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Abstract: Reasonable allocation of urban resources can effectively control changes in ecological
quality. This study used Sentinel-2 images, taking urban functional areas as the dividing scale, and
combined spatial analysis, statistics, and other relevant methods to explore the factors influencing
remote sensing ecological quality in Puxi, Shanghai, China. Landsat-8 and high-resolution Sentinel-2
data fusion achieved more refined remote sensing ecological index (RSEI) distribution data, which is
of great significance for ecological quality exploration in small areas; the degree of influence of the
selected research factors on the RSEI was spectral index > building > social perception > terrain. The
R-value of the soil-adjusted vegetation index (SAVI) was 0.970, and it exerted the strongest influence.
The R-value of the average building height was 0.103, indicating that it had the weakest influence. The
interactions among the selected factors were mainly two-factor and nonlinear enhancements. Most
factor combinations exhibited two-factor enhancement. There were six groups of factor combinations
for nonlinear enhancement, of which five were related to the average building height. The results of
the present study provide a reference for multi-path ecological quality control in small-area regions.

Keywords: remote sensing ecological quality; GEO-detector; influence factor; urban functional area;
Sentinel-2

1. Introduction

In the wake of rapid global economic development, there has been significant economic
stratification between cities and villages. Improved employment and living environments
have attracted many rural residents to cities. Owing to the rapid increase in the urban labor
force, social and economic development has also been rapid; however, urban environmental
challenges, such as excessive exhaust emissions, serious land loss, and severe air pollution,
have ensued, resulting in ecological challenges, the effects of which are experienced far
beyond urban boundaries [1]. The ecological environment has attracted considerable
attention in medium-sized and large cities [2–5], and the effective control of regional
ecological environmental quality has become a major research topic [6–8].

The rational assessment of ecological environmental quality has become a system
after years of development. In 2003, researchers developed a conceptual framework of
environmental quality [9], which provides guidance for the assessment of urban ecolog-
ical environment quality. Moreover, ecological quality assessment methods, such as the
ecological index (EI) [10], invest [11], and the remote sensing ecological index (RSEI) [12],
are gradually being recognized by the research community. Among them, the RSEI is a
method of assessing regional ecological quality based on full remote sensing. Given the
convenience of the data acquisition, intuitive effect, and lower manpower and financial
costs associated with this method, it is commonly used in regional ecological environment
quality regulation research.
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The precise control of the factors influencing ecological quality can effectively pre-
vent detrimental changes in ecological quality. Previous research has used MODIS and
Landsat series images to explore factors influencing the RSEI, ranging from climate, human
disturbance, land use, soil, and urbanization, among others [13–17]. However, owing to
human activities, ecosystems, climate change, and other regional differences, the methods
of quality control of ecological environments over large areas are not fully applicable to
small areas. We suggest that high-resolution data are needed to explore different influenc-
ing factors in ecological environments for small areas. The Sentinel-2 dataset has a spatial
resolution of 10 m and can provide higher-resolution textural information on ground objects
compared with the MODIS and Landsat series datasets. Using Sentinel-2 data to explore
the factors influencing the RSEI can gradually improve the comprehensive management of
ecological quality.

The emergence of urban functional zoning is convenient for urban ecological studies,
including the mechanism of change in thermal environments under urban functional zon-
ing [18], the precipitation-runoff characteristics of urban commercial and non-commercial
zones [19], and carbon emission estimation using multi-source data in urban functional
zones [20]. However, few studies have taken the urban functional area as the dividing
scale of the RSEI and explored its influencing factors. In summary, urban remote sensing
ecological quality control in small areas should be explored further.

Therefore, the present study utilized high-resolution Sentinel-2 images to analyze
the factors influencing the regional RSEI by synthesizing four major factors—the terrain,
architecture, social perception, and spectral index—to provide a reference for precisely
regulating ecological quality.

2. Data and Methods
2.1. Research Area

Shanghai (Figure 1) is an important economic, financial, and technological innovation
center in China [21,22], located at 120◦52′–122◦12′E and 30◦40′–31◦53′N. Seven districts
from Puxi are located in the central urban area west of the Huangpu River, including Putuo
District, Xuhui District, Changning District, Yangpu District, Hongkou District, Jingan
District, and Huangpu District. The study area is located on the flat Yangtze River Delta
Plain; the water net is dense. The hills are scattered in the southwest and have an average
altitude of approximately 4 m. Puxi has a subtropical monsoon climate with four distinct
seasons, full sunshine, long summers, and hot and dry weather. Owing to many human
activities and frequent land cover replacement, it is difficult to control the ecological quality
of the Puxi region. However, the rational layout of urban resources could improve the
urban ecological quality.
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2.2. Research Data

The Sentinel-2 dataset used in the present study was obtained from the Coperni-
cus Open Access Center (https://scihub.copernicus.eu/dhus/#/home; image time is 16
August 2020). The Landsat-8 TIRS data were derived from the geospatial data cloud
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(https://www.gscloud.cn/; image time is