around the world.
Primarily based on the contents of two Special Issues dedicated to the applications of GNSS-R to
Earth observation, this review article provides an overview of the latest advances in the GNSS-R field.
Studies are reviewed from four perspectives: (1) technology advancements, (2) ocean applications,
(3) the emergent land applications, and (4) new science investigations. The technology involved in
the GNSS-R design has evolved from its initial GPS L1 LHCP topology to include the use of other
GNSS bands (L2, L5, Galileo, etc.), as well as consider RHCP/LHCP-receiving polarizations in order
to perform polarimetric studies. Ocean applications have included developments towards ocean
wind speed retrievals, swell and altimetry. Land applications have evolved considerably in the past
few years; studies have used GNSS-R for soil moisture, vegetation opacity, and wetland detection
and monitoring. They have also determined flood inundation, snow height, and sea ice concentration
and extent. Additionally, other applications have emerged in recent years as we have gained more
understanding of the capabilities of GNSS-R.

Keywords: GNSS-R; technology; ocean; land; innovation

1. Introduction

The global navigation satellite system reflectometry (GNSS-R) field has been an active
focus of many investigations for around 24 years, ever since the concept was demonstrated
for the first time in 1998 through an airborne experiment [1]. The field exploded around
2014 with the first of such satellites being launched, allowing for the development of
global applications of this technology. The increased resources and interest available to
this research, and the formation of teams to support recent satellite missions, led to a
growth in knowledge and expertise in the field. Many have since contributed to the expan-
sion of knowledge in this field, including those based in academia, research laboratories
and industry.

The following two figures provide an overview of the time evolution of the number
of GNSS-R publications. Firstly, in Figure 1, we show the increase in publications per
year and the relationship to the total amount of publications in the general remote sensing
field. General remote sensing includes radiometry, radar, synthetic aperture radar, optical
sensors, spectral sensors, and all sciences from areas of atmospheric and land monitoring,
as illustrated in Figure 1. GNSS-R publications have seen a steep increase in the recent years
as compared to the overall increase in all remote sensing publications. GNSS-R publications
are beginning to account for nearly 1% of all remote sensing publications.
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Figure 1. Progression of GNSS-R publications per year from 2008 to 2022. Left y axis describes the 
number of publications in the general remote sensing field (blue) and the number of publications 
specific to the GNSS-R field (orange). Right y axis describes the number of publications in GNSS-R 
over the number of publications in remote sensing, showing the growth rate. On 2022, the total 
number of remote sensing publications was 16,155, from which GNSS-R contributed 137 publica-
tions, representing 0.85% of the total. Data from the Clarivate Web of Science Core Collection. Re-
mote sensing papers correspond to the search “remote sensing” in any field, and to “gnss-r” from 
the combination of “remote sensing and (reflectometry GNSS or GNSS-R or GNSS-IR). Data re-
trieved in January 2023”. 

GNSS-R publications are distributed as follows: 260 publications in IEEE journals, 
160 publications in MDPI, out of which 43 were published in the MDPI Special Issue series 
“Applications of GNSS Reflectometry for Earth Observation I, II and III” (e.g., 27% of all 
MDPI publications), 43 publications by Elsevier, 30 publications by Springer Nature, and 
28 publications by American Geophysical Union Publications. The data were collected 
from the Clarivate Web of Science Core Collection using the keywords “remote sensing 
and (reflectometry GNSS or GNSS-R or GNSS-IR)”. 

Figure 2 shows the distribution of GNSS-R-related publications per major region or 
continent, applying the Clarivate Web of Science Core Collection “core country/region 
metric”. The large majority of publications for GNSS-R have been written by researchers 
based in Europe, Asia and North America, with 49.71%, 27.61% and 19.88% of all publica-
tions, respectively. Fewer publications have been produced by those based in South Amer-
ica, Africa and Oceania which account for the remaining 2.8%. 
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Figure 1. Progression of GNSS-R publications per year from 2008 to 2022. Left y axis describes the
number of publications in the general remote sensing field (blue) and the number of publications
specific to the GNSS-R field (orange). Right y axis describes the number of publications in GNSS-R
over the number of publications in remote sensing, showing the growth rate. On 2022, the total
number of remote sensing publications was 16,155, from which GNSS-R contributed 137 publications,
representing 0.85% of the total. Data from the Clarivate Web of Science Core Collection. Remote
sensing papers correspond to the search “remote sensing” in any field, and to “gnss-r” from the
combination of “remote sensing and (reflectometry GNSS or GNSS-R or GNSS-IR). Data retrieved in
January 2023”.

GNSS-R publications are distributed as follows: 260 publications in IEEE journals,
160 publications in MDPI, out of which 43 were published in the MDPI Special Issue series
“Applications of GNSS Reflectometry for Earth Observation I, II and III” (e.g., 27% of all
MDPI publications), 43 publications by Elsevier, 30 publications by Springer Nature, and
28 publications by American Geophysical Union Publications. The data were collected
from the Clarivate Web of Science Core Collection using the keywords “remote sensing and
(reflectometry GNSS or GNSS-R or GNSS-IR)”.

Figure 2 shows the distribution of GNSS-R-related publications per major region or
continent, applying the Clarivate Web of Science Core Collection “core country/region met-
ric”. The large majority of publications for GNSS-R have been written by researchers based
in Europe, Asia and North America, with 49.71%, 27.61% and 19.88% of all publications,
respectively. Fewer publications have been produced by those based in South America,
Africa and Oceania which account for the remaining 2.8%.

GNSS-R is a bistatic radar technique based on signals of opportunity. The transmitted
signal is sent by a GNSS satellite; then, the signal scatters off the Earth’s surface and
is received by a GNSS receiver. The GNSS receiver can be placed on a ground-based
instrument, on an aircraft, on a satellite or on a constellation of satellites. Each platform
provides different capabilities in terms of spatial and temporal resolution. Generally
speaking, a ground-based platform can offer high-resolution data, but its coverage is
limited to a very small area within the static antenna beam. An airborne platform provides
a medium spatial resolution in the order of 300 m to 1 km, depending on the flight height,
and potentially provides regional spatial coverage in the order of 100′s of kilometers. A



Remote Sens. 2023, 15, 2157 3 of 29

satellite platform provide global coverage, which depends on the selected orbit, and the
spatial resolution ranges from 1 km to hundreds of kilometers, being set primarily by
the scattering properties of the surface under observation. For example, sea ice will be
observed at 1 km spatial resolutions, while ocean surface will be observed at > 25 km
spatial resolutions. Figure 3 provides an illustration of the remote sensing platforms used
for GNSS-R instruments.
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Figure 3. Platforms used for GNSS-R: ground-based, UAV-based, aircraft-based, and satellite-based.

As the GNSS signal is scattered from the Earth’s surface, it is affected by its charac-
teristics. For example, over the ocean, the contribution of an area of scattering increases
or decreases as the ocean is rougher or calmer. Over the land, there are many geophysical
parameters that can affect signals. The reflected GNSS signal is affected by the surface
roughness of the scene as well as the water content of the soil since the moisture content of
the soil changes the dielectric properties of the surface. Although the GNSS-L-band signal
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can penetrate vegetation, the water content of the plants, as well as the density and height,
impacts the signal due to volume scattering. GNSS signals are sensitive to standing water,
such as lakes, rivers, or wetlands, and also to water in a frozen state, such as frozen soil
(during winter) or sea ice. Reflections on calm water and ice produce coherent reflections as
compared to reflections from bare soil or vegetated soil. The ability to detect inland water is
valuable for mapping inundation in wetlands or other floods. GNSS reflections can also be
used for frozen soil detection, which allows for studies of the freeze/thaw characteristics of
land surfaces.

Thanks to its sensitivity to different surfaces, GNSS-R signals can be used in many
different applications. Figure 4 shows an image relating the GNSS-R applications to the
essential climate variables (ECV) described by the global climate observing system (GCOS),
providing a clear idea as to the relevance of the GNSS-R field to improving our knowledge
of Earth and its processes.
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Figure 4. Environmental climate variables that can be measured by GNSS-R: (from left to right)
Sea state, surface stress, sea ice, surface currents, sea level, plankton, ice sheets, snow, glaciers,
permafrost, above-ground biomass, land cover, leaf area index, river discharge, lakes, soil moisture,
and terrestrial water storage. Adapted from the global climate observing system (GCOS) [https:
//gcos.wmo.int/copyright accessed on 16 April 2023] under CC-BY-4.0.

The power collected by a GNSS receiver after the GNSS signal scatters over the Earth’s
surface is known as a delay–Doppler map (DDM). The mathematical equation was defined
in [2,3] and can easily be found in the literature. We provide the equations for the general
understanding of the different studies that are explained here and for the completeness of
this review article. Equation (1) describes the reflected GNSS signal that would be received
from a surface dominated by incoherent scattering.

Pincoh(τ, fd) = T2
i

∫ PtxGtxGrx

(→
ρ
)

λ2Λ2
(

τ − τs

(→
ρ
))

(4π)3R2
rx

(→
ρ
)

R2
tx

(→
ρ
) ×

∣∣∣S( fd

(→
ρ
)
− f

)∣∣∣2σ0

(→
ρ
)

d2ρ (1)

where:

• →
ρ identifies the various surface pixels in the scattering area;

• Ti represents the coherent integration time;
• Ptx stands for GPS transmitted power;
• Gtx and Grx denote the transmitter and receiver antenna gain, respectively;
• λ is the wavelength of the GPS signal (which is 24.42 cm at GPS-L2C);

https://gcos.wmo.int/copyright
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• Rtx and Rrx represent the distance from the transmitter to the particular surface pixel
→
ρ ,

and the distance between the receiver and the particular surface pixel
→
ρ , respectively;

• The sinc(S) function characterizes the signal spread in Doppler;
• The delta Λ function characterizes the spread of the signal in time;

• The bistatic radar cross section of a rough surface σ0

(→
ρ
)

is given by the following

equation: σ0

(→
ρ
)
= π

∣∣∣R(→ρ)∣∣∣2 q4
(→
ρ
)

q4
z

(→
ρ
)℘
(
−

q⊥
(→
ρ
)

qz

(→
ρ
)
)

, whereR is the Fresnel reflection

coefficient, ℘ is the probability density function of the surface slopes, and qz and q⊥
are the tangential and perpendicular components of the bisector vector or scattering
vector

→
q .

Comparatively, Equation (2) describes the reflected GNSS signal that would be re-
ceived from a surface dominated by coherent scattering.

Pcoh(τ, fd) = T2
i

PtxGtxGrx

(→
ρ sp

)
λ2Λ2

(
τ− τs

(→
ρ sp

))
(4π)3

(
Rrx

(→
ρ sp

)
+ Rtx

(→
ρ sp

))2 ×
∣∣∣S(fd

(→
ρ sp

)
− f
)∣∣∣2∣∣∣∣−R(→ρ sp

)∣∣∣∣2 (2)

where:

• →
ρ sp corresponds to the surface specular point;

•
−
R
(→
ρ sp

)
is the averaged reflection coefficient at

→
ρ sp. This is computed from evaluating

the scattering surface average reflection coefficient
−
R
(→
ρ
)

at the specular direction by

performing
−
R
(→
ρ sp

)
=
−
R
(→
ρ
)
δ
(→
ρ −→ρ sp

)
.

To illustrate the different types of scattering we provide in Figure 5 the different
types of scattering and the corresponding DDMs that are characteristic of different types
of surfaces.
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The following sections review the different aspects of the GNSS-R field. Section 2
reviews the technology advancements in the field, providing first a review of the evolution
since it was first proposed in 1988. Section 3 covers the advancements specific to ocean
applications. Section 4 covers the advancements specific to land applications. Section 5
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is dedicated to describing the applications on the Earth’s cryosphere; Section 6 provides
insight into novel applications derived from GNSS-R, but which are not specifically part of
the ocean, land, or cryosphere. Section 7 provides a discussion on where the GNSS-R field
seems to be heading in the near future. Finally, conclusions are presented in Section 8.

2. Technology Advancements

GNSS-R was proposed in the late 1980s as a multi-static scatterometer [4], and a few
years later, in 1993, the interferometric GNSS-R technique (iGNSS-R) [5] was proposed
for use in sea altimetry. This technique was based on the cross correlation of the direct
and reflected signals and makes use of the large-bandwidth military codes for a high-
precision opportunistic altimeter. Three years after that, the most broadly used technique,
known as conventional GNSS-R (cGNSS-R), was proposed by Katzberg and Garrison [6].
It was not until 1998 that the GNSS-R concept was demonstrated [1] from an airborne
platform. The technology used at that time consisted of a commercial GPS receiver from
GEC Plessey semiconductors, which was modified to include an open-loop correlator at
different delay lags from the peak point position. In this case, the antenna used was a
single left-hand circularly polarized (LHCP) down-looking antenna. Besides iGNSS-R and
cGNSS-R, which tend to be used for airborne and spaceborne platforms, a ground-based
monitoring technique was also conceived of for remote sensing applications. This is called
GNSS interferometric reflectometry (GNSS-IR) [7]. This technique is based on a geodetic
GNSS receiver that receives a combination of both the direct and reflected signal, causing
an interference pattern in the observed signal which can be used to estimate land-related
properties. In this section, the latest technology advances in the last 10 years in the GNSS-R
and GNSS-IR field will be covered, including the use of spaceborne and airborne receivers
for GNSS-R cases and ground-based receivers for GNSS-IR cases.

2.1. Ground-Based Receivers

This category of technological advancements is devoted to ground-based sensors.
Early in the 2010s, the GNSS-IR technique was conceived independently in [7,8]. Since then,
geodetic GNSS receivers have been used to estimate soil moisture or vegetation properties.
However, since commercial geodetic receivers are used for GNSS-IR, most advances have
come from new algorithms [9] and not from new receivers or technologies. Despite that, it
is worth mentioning that new applications have been derived using the GNSS-IR concept.
Sea level was monitored using the GNSS-IR concept [10], lake ice thickness was retrieved
for the first time in [11], and sea ice and snow thicknesses were also retrieved using
multi-frequency observations and using a four-layer scattering model [12].

The second technique covered in this section is a new technological approach that
makes use of the scattered GNSS-R signals in order to generate a synthetic aperture radar
(SAR)-like image [13]. The technology is based on ground-based GNSS-R receivers that
accurately compute and compensate the delay and Doppler of the reflected signal of
a satellite while it crosses the sky. A SAR-like processing operation can be performed,
producing a 2D image of a wide area in front of the receiver [14].

2.2. Airborne Receivers

Airborne GNSS-R receivers have been used as technology demonstrators for novel
techniques and technologies. As previously stated, the first GNSS-R signal acquired by
Katzberg and Garrison was retrieved from an airborne platform [4]. The number of GNSS-R
instruments that have flown in airborne campaigns is large, which was especially true
before the deployment of the CYGNSS constellation. In this section, we will cover those
instruments that, in recent years, have provided large technological development with
respect to previous versions or actual satellite-based versions.

In chronological order, the GOLD-R instrument (2010–2014), developed by the Institut
de Ciències de l’Espai/Institut Estudis Espaials de Catalunya (ICE-CSIC/IEEC) with the
collaboration of UPC and ESA, was a pioneer instrument capable of working at the GPS
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L1 band at multiple polarizations [15]. The basic design works by sampling up to 20 MHz
of bandwidth at the GPS L1 band using a single-LHCP patch antenna. The instrument
is able to work in different modes thanks to the collection of the IF samples (e.g., I/Q
down-sampled data) of both the direct and the reflected signals. It was developed to show
the differences between iGNSS-R and cGNSS-R processing modes [16].

The second airborne instrument covered in this review is the global navigation satellite
system reflectometry instrument (GLORI) [17]. Designed in 2015, this airborne instrument
was a novel approach and was used to perform polarimetric studies overland. It includes
a dual polarization RHCP/LHCP antenna system with 7 dBic of peak gain, capable of
receiving GPS L1 and L2 signals. The receiver is based on an SDR working at 4 MHz, thus
providing a delay resolution of 1/4 chips at GPS L1CA. The instrument has demonstrated
the differences in RHCP and LHCP signals overland in previous work [18], being of interest
for future spaceborne missions, such as HydroGNSS [16].

The third airborne instrument with notable technological advancements is the UPC
microwave interferometric reflectometer (MIR) [19]. Designed in 2015–2018, it conducted its
maiden flight in 2018. This instrument is the first GNSS-R instrument capable of providing
collocated GNSS (GPS and Galileo) L1 and L5 measurements using a 21/18 dB (L1/L5)
directive antenna with beamforming. The instrument had different modes of operation,
including cGNSS-R and iGNSS-R, and it aimed at proving the capabilities of high-directive
antennas to remove iGNSS-R cross-talk [20]. Additionally, the instrument demonstrated, in
cGNSS-R mode, the enhanced capabilities of the GPS/Galileo L5/E5 waveforms for sea
state, soil moisture, vegetation, and monitoring sea altimetry [21–24].

The last airborne instrument covered in this review is the next-generation GNSS-R
instrument proposed by Ruf et al. [25]. The instrument was conceived after CYGNSS
success from a set of scientists directly involved in the CYGNSS mission. The proposed
instrument was designed for operation in airborne platforms. It is able to work in L1/L5
bands in both GPS and Galileo constellations. Moreover, its down-looking antenna was
designed to receive both RHCP and LCHP signals. Thus, it combined characteristics from
the previously presented instruments, GLORI and MIR. The instrument was deployed in
mid-2021 for continuous operation in domestic aircrafts by Air New Zealand [26].

Thanks to electronics miniaturization, low-cost GNSS-R receivers are becoming popu-
lar among the community. Studies have shown the Earth observation potential of incorpo-
rating GNSS-R receivers into commercial aircrafts [27]. Furthermore, UAV-based GNSS-R
receivers are being developed by different research centers for low-cost and high-resolution
Earth monitoring [28–30].

2.3. Spaceborne Receivers

The first GNSS-R signal received from space was captured during a calibration routine
of the Space Shuttle radar imager in 2002 [31]. Later in 2003, the first GNSS-R receiver was
launched into space as part of the UK Disaster Monitoring Constellation-1 (UK-DMC-1)
mission from Surrey Satellite Technology Limited (SSTL), Guildford, UK. The mission
included the first GNSS-R receiver built for that purpose as a technology demonstrator. The
receiver had several configurable correlators implemented in a field-programmable gate
array (FPGA) that were used to correlate the different GPS satellites in view. The antenna
used was a four-element patch nadir-looking antenna array, working under left-hand
circular polarization (LHCP) conditions with a directivity of ~11 dB. The mission aimed to
collect small portions of data to prove the feasibility of using GNSS-R to study the ocean.
Following UK-DMC-1, in 2013, the UK-TDS-1 mission was conceived with an upgraded
version of the SSTL GNSS-R receiver, called SGR-ReSi [32,33], and with the same type of
antennas as in UK-DMC-1. Both instruments were using a correlation approach called
zoom transform correlator, detailed in [34], which has been the technique adopted for most
GNSS-R receivers. SGR receivers were able to provide a 1/4 chip resolution for the GPS
L1CA signal, with a 500 Hz spectral resolution and a moderate power consumption below
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100 W. The mission was designed with a polar orbit, and it collected data all around ocean,
land, and ice.

Three years later, in 2016, the National Aeronautics and Space Administration (NASA)
Cyclone GNSS (CYGNSS) mission was launched, using a similar receiver configuration as
the one used in the UK-TDS-1. A GNSS-R receiver, called a delay–Doppler map imager
(DDMI), was conceived for the mission. It followed the same approach as SGR-ReSi in
terms of correlation approach, but the mission was designed with two sets of 28◦-looking
LHCP antennas arrays placed on the sides of the satellite, thus ensuring a larger coverage.
The DDMI provides the same resolution as the SGR-ReSi platform of 1/4 chip for the
GPS L1CA signal, with a 500 Hz spectral resolution and a moderate power consumption
below 60 W. Moreover, the instrument is able to provide with an IF data mode, where the
raw IQ counts can also be retrieved and downloaded down to Earth using the satellite’s
link. CYGNSS consists of eight microsatellites that cover mid-latitudes of ±38◦, and it
has demonstrated the capabilities of using moderate-cost micro-satellite constellations to
perform Earth observation at better time resolutions and similar spatial and radiometric
resolutions as compared with conventional satellite missions [35,36].

The China Aerospace Science and Technology Corporation (CASC) has also deployed
the first Chinese spaceborne GNSS-R instrument: the BuFeng-1 A/B constellation [37].
This was successfully launched into a polar orbit in 2019. The instrument for the BuFeng-1
constellation follows the same design as the SSTL SGR-ReSi and the CYGNSS DDMI and
uses the same antenna configuration as the NASA CYGNSS mission, with two antennas
tilted off the sides of the spacecraft. In this case, the looking angle with respect to the nadir
in the BuFeng-1 case is 26◦, and it was also capable of receiving L1 BeiDou signals. The
power consumption of the instrument is similar to the ones previously reported of ~55 W.

More recently, the China Meteorological Administration (CMA) in 2021 launched the
FY-3E mission [38]. The receiver included in the mission is capable of providing a larger
time resolution from 1/4 of a GPS L1 chip to 1/8 of a chip. The missions’ receiver has
similar characteristics to the CYGNSS DDMI or the BuFeng-1 receiver, with a similar power
consumption, being only able to fit into a micro-/mini-satellite. The FY-3E mission provides
near real-time data with a latency of 3 h with a polar orbit.

The Universitat Politècnica de Catalunya (UPC) NanoSat-Lab has been also contribut-
ing to the technological advances of spaceborne GNSS-R instruments. Its first CubeSats
mission, 3Cat-2 [39], launched in 2016, inaugurated the first ever spaceborne dual-band po-
larimetric GNSS-R instrument, which had previously been tested in a balloon experiment
campaign [40]. The instrument inherited previous ground-based GNSS-R instruments
developed by the university, and it comprised an open-loop and a closed-loop receiver to
work in cGNSS-R, iGNSS-R, and reconstructed GNSS-R (r-GNSS-R) modes [41]. In this
case, the antenna used was different than the ones used in UK-TDS-1 or CYGNSS, and
it was specifically designed for a 6U CubeSat structure. It consisted of a 6-element patch
array, providing gains of up to 13 dB at L1, and up to 11.5 dB at the GPS L2 band. Moreover,
as strategically designed for CubeSats, its volume, mass, and power consumption were of
~3U of a CubeSat (30 × 30 × 10 cm3) and less than 5 kg mass, with a power consumption
below 15 W. However, spaceborne data could not be retrieved from the instrument due
to a satellite bus malfunction. As an evolved version of 3Cat-2, the UPC NanoSat-Lab
leads the European Space Agency (ESA) FSSCat mission [42]. The mission was launched
in September 2020, and included a combined GNSS-R receiver and an L-band radiometer
using software-defined radio technology (SDR) [43], inheriting the road paved by the
UPC passive advance units (PAU) concept [44]. The instrument called flexible microwave
payload-2 (FMPL-2) includes both as GNSS-R and L-band radiometer in a single unit of
a CubeSat (10 × 10 × 10 cm3), with a mass of ~1.3 kg and power consumption ~10 W.
The system antenna arrangement is similar to that 3Cat-2 of a 6U patch array, but for dual
frequency (GPS L1 and the radiometry L-band at 1413.5 MHz).

Another successful GNSS-R mission example, this time from a private entity source,
is the Spire Global Inc. case. The company, known for its massive CubeSat GNSS radio
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occultation (GNSS-RO) constellation for ionospheric measurements, has recently launched
several CubeSats to provide global GNSS-R measurements [45]. In 2019 and 2020, the
company launched two batches of two 3U CubeSats with GNSS-R capabilities (two in 2019,
two in 2020), providing up to 20 simultaneous correlation channels [46]. The miniaturized
receiver, produced by Spire, is the outcome of years working with GNSS-RO receivers, and
it provides a multi-constellation (GPS, QZSS, Galileo) capability. The antenna system is of
3 × 1 patch antennas working at LHCP with beamforming capabilities. The instrument
is able to work continuously with deployable solar panels, weighing less than 5 kg [46].
Spire Global Inc. is currently retrieving LHCP measurements at near-nadir and RHCP
measurements at grazing angles, combining their GNSS-R and GNSS-RO satellites.

The next GNSS-R mission in the pipeline is the HydroGNSS mission [47]. The mission
includes the SSTL newest version of the SGR-ReSi, the SGR-ReSi-Z. This new receiver is
capable of providing multi-constellation (GPS/Galileo), multi-polarization (LHCP/RHCP),
and multiband (L1 and L5) GNSS-R measurements. The receiver computes real-time
L0b observations (e.g., delay–Doppler maps) at L1/E1, and the L5 data are downloaded
and processed following the recommendations of [48]. In preparation for the launch of
HydroGNSS, SSTL launched the DoT-1 mission in 2019 [47] as a tech demo with which to
evaluate its new satellite bus.

Last but not least, it is worth mentioning the contribution of the soil moisture active
passive (SMAP) radar receiver tuned at the GPS L2C band, whose data have been termed
SMAP-reflectometry [49]. The SMAP radar receiver collects IQ data in an open-loop mode.
Data are downloaded and post-processed on Earth [49]. Despite not being specifically
designed for GNSS-R, the high directive and dual linearly polarized SMAP antenna com-
prises a unique platform from which to study polarimetric applications of GNSS-R over
land [50–55].

Other space mission proposals have been also developed in the recent years including
iGNSS-R receivers [56,57], but neither mission has ever been implemented or launched.

2.4. Technology Advancement Summary

GNSS-R has been rapidly growing since 2013 UK-TDS-1 and 2016 CYGNSS launches.
The contributions made by both missions have positioned GNSS-R as a novel and low-cost
approach suitable for use in the Earth observation of massive constellations. Current
airborne campaigns are integrating multi-constellation, dual-polarization, and multi-band
GNSS-R receivers. Future spaceborne GNSS-R missions, such as HydroGNSS, with a
tentative launch in Q4 2024/Q1 2025 [58], will also follow the same approach. Since the
first implementations of the GNSS-IR ground-based receivers, multiple configurations and
applications have been developed, allowing for localized assessments of soil moisture,
vegetation, water-level, sea ice and snow information. Those local measurements enable
applications at small scale, such as monitoring the water level of a lake or assessing soil
moisture deficiencies of agricultural fields for farmers, but also enable the refinement
of models.

3. Ocean Applications

Remote sensing of the ocean surface has traditionally been an application of active (e.g.,
scatterometers, altimeters) or passive instruments (e.g., radiometers) [59]. GNSS-R operates
somewhere in between active and passive modes as the transmitted GNSS signals are used
opportunistically for remote sensing, in addition to their intended use in navigation. In
GNSS-R, signals that reflect off the Earth’s surface are processed to gain insight on the
roughness or height of the surface. Depending on the science application intended and
signal processing applied, GNSS-R receivers are operated as bistatic scatterometers or
altimeters [60]. This section discusses the oceanic applications of GNSS-R remote sensing.
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3.1. Wind Speed

Near-surface wind speed is one of the geophysical variables that can be estimated
from GNSS-R observations made over the ocean. With an increase in wind speed, the ocean
surface will appear rougher, and the reflected signal will scatter more diffusely. As the
reflected signals interact with the ocean surface, the roughness of the surface is measured,
from which we can infer near-surface wind speed. Signatures within the DDM are then
used to infer various geophysical quantities like ocean surface wind speed [58].

Several algorithms have been developed across the various GNSS-R missions for the
purpose of estimating wind speed from the data. As the CYGNSS mission was proposed
and implemented as the first dedicated GNSS-R ocean surface wind speed NASA mission,
much of the recent research on this remote sensing theory has been performed specifically
for CYGNSS. For example, ref. [60] describes development of wind speed geophysical
model functions for the CYGNSS mission. Ref. [61] relates two features of the DDM to
wind speed: the normalized bistatic radar cross section and the slope of the leading edge of
the radar return pulse scattered from the ocean surface.

The performance of the wind speed estimate depends on quality control and calibra-
tion of the data [62]. The calibration of the data is especially important in high wind speed
regimes, where the sensitivity of the scattered signal patterns to changes in wind speed is
lower [63,64]. For the CYGNSS method, dynamic calibration has improved the performance
of the wind speed algorithms [62]. However, ref. [65] developed a method for wind speed
estimation irrespective of the calibration status. The authors of ref. [65] found they were
able to provide quality estimates of wind speed using uncalibrated data by incorporating a
physical forward model with a background numerical weather prediction dataset, a process
which calibrates the raw data for the retrieval process. This variational retrieval method is
computationally intensive, but offers another promising retrieval method.

The characteristics of GNSS-R-derived wind speed data—strengths, weaknesses,
coverage—are dissimilar to the data obtained from other methods. An in-depth description
of the current state of the art of remotely sensed winds is outlined by [59]. Unlike other
traditional systems, the spatial and temporal properties of data coverage and sampling
depend on the observation geometry of the GNSS satellites and receiver pairs. The pseudo-
random nature of CYGNSS data collections is explored by [66]. Additionally, the sensitivity
of GNSS-R to wind speed differs from that of other techniques for a variety of factors.
For example, while both scatterometers and GNSS-R receivers effectively measure surface
roughness, albeit at different frequencies, the forward (GNSS-R) vs. backward (scatterome-
try) means that the relationship of the GNSS-R signal with respect to wind speed behaves in
an opposite to that of monostatic scatterometry. Scatterometers are designed to be sensitive
to capillary waves, which are dependent on local wind speed; however, GNSS-R is sensitive
to a larger range of surface waves. The sensitivity of GNSS-R observations to wind speed
changes decreases with wind speed [63]. There are many strengths and weaknesses for each
remote sensing technique; ultimately, by using all available data, a greater understanding
of the Earth system can be achieved.

While GNSS-R data are unique, many studies have documented that CYGNSS data
can be assimilated alongside traditional sensor data to improve weather forecasting [67–70].
Data assimilation experiments are ongoing for the CYGNSS mission as the understanding
of the data quality and properties change with every new version of wind speed data. Each
data assimilation experiment uses slightly different methods and metrics for evaluation,
but most experiments showed that CYGNSS data have a neutral or positive impact on the
weather forecasts of tropical cyclones.

CYGNSS wind speed data have supported a variety of atmospheric science analyses.
CYGNSS data are useful in studies of tropical precipitation processes because the L-band
GNSS signals penetrate precipitation [71]. For example, ref. [72] compared winds from
CYGNSS and ASCAT around maritime thunderstorms with and without lightning to try
and determine if near-surface winds are stronger in thunderstorms. Surprisingly, Lang
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found that the conclusion depended on the sensor used in the analysis, and so this result
will be reexamined with future CYGNSS data versions.

Additionally, GNSS-R wind speed data have supported other derived datasets. For
example, CYGNSS winds can be used as input into the calculations of ocean surface heat
fluxes [73,74]. The CYGNSS ocean heat flux data are available, alongside all other CYGNSS
datasets. [23,75] used the CYGNSS-based flux product to investigate the climatological
mean of the surface fluxes across low-latitude (±40 degrees) extratropical cyclones. Ref. [76]
took the analysis presented in [73] further and examined the distribution of fluxes within
low-latitude extratropical cyclones during different development phases. For a more tropics-
centered investigation, ref. [77] were able to use the CYGNSS flux dataset to investigate
the coupling between surface heat flux and enhanced convection and precipitation in the
Madden–Julian oscillation (MJO). The CYGNSS-based ocean surface flux product will
enable researchers to perform other studies of air–sea interaction in the future.

GNSS-R has been used for tropical cyclone applications since the initial aircraft-
based studies were performed [78,79]. These initial airborne experiments showed that the
technique is useful for observing the ocean surface, regardless of precipitation, for estimates
of near-surface wind speed. Given the technique’s strengths in observing through the use of
precipitation, CYGNSS was developed with the motivation to better understand TCs with
a spaceborne GNSS-R platform. Prior to launch, methods were developed to estimate TC
intensity, size, and structure from the CYGNSS level-2 wind speed data over TCs [79,80].

While the CYGNSS mission was motivated to observe TCs, the creation of robust
estimates of wind speed has been challenging. First, calibration of the level-1 data is key for
accurate estimation of wind speed, especially for high winds [61]. Calibration of CYGNSS
data was initially challenging because of unexpected and unobservable fluctuations in the
properties of the GPS transmitter signal power. Now, with a dynamic calibration technique,
these challenges have been overcome. Additionally, GNSS-R observations have a non-
unique mapping between observations and wind speed. The scattered signal also depends
on the state of the sea surface. Significant wave height has been incorporated into the latest
CYGNSS wind speed estimation algorithms, and work is ongoing to figure out a robust
solution that incorporates sea state into estimates of wind speed [81,82]. Ref. [35] shows
the current performance of wind speed data products developed for TC analysis [83].

GNSS-R is a relatively new source of near-surface wind speed data, and these data
are useful for supporting weather analysis. CYGNSS observations have been developed
for the analysis of TCs and related phenomena. For TC-analysis, many researchers rely
on idealized models of TC wind fields, together with GNSS-R observations, in order to
characterize various aspects of the storm [80,84]. For example, ref. [85] developed a method
to estimate the center location of the TC circulation from the collection of level-2 wind speed
observations over a storm. Ref. [86] detailed a new storm-centric TC wind data product
that grids wind speed data into a storm-relative grid for TC analysis. Ref. [87] focused on
the estimation of the maximum wind speed of a storm, which is valuable for determining
one aspect of the destructive potential of TCs. These applications are examples of where
GNSS-R data are complimentary to traditional techniques, which may have limitations
where GNSS-R excels, and vice versa.

3.2. Wind Direction

Although they were initially studied experimentally using aircraft-based instrumenta-
tion, Refs. [88,89] demonstrated that GNSS-R measurements were sensitive to not only wind
speed, but wind direction as well. Although this initial and subsequent airborne analysis
(e.g., [41,90]) showed promise, spaceborne wind direction applications have not developed
at the same pace as wind speed applications. Wind direction is a more challenging retrieval
problem than spaceborne platforms because of signal-to-noise requirements and solution
ambiguities. Recently, several studies have demonstrated the Doppler difference in the
DDM to be sensitive to wind direction [91,92].
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3.3. Swell and Swell Height

Ocean winds produce an increase in ocean roughness; this attenuates the signal,
thus decreasing the NBRCS. When wind blows steadily in a certain direction, it produces
long-wavelength swell waves. In [93] it was demonstrated that the surface scattering
coefficient was affected by the presence of swell waves. This study, performed with
empirical satellite-collected data, showed that the “tails” of the DDM were sensitive to
swell presence. Airborne GNSS-R data also showed sensitivity to swell [94]. It was found
that swell could be retrieved using higher bandwidth GNSS codes (e.g., L5/E5). For such
cases where the first Fresnel zone was smaller than the crest-to-crest distance produced by
the swell, two specular peaks could be identified at two or three consecutive waves crests,
being able to retrieve swell period information from its distance. Several studies have also
analyzed the impact of swell, among other parameters, on the measured GNSS-R signals.
In [95], the authors performed a complete modeling of the bistatic radar cross-sectional
magnitude variation due to swell. In [96], the authors studied the effects of swell, among
other parameters, for the CYGNSS mission and its effects on wind speed retrievals. The
study in [96] performed a thorough analysis and modeling of the specific effects of swell
on the GNSS-R signature. Finally, ref. [97] presented estimations of swell from space,
using CYGNSS data, showing that DDM parameters as the normalized integrated delay
waveform (NIDW) correlated well with swell height, with correlation coefficients larger
than 0.87 and RMSE between 0.51 m and 0.39 m, these depending on the variable used for
the retrieval.

3.4. Altimetry

GNSS-R altimetry using interferometry processing was proposed by Neira in 1993
as the first application of GNSS-R [5]. Several studies have demonstrated the capabilities
of cGNSS-R and iGNSS-R in producing altimetry products. The first GNSS-R altimeter
concept was conceived of in [98] and used the interferometric technique to achieve a better
accuracy. The proof of concept was extended into a satellite instrument [56], but it was never
launched into space. The GNSS-R altimetry theoretical precision using the interferometric
mode depends on the signal/band used. For GPS L1 this can be ~13 cm, and for Galileo E5
this can go down to 6.3 cm [99]. The measured error of other space-borne altimeters, such
as CryoSat-2 or Envisat over lakes, was between 5–68 cm and 17–54 cm [100], respectively,
and the surface wave height altimetric product of other altimeters as Jason-3 and Sentinel-3
was 23–27 cm as compared to buoy data [101]. Results showing similar RMSE to CryoSat-2
or Envisat have been reported in actual GNSS-R experiments [102], where the RMSE was
found to be ~1 m using long integration times of 2–5 s.

Due to the lack of GNSS-R instruments capable of performing altimetry (e.g., capturing
direct and reflected waveform simultaneously), other techniques were developed using
propagation models that relied on only the reflected GNSS signal. However, results
presented large errors and biases with respect to iGNSS-R techniques, with RMSEs on the
order of 10 m [103].

Recently, a thorough study on GNSS-R altimetry was published using the microwave
interferometric reflectometer (MIR) technique to assess the GNSS-R precision bounds
using experimental data, and using different bands and processing techniques [24]. The
study presented results similar to those obtained [101], albeit using different combinations
of bands and peak tracking techniques. It was found that the best achievable accuracy,
compared to CryoSat-2, using the GPS L5 band, and tracking the first peak of the waveforms’
derivative, was one of 85 cm.

GNSS-R has been proposed as a low-cost altimeter, with a performance usually one to
two orders of magnitude worse than that of radar altimeters. For GNSS-R methods, large
integration times are required to lower the error, even using iGNSS-R or high-bandwidth
signals, such as GPS L5. An alternate approach was presented in [104], where the authors
proposed to use the coherent scattering as this allowed them to track the phase of the
carrier signal to provide precise ranging measurements. As per study [104], a grazing angle
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geometry maximized the ideal conditions for coherent scattering over the ocean. Authors
used CYGNSS measurements of grazing angles to implement the first grazing angle carrier
phase system for sea surface salinity, obtaining a precision of 3–4.1 cm in mean at 50 ms
integration, i.e., cm at 1 Hz, comparable to radar altimeters.

4. Land Applications

Since the first GNSS-R ground-based and aircraft experiments started to appear, the
sensitivity of the GNSS-R signals to several ECV and other geophysical parameters have
been explored by many researchers. GNSS-R satellite missions provided a new view of the
world, and it favored global assessments of soil moisture, vegetation, wetlands, and floods.
Next, we summarize some of the advances in the field.

4.1. Land Reflection Point

Unlike ocean applications, topography complicates the geolocation of the scattered
GPS signal over land. Accurate geolocation of the specular point is an essential step for
geophysical parameter retrievals over land, which has brought different studies in the field.
In [105], the authors presented a methodology for geolocating and calibrating CYGNSS
level 1 products over land. In addition, the authors provided an analysis of the spatial
resolution link to coherent returns. The precise geolocation was achieved by employing a
smooth ellipsoid model from the Earth combined with the information of the transmitting
GNSS satellite and the precise location of the receiver, together with the terrain topography
from the digital elevation map (DEM) derived from the shuttle radar topography mission
(SRTM). The DEM was used to create a grid of points in the surroundings of the specular
point location. Each grid pixel was then associated with a delay and Doppler value that
were computed from the delay and Doppler value of the signal peak. Finally, the DEM was
combined with the incident and reflection angle estimations to determine the suitability
of the specular reflection. In [106], the authors developed an on-board reflection point
prediction algorithm for GNSS-R satellites using a topographically accurate map. The
algorithm allows researchers to predict the reflection point location over land. This is also
useful for compression and calibration, making it ideal for small satellites or CubeSats.

The study in [107] focused on understanding the Earth’s topographic effects in order
to obtain calibrated datasets. As in [99,106], the authors in [108] employed topographical
parameters derived from a DEM. The study considered the impact on grazing angles and
nadir angles on a global scale. Some of the GNSS-R observables commonly used by the
science community, such as the trailing edge slope and reflectivity, were evaluated in the
manuscript. Flat surfaces with low topographic heterogeneity showed small trailing edge
slopes and high reflectivity values, as expected, because of the increased coherency of
the GPS signals. Interestingly, the findings in [108] showed that topographic features of
rough surface contained information for a parametric analysis. The sensitivity of trailing
edge slope and reflectivity to soil moisture was almost negligible, while the sensitivity
of those metrics showed a stronger correlation with topographic wetness index. The
authors in [109] investigated altimetry using spaceborne GNSS-R data which use different
topographic models to consider the effects of large-scale slope for geometry computation.
The methodology of [109] presented a novel geometry computation strategy based on
inverse calculations of path geometries on an ellipsoid. The work was implemented using
the DEM product from TanDEM-X 90 m, and the results showed that a surface slope of 0.6%
at an elevation angle of 54 degrees resulted in a geolocation error of 10 km and a 50 m error
determining the specular point height. The results of this study showed a large reduction
on the standard deviation of specular point location errors from 4758 m to 367 m, and also
a decrease in height error from 28 m to 5.8 m.

4.2. Coherency of the GNSS-R Signal

The first model of GNSS-R signals developed in 2000 [2] only included the incoherent
scattering because of the Kirchhoff approximation method that only assumes strong diffuse
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(non-coherent) scattering of very rough surfaces. Later, in 2018, the same authors improved
the model by adding a coherent scattered component of the GNSS signals [3] generalizing
the bistatic radar equation based on the assumption that the roughness distribution is
spatially homogeneous, and that this leads to a more natural transition from partially
coherent scattering to incoherent and diffuse scattering. Other studies, such as [21], have
developed methodologies to untangle the incoherent and coherent components of a GNSS-
R signal, leading to novel applications. This is contrast to traditional monostatic radars,
where the return is dominated by incoherent back-scattering, bistatic radars (e.g., GNSS-R)
with forward-scattered signals present both coherent and incoherent components. The
methodology presented in [21] was used to separate the direct signal leakage in the reflected
signal channel in an airborne dual-band (L1/E1 and L5/E5a) experiment and successfully
applied to different GNSS constellations (GPS and Galileo). The authors in [108] were
capable of untangling the coherent and incoherent components, providing a better signal
calibration accuracy and a higher resolution. In addition, the use of the coherent component
allowed authors to establish a more precise location of the specular reflection point by
determining the maximum peak of this coherent component rather than the point of
maximum derivative of the incoherent one. The authors in [109] conducted an analysis of
the development of the response of a GNSS reflected signal to a step function because of
surface transition. The authors computed the spatial resolution of GNSS-R signals and then
validated their assessments at two GPS bands, L1 and L5, from airborne measurements.
The study proved that when a land-to-calm ocean or lake transition occurs, the reflectivity
shows “ripples” during transition, which is the same as in the response of a step function
in a common electrical circuit.

4.3. Soil Moisture

Soil moisture applications have been the focus of many studies. Soil moisture can be
obtained from inversing models of the dielectric constant, derived from the measurements,
or by directly using GNSS-R observables and soil moisture assessments from other satellites
or ground stations and building a geophysical model function, a neural network or some
mathematical link that relates them. The authors in [110] developed a method to estimate
the dielectric constant using GNSS-R observations. The authors linked the reflectivity com-
puted from the GNSS-R data to the dielectric constant equation used in SMAP algorithms
for the SMAP radiometer data. The authors estimated the dielectric constant with an RMSE
of approximately 5.73, which was on the order of the SMAP mission’s acceptable error.

A team from the University Corporation for Atmospheric Research/Colorado Uni-
versity (UCAR/CU) developed a soil moisture product [111] for the CYGNSS mission and
made it available in NASA repositories. The dataset contained soil moisture retrievals
for the upper 5 cm of the soil surface for the range of latitudes covered by CYGNSS (i.e.,
±38 degrees latitude). The retrieval used a linear fit between the CYGNSS reflectivity
observations and soil moisture retrievals from SMAP mission to later perform downscaling
using CYGNSS-only data. The product was validated against 171 in situ soil moisture
cal-val sites, with a median ubRMSE of 0.049 cm3/cm3 (std of 0.026 cm3/cm3) and median
correlation coefficient of 0.4 (std of 0.27). The same analysis was performed using SMAP
soil moisture for validation, obtaining an ubRMSE of 0.045 cm3/cm3 (std = 0.025 cm3/cm3)
and a median correlation coefficient of 0.69 (std = 0.27). The UCAR/CU soil moisture
product was considered as a complementary set of measurements to SMAP product that
could provide information at faster revisit times than 3 days.

The authors in [112] followed a different approach by employing a machine learning-
based algorithm. The algorithm was designed to derive a soil moisture product by simply
using CYGNSS’s observations. The work employs in situ soil moisture data from the Inter-
national Soil Moisture Network (ISMN) and other space-borne ancillary data to train the
neural network, producing a daily product at 3 km and 9 km. The method accomplished
an unbiased RMSE of 0.044 cm3/cm3 with a correlation coefficient of 0.66 as compared to
the SMAP soil moisture product obtained at a 9 km resolution. The authors also observed
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that the performance degraded for regions of dense forest, high topography, and coastlines.
Similar to the approach used in [112], the same authors conducted a deeper analysis of
various neural networks schemes over the CONUS [113]. The authors in [23] developed
a soil moisture retrieval algorithm using only data from a single pass (e.g., not using
multiple passes) at two GNSS frequency bands, L1 and L5, using data from an airborne
instrument. The validation of the retrieval was assessed using data from the OzNet soil
moisture monitoring network in southern Australia. The study methodology made use
of an artificial neural network to retrieve soil moisture, combining reflectivity values and
the standard deviation of the reflectivity as a proxy for surface roughness. In addition, the
impact of surface roughness and vegetation attenuation on GNSS-R reflectivity measure-
ments was assessed. The work performed in [23] is an example of a methodology that
includes multi-satellite data. The GNSS-R retrieval algorithm was trained and compared
to a downscaled soil moisture product (20 m resolution); this latter product was derived
by combining the SMOS soil moisture with the Sentinel-2 normalized difference vegeta-
tion index (NDVI) measurements, and the European Centre of Medium-Range Weather
Forecast (ECMWF) Land Surface Temperature. As a continuation of the work in [23], the
follow-up investigation in [114] developed an algorithm to retrieve surface soil moisture
from GNSS-R observations, focusing in particular on addressing the challenges presented
by surface roughness and vegetation effects. The authors attempted to correct for two
main factors: the existing vegetation opacity products, which seemed to overestimate the
contribution, and the lack of real representation of surface roughness estimations, resulting
in retrieval inaccuracies. The authors in [114] proposed a method to correct the surface
roughness, together with incident angle dependence and the actual reflectivity value. With
this correction, reasonable surface soil moisture values were proven to exist below a 30◦

incidence angle.
The synergistic use of GNSS-R and L-band microwave radiometry was also explored

by authors in [115], who developed the instruments and sent them to space on a CubeSat
platform with the intention of providing soil moisture estimations. Four neural network
algorithms were tested. The first algorithm used the skin temperature product from
ECMWF together with the 16-day averaged NDVI from the moderate resolution imaging
spectroradiometer (MODIS) to estimate soil moisture. Their second approach used all
inputs from the first model plus L-band radiometry measurements, showing an increased
performance with respect to the first model. The authors compared their retrieval with the
soil moisture and ocean salinity (SMOS) soil moisture product gridded at 36 km obtaining
a 0.074 cm3/cm3 RMSE. The third approach used the GNSS-R data instead, with an error of
0.087 cm3/cm3, as compared in this case to the SMOS 9 km product. Finally, a fourth model
combined both radiometer and reflectometer. This outperformed the previous approaches,
with an RMSE of 0.063 cm3/cm3, and demonstrated once more the benefits of combining
radiometry and GNSS-R data.

Several studies have also used reflectometry data from the SMAP radar receiver. This
started collecting data in 2015 and currently represents the most extensive space-borne
GNSS-R dataset available which is, in addition, spatially and temporally collocated with
the SMAP radiometer. Because of the unavailability of a processed calibrated dataset, the
data have only been explored in a small set of studies. Initial studies investigated the
potential of SMAP reflectometry (SMAP-R) data to identify freeze/thaw state [51] and po-
larimetric signatures over cryosphere and land [53]. The first assessments in [51,53] did not
include direct signal or SMAP antenna filtering corrections. Later on, a complete calibration
methodology for the SMAP-R signals was presented [49]. The latest research in SMAP-R
was recently published in [52], which presented the formal mathematical description of
SMAP-R as the first full polarimetric GNSS-R instrument. The work in [52,54,55] repre-
sented the path towards the standardized use of SMAP-R by the scientific community and
contributed to the ongoing efforts towards employing GNSS-R for soil moisture estimation.
Additionally, the same authors provided a study in [116] of the detection probability of
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polarimetric GNSS-R signals. This showed the criticality of the selection of the antenna
polarizations in future GNSS-R polarimetric mission design.

4.4. Vegetation

Following [49], the same authors performed an analysis in [50] to understand the
polarimetric sensitivity of SMAP-R data to crop growth and soil moisture. The investigation
considered crop type and height, vegetation water content (VWC), and vegetation optical
depth (VOD). It was strategically conducted over the U.S. Corn Belt, where an extensive
area is used for agricultural purposes. The standard linear V-to-H polarimetric ratio was
used instead of previous definitions [53], showing the potential of SMAP-R to detect these
agricultural changes. The authors in [50] showed the difference between the bare soil
conditions and peak growth and the maturation conditions of the study area, investigating
the role of soil moisture in such assessments. The study concluded that polarimetry GNSS-
R, combined with radiometry, is key to solving the uncertainties derived from vegetation
and roughness components. This works to improve therefore the final soil moisture
estimates and obtaining a vegetation water content or vegetation opacity product. With
the work in [52], which provided the full a wide variety of polarimetric assessments can be
obtained as it provides the full polarimetric representation of the signals through the Stokes
parameters. The first studies using the mathematical formulation in [52] have shown the
sensitivity of the SMAP-R signals to land geophysical parameters [54] and the capability to
combine SMAP-R with SMAP radiometer to obtain improved soil moisture estimates of
densely vegetated areas [55].

Following the initial study in [117] on VWC estimation using GNSS transmissivity
observations, the authors in [118] continued to prove the value of the technique. The
study used a GPS receiver to compare the power received in open sky and vegetation
conditions. The authors found an increased attenuation due to the vegetation, which was
linked to the VWC. The new study in [118] analyzed the attenuation and depolarization
produced by the vegetation layer to the GPS signals. The observations were compared to
different ground-truth datasets (greenness, blueness, and redness indices, sky cover index,
rain data, leaf area index or LAI, and NDVI). The highest correlation observed resulted
from an interaction between GNSS signal strength and NDVI data, providing a correlation
coefficient over 0.85 independently from the elevation angle. Large depolarization effects
were also significant at elevation angles above ~50◦. Authors in [118] also fitted the data to
a zero-order τ-ωmodel to estimate the single scattering albedo (ω), assuming a fixed VOD
(τ), to compensate the vegetation scattering effects. The authors concluded that at elevation
angles lower than 67◦, the ω model was not related to optical observations (e.g., NDVI),
but to other scattering effects, thereby limiting the range of elevation angles that can be
used for soil moisture retrievals. Following studies in [117,118], a team implemented the
same approach [119] by installing the instrument in a robotic dog-shaped platform to assist
SMAP mission in calibration and validation activities [119].

4.5. Wetlands

The monitoring of wetlands has also attracted the attention of many researchers. The
main reason for this is because there is a gap in characterizing, understanding, and pro-
jecting changes in atmospheric methane and terrestrial water storage linked to wetlands
dynamics. The authors in [120] employed GNSS-R signatures from aircraft and satellite
measurements to demonstrate that, even under dense vegetation conditions, inundated
wetlands can be identified thanks to the coherent scattering of the GPS signal on water,
which cannot be measured by optical sensors and monostatic radars. The authors in [121]
assessed the synergies of GNSS-R and L-band imaging radar to detect sub-canopy inunda-
tion dynamics in tropical wetlands in the Peruvian Amazon. The ALOS2 PALSAR-2 L-band
synthetic aperture radar (SAR) and CYGNSS data were merged together with other ground
measurements. The study showed that GNSS-R observations were able to detect inundated
regions that were undetected by the airborne L-band SAR, suggesting that GNSS-R had
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a greater sensitivity to inundation state beneath dense forest canopies relative to SAR.
Following that work, the authors in [122] then developed an inundation classification
algorithm in Tropical wetland complexes by employing GNSS-R data. The study assumed
that the GNSS-R signal scattering was coherent in the presence of surface water, produc-
ing a strong forward-scattering signature. A multiple decision-tree randomized (MDTR)
algorithm was used for wetland and inundation mapping, using ALOS PALSAR-2 as the
reference dataset for training and validation. The results obtained in [122] demonstrated
the ability of GNSS-R signals to detect inundation under dense vegetation, using a tropical
wetland complex located in the Peruvian Amazon. The classification accuracy was at 69%
for inundated vegetation regions, 87% for open water regions, and 99% for non-inundated
areas. Another approach for wetland monitoring was developed in [123], where authors
used CYGNSS data over the Everglades in South Florida to add to previous demonstrations
of the CYGNSS capability to obtain a moderate resolution and short revisit time of wetland
dynamics in the tropics. In this case, authors used estimates of water depth from the Ever-
glades depth estimation network (EDEN) for inundation mapping. The authors concluded
that the strengths of GNSS-R can be used with other techniques to enable high-resolution
and high-accuracy studies of wetlands on short timescales. An additional aircraft exper-
iment was conducted in [124] over Caddo Lake in Texas to continue to demonstrate the
ability to prove the capability of GNSS-R to detect waterbodies underneath the vegetation
canopy. In [124], the airborne-collected GNSS-R data were compared to Sentinel-1 data that
had been collected within a week timespan. The authors discussed that the low-altitude
measurement allowed for an improved assessment of the GNSS-R detection of the coherent
scattering. The results in [124] showed different signal attenuations between open water
and canopy-covered water. For example, inundated vegetation, such as the giant Salvinia,
resulted in a 2.15 dB difference, and inundated cypress forests showed a 9.4 dB difference,
which was 4.25 dB above that observed over dry land. Sentinel-1 data showed a 6 dB
difference between the inundated giant Salvinia, and open water, and data were insensitive
to standing water beneath the cypress forests. The authors concluded that, at aircraft
altitudes, GNSS-R enabled the mapping of inundated regions, even in the presence of dense
overlying vegetation.

4.6. Floods

Another immediate application of this technology over land is the detection of floods.
CYGNSS data have been widely used for flood detection applications covering for the
urgent need to quickly map which areas are inundated. This occurs particular due to
the short revisit time of CYGNSS satellites and the sensitivity of GNSS-R signals to inun-
dated surfaces, even beneath the vegetation cover. In [125], authors provided the very
first analysis for this application through the analysis of the floods occurred from the 2017
Atlantic hurricane season, which led to significant flooding in many parts of the U.S. and
the Caribbean. The authors demonstrated that the CYGNSS data provided clear signatures
of surface saturation and inundation over land at higher spatio-temporal resolutions and
shorter revisit times as compared to radiometers. In [125], the authors employed a simple
threshold-based algorithm to estimate the area of land flooded by Hurricane Harvey in
Texas, and by Hurricane Irma in Cuba. Following the first flood demonstration, the authors
in [126] used CYGNSS data to monitor another flood event, this one being a typhoon
event in China. The authors were able to confirm that the observed surface reflectivity and
the flooded area were qualitatively consistent with the Global Precipitation Measurement
(GPM)-derived precipitation and the SMAP/SMOS-generated brightness temperatures at
circular polarization. Following those studies, the authors in [127] developed a flood inun-
dation mapping algorithm that combined GNSS-R signals with topographical information.
The authors pointed out that, because of the pseudo-random geographical distribution of
GNSS-R specular points, it was not possible to obtain continuous high-resolution flood
inundation maps. By combining topological indicators that indicate the probability of a
certain area being flooded with GNSS-R, the authors derived a large-scale, high-resolution
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flood inundation map. The validation was conducted using available Sentinel-1A SAR data
during floods in Kerala (August 2018), and North India (August 2017). The results of the
study indicated that the model developed exhibited a flooding accuracy from 60% to 80%.
The study in [128] provided a humanitarian and disaster management perspective to flood
assessments based on GNSS-R data. The manuscript highlighted the need to tailor flood
assessment products to decision makers. Authors discussed the decision maker barriers
to understanding and using flood inundation maps, either such as being outside of their
expertise or because products do not provide the proper variables. Besides humanitarian
considerations, the authors in [128] included in their methodology an artificial intelligence
classification algorithm, based on k-means, to monitor flooding events and to characterize
land changes due to flooding events. The methodology was evaluated towards the needs of
the humanitarian sector by the use fa cognizant link (a translator) between the two worlds,
i.e., technologist or scientist and decision-makers.

5. Cryosphere Applications

A significant collection of spaceborne GNSS-R data for analyzing cryosphere applica-
tions, such as sea ice, snow, ice sheets, and freeze/thaw investigations, is available through
TDS-1’s and SMAP’s frequent measurements across the polar regions.

5.1. Sea Ice and Snow over Sea Ice

Using TDS-1 data, a number of studies [129,130] successfully matched the incoherent
returns from the ocean and the coherent returns from sea ice cover, based on different algo-
rithms and theoretical models, to obtain ice–ocean returns. These results were compared
to ice concentration maps derived from passive microwave sensors. Two studies showed
advancements when using a neural network (NN) approach [131] and a convolutional
neural network (CNN) approach [132] in TDS-1 measurements for sea ice detection and
concentration prediction. The CNN approach improved the accuracy of estimations and
simplified the network training. The three studies had success rates of over 95% in iden-
tifying sea ice from the ocean. Due to increased interest in bistatic radar reflections for
polar regions and successful results from these studies, a mission concept was developed
to derive thin ice thickness using phase information from collected raw data, which are
complementary to thickness derivations from the L-band SMOS mission [57,133].

A study conducted over the Arctic Sea [134] used GNSS-R data from the TDS-1 mission
to classify sea ice types during the sea ice formation period. This study, which focused
on the fall period of October 2015 in the Beaufort and Chukchi seas region, examined
considerable expanses of young ice, first-year ice (FYI), and multi-year ice (MYI). The
authors implemented a sea ice multi-step classification, and the results were validated
against SAR-derived sea ice-type maps produced at the US National Ice Center. The sea
ice type classification results showed that the L-band GNSS bistatic radar signals were
highly sensitive to the different surface scattering properties of primary ice types, and
identified FYI, MYI, and young ice with success rates of 70%, 82%, and 81%, respectively.
The research described in [12] utilized ground-based GNSS-R data to retrieve thickness
measurements of snow and ice during the FSSCat mission calibration and validation efforts
and the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)
polar expedition. The study employed a four-layer model to simulate the interference
pattern created by combining the GNSS direct and reflected signals over the sea ice. The
findings indicated that multi-angular and multifrequency data could effectively retrieve
measurements of sea ice and snow thickness and resolve thickness ambiguities. In [135],
a study demonstrated the use of GNSS interferometric reflections to observe long-term
snow height variations in Antarctica. The authors utilized eight antennas from the Polar
Earth Observing Network (POLENET) and the ROB1 antenna, which was deployed by
the Royal Observatory of Belgium in the eastern part of Antarctica. The study reports a
decrease of more than 4 m in snow height on the Flask Glacier in the Antarctic Peninsula
between 2012 and 2014, with an uncertainty of 2.5 m. On the Lower Thwaites Glacier, the
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authors observed a snow surface drop of 10 m, with a conservative uncertainty of 1 m,
between 2010 and 2020. Lastly, on the West Antarctic Ice Sheet (WAIS) divide, the authors
noted an upward motion of 1.2 m with an uncertainty of 0.4 m from 2005 to 2019. In [136],
researchers utilized neural networks to create an algorithm for sea ice concentration and
extent by combining L-band microwave data and GNSS-R data from the FSSCat mission
in both the Arctic and Antarctic oceans. The accuracy of the algorithm was compared to
that of the OSI SAF products, and the sea ice extent map’s overall accuracy was found to
be over 97% using L-band microwave data, and up to 99% when using both GNSS-R and
L-band microwave data. For sea ice concentration, the absolute errors were below 5% when
using L-band microwave data and below 3% after combining it with GNSS-R data. The
total extent computed area using this methodology was similar, with a difference of 2.5%,
to those calculated using well-established algorithms such as OSI SAF or NSIDC.

5.2. Freeze and Thaw State

The SMAP-reflectometer’s radar receiver measurements of GPS were examined in [51]
to assess this method’s ability to detect the freeze/thaw state of land surfaces. While the
study lacked formal calibration, it analyzed the signal-to-noise ratio (SNR) of the SMAP-
reflectometer signals and showed that boreal wetlands had a ~10 dB seasonal difference in
the SNR, which was consistent with simulations from a basic reflectivity model.

6. New Science Investigations

Over the past few years, researchers have expanded the scope of GNSS-R beyond its
traditional applications and started to explore its sensitivity to and capacity in assessing
underlying phenomena and signatures, including mesoscale ocean eddies, targets above
Earth’s surface, ionospheric plasma depletions, river flow, ocean phytoplankton blooms,
presence of ocean microplastics, and studies of deserts.

6.1. Mesoscale Ocean Eddies

In [137], researchers explored the feasibility of using GNSS-R data from CYGNSS to
detect mesoscale ocean eddies, reporting on their findings for the first time. The study
revealed evidence of normalized bistatic radar cross-sectional responses over the center
or edges of the eddies. Analysis of GNSS-R observations along with ancillary data from
the ECMWF Reanalysis-5 (ERA-5) revealed strong inverse correlations of the normalized
bistatic radar cross section with sensible heat flux and surface stress under certain conditions.

6.2. Above Earth’s Surface Target Detection

The capability to detect targets above the Earth’s surface using GNSS-R data from
TDS-1 was introduced in [138], with a proof of concept using UK TDS-1 data. Following that
work, an investigation conducted by authors in [139] studied unusually bright reflected
signals occurring at delays shorter than the specular reflection point over the Earth’s
surface. The authors examined seven possible causes of these anomalies and concluded
that they were likely occurring due to signals being reflected from objects located above
the Earth’s surface. The positions of these objects were determined using delay and
Doppler information and appropriate geometry assumptions. The satellite database from
the Union of Concerned Scientists (UCS) was then used to search for satellite objects
matching the delay and Doppler conditions, resulting in the discovery of three matching
objects. Simulation studies have covered the required calibrations for large bandwidth
GNSS signals to detect maritime targets, such as ships [140]. These capabilities have also
been studied for the detection of aerial vehicles crossing the GNSS field of view. The study
in [141] presents the experimental results on the use of forward-scattered GPS signals to
detect air targets.
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6.3. Ionospheric Plasma Depletions

The first evidence of ionospheric plasma depletions using CYGNSS GNSS-R data was
found by authors in [142]. Their theory suggests that electromagnetic waves experience
signal delay, polarization change, direction of arrival, and fluctuations in signal intensity
and phase due to temporal and spatial variations in the total electron content (TEC) and
the ionosphere dynamics. The authors proposed the use of the CYGNSS constellation to
explore ionospheric activity and travelling equatorial plasma depletions (EPBs). Using
GNSS-R data, the authors were able to detect ionospheric bubbles in ocean regions where
ground stations are unavailable. The results showed that the bubbles’ dimensions and
duration could be measured, and the increased intensity scintillation (S4) occurring in the
bubbles could be estimated. The study found that the bubbles detected had S4 values of
around 0.3–0.4, lasting from a period of time ranging from a few seconds to a few minutes.

6.4. River Flow

In [143], the authors explored the potential of using GNSS-R data obtained from the
Chinese BeiDou constellation, known as BeiDou Navigation Satellite System reflectometry
technology (BDS-R), in river flow applications. Specifically, they developed a shore-based
river flow velocity inversion model using carrier phase observations, where the interference
phase was obtained by integrating the Doppler frequency. The raw intermediate frequency
(IF) datasets were processed through an open-loop method to extract the Doppler frequency
observation generated by river flow and then a velocity inversion was performed. The
experiment was conducted on the south bank of Dashengguan Yangtze River in Nanjing
city, Jiangsu Province, for nearly two hours on 22 April 2021.

6.5. Phytoplankton

In [144] GNSS-R was demonstrated to be an effective method for detecting and moni-
toring phytoplankton levels on the ocean surface for the first time. The authors connected a
massive dust storm which formed over the Sahara Desert in June 2020 to a phytoplankton
bloom event near the coast of Florida. The presence of phytoplankton on the ocean surface
forms a film that affects the surface tension of the ocean, causing a local decrease in ocean
surface roughness. CYGNSS, designed to detect changes in ocean surface roughness over
tropical areas, provided valuable coverage in space and time for this application. An
increase in ocean surface tension was reflected in CYGNSS data as an increase in reflectivity
as the surface became smoother. In [144], the authors demonstrated the ability of GNSS-R
measurements to provide an effective means of mapping areas covered with phytoplankton
for the first time. Although ocean color products can detect algal blooms by mapping the
levels of chlorophyll, their effectiveness is limited by cloud cover, which covers roughly
70% of the Earth’s surface on any given day. The authors established GNSS-R as a highly
reliable remote sensing tool for detecting and monitoring the presence of phytoplankton
blooms across the ocean surface. In subsequent studies, independent teams investigated
the detection of red tide [145] and green algae [146] on the ocean surface. The authors
in [145] developed a method to estimate the density of red tide using TDS-1 data. The
method involved associating GNSS-R observations with the density of red tide on the
sea surface (i.e., the area covered by algae within a TDS-1 pixel). Landsat-8 near-infrared
data and TDS-1 GNSS-R data were used to build and test the proposed method for a red
tide outbreak in the sea off the Tsingtao coast of China. The retrieved red tide density
had a root mean square error of 2.84%, and the correlation coefficient was 0.73. The same
authors published a companion study in [146] where they modeled green algal blooms
using GEO-R, a process which involved analyzing the reflected signals of the geostationary
Earth orbit satellites collected by shipborne receivers. The developed model was verified
using experimental data collected in Qingdao, Jiaozhou bay, and the inversion accuracy of
the green algae density model was found to be better than 4%.
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6.6. Microplastics

The authors in [147] demonstrated the effectiveness of GNSS-R in detecting and
imaging ocean microplastics using CYGNSS data. Microplastic concentrations in the ocean
vary significantly across different locations, with particularly high levels found in the
North Atlantic and North Pacific gyres. This new application met the need for the global
measurement of microplastic distribution and its temporal variability. The method relied on
CYGNSS GNSS-R measurements of ocean surface roughness and assumed that surfactants,
which acted as tracers for microplastics near the surface, reduced responsiveness to wind-
driven roughening. The study found that the annual mean microplastic distributions
estimated by CYGNSS were generally consistent with model predictions, and that the
spaceborne observations were able to detect temporal changes that the models could
not resolve. The authors observed seasonal dependencies in mid-latitudes in both the
Northern and Southern Hemispheres, with lower concentrations in the winter months. In
addition, time-lapse images at finer spatial and temporal scales revealed episodic bursts
of microplastic tracers in the outflow from major river discharges into the sea. In [148],
authors conducted an experimental study to investigate the feasibility of using GNSS-R
observations to detect marine plastic litter in a water flume. The experiment included
different wave conditions, wave heights, and types of plastics and marine litter collected
from the Dutch coast. The results showed that detecting marine plastic litter based on
a change in reflected power is challenging. However, the authors noted that it might be
possible to detect large accumulations of certain types of marine litter, such as nets, bottles
in a net, food wraps, and bags, through the statistical analysis of the GNSS-R estimated
reflectivity at very short integration times (coherent integration time Tcoh = 1 ms). These
types of litter have the ability to reduce waves and, in turn, reduce ocean surface roughness.
In a subsequent study published in [149], the researchers investigated the underlying
flow physics of the remote sensing method for detecting oceanic microplastics that was
developed in [147]. The focus of the study was to determine whether the reduction in
surface roughness observed in the data was caused by the microplastics themselves or by
surfactants that travel along similar paths as microplastics. The authors found that the
damping effect of surfactants on both mechanically generated waves and wind waves was
much more significant than that of microplastics.

6.7. Desert Studies

In [150], the authors investigated the potential of using CYGNSS GNSS-R data to
retrieve information about desert roughness. The study focused on the Sahara Desert and
involved analyzing changes in reflectivity over time to identify variations in different types
of land surface such as reliefs and dunes. The authors observed that the reflectivity of each
type of land surface was highly stable over time, which allowed for data to be gridded at a
0.03◦ × 0.03◦ resolution and averaged for a 2.5-year time period. The study demonstrated
the potential of CYGNSS data to characterize different desert land surfaces. The authors
found a strong correlation between roughness parameters and reflectivity and compared
the behavior of GNSS-R reflectivity with that of the ALOS-2 SAR back-scattering coefficient,
finding a strong correlation between the two.

7. Discussion

GNSS-R was demonstrated from an airborne platform more than 20 years ago, and
since then, several spaceborne missions have proven GNSS-R capabilities for Earth obser-
vation using small satellite platforms. GNSS-R is a key technology developed to perform
forward-scattered radar measurements, a form of bistatic radar in which the transmitter
and the receiver are aligned in the same incident plane. This method has several advantages
as compared to a traditional radar. First, GNSS-R instruments do not require transmitters,
as they collect the signal emitted by the GNSS constellation, available worldwide, reduc-
ing instrument complexity and power consumption, which consequently reduces their
mass and volume. Second, the physics of forward-scattered signals are complementary to
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back-scattered signals. Over water, the radar back-scattered signal presents a very small
amplitude, as most of the energy is reflected. This allows GNSS-R to perform ocean wind
studies, or inland waterbody detection in forested areas, as in the Amazonian rainforest.
Additionally, forward-scatter configurations limit the amount of double-bounce reflection
received from the canopy, as double bounces are not possible in forward-scatter geometries.

Current ground-based instruments are focused on the execution of the well-known
GNSS-IR or interference pattern method, in which the interference between the direct
and the reflected signal is used to estimate the moisture content of the soil, or the waves
over the ocean. This technique is mature and ready for industry-wide deployment based
on user needs. However, even though this technique is well known, there is a lack of
studies of reflectivity data using low-altitude platforms, such as drones. Potential future
research lines may include the evaluation of the bistatic radar cross section over differ-
ent types of vegetation using very low-altitude platforms (<20 m) for its suitability in
commercial drones.

Current airborne studies are focusing on the exploration of new signals, such as
GPS L5 or Galileo E5a, with a higher bandwidth, allowing for finer-range resolutions
and increased signal-to-noise ratios. Present studies are also exploring the possibility of
including RHCP and LHCP antennas with coherent receivers to detect the polarimetry
signature of the surface. In this sense, there is a lack of polarimetric studies using airborne
platforms. Multi-band, multi-constellation, and polarimetric instruments are the logical
step to maximize the science return on the GNSS-R field. Several studies are pointing out
the usability of two polarization antennas to directly estimate soil moisture without the
need for vegetation attenuation or surface roughness correction.

Current spaceborne missions are integrating GNSS-R as part of their primary payloads.
This is a tremendous achievement for the entire GNSS-R community, providing more
data with which to perform valuable science. Thanks to the electronics miniaturization,
integrating GNSS-R receivers is now easier than ever. Current approaches to real-time
DDM generation in orbit help to drastically decrease mission data budget, relaxing mission
requirements. Future missions may require the integration of multi-channel correlators
for different polarizations, as well as cross-correlation channels to generate the full-Stokes
parameters of the reflected wave.

In terms of applications, the future of GNSS-R is to combine the very valuable forward-
scattered reflection with other remotely sensed sources, such as radar or radiometry, to
provide an enhanced estimate of the Earth’s surface. Polarimetric applications of GNSS-R
are yet to be employed over the cryosphere and densely vegetated areas. The integration
of all types of GNSS constellations with new polarimetric schemes and higher bandwidth
signals would allow for better retrievals with which to estimate several geophysical param-
eters of very high relevance, such as inland waterbodies, soil moisture, vegetation, ocean
winds, sea ice extension and type, etc.

8. Conclusions

This review article has covered the latest advances in GNSS-R up to Q4-2022. A total
of 43 out of 147 of the articles referenced here have been extracted from the Special Issue
“Applications of GNSS Reflectometry for Earth Observation I, II and III”, strengthening
the highly relevant contributions of these two Special Issues from MDPI’s Remote Sensing
to the GNSS-R community. Moreover, out of the 176 articles published in MDPI with
the topic “GNSS-R”, “Reflectometry”, or “GNSS-IR”, 42 of them (23.8%) originate from
the Special Issue “Applications of GNSS Reflectometry for Earth Observation I and II”.
This review article focuses on all the key areas of interest of GNSS-R. We presented the
technological chronology of GNSS-R, from the first concept and reflection captured, to
the latest advances in ground-based, airborne, and space-borne GNSS-R instruments.
Summaries of the technological features and achievements by different instruments are
presented, with a focus on power consumption and mass/volume, and included in this
analysis are capabilities, such as multi-band or polarimetry uses.
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Thereupon, the most relevant O=ocean applications of GNSS-R are presented. We have
covered several novel studies on retrievals of wind speed over the ocean, wind direction,
swell estimation, and ocean altimetry.

In terms of land applications, this review article has covered all key applications
of GNSS-R over land developed up to date. First, the specular reflection point location
based on different DEM models is covered. Achieving a highly accurate specular point
location is crucial for applications that require very high spatial resolutions, which might
be the case for higher bandwidth signals. Second, several articles are presented where
the amount of coherent and incoherent components of the reflected signal over land are
analyzed. Third, different soil moisture applications are presented from ground-based,
airborne, and space-borne datasets. Fourth, the ability of GNSS-R to detect inland water
bodies is also presented as a key application that can enable flood monitoring and other
crucial applications.

Cryosphere applications are also reviewed in this manuscript. The potential of GNSS-
R to estimate open water (diffuse reflection) or ice (specular reflection) can be key to
enhancing already existing radar and microwave radiometry products that contour the
sea-ice. Additionally, polarimetric studies are also presented as being key to the extraction
of more information about the ice shelf, such as young ice, multi-year ice, or snow on top
the sea-ice.

Other selected applications are also briefed. Those most relevant are mesoscale ocean
eddies, target detection over the ocean surface, ionospheric scintillation, river flow, phyto-
plankton bloom monitoring, microplastics, and desert roughness.

GNSS-R is able to cover three crucial hydrological variables in order to model the
Earth’s climate in the following areas: water in soil, ocean winds, and ice. However, GNSS-
R applications are not limited to these three uses, but extend to other applications as well.
Future technological developments point towards the use of higher bandwidth signals and
polarimetric retrievals, potentially providing enhanced accuracy and resolution to already
existing retrievals.
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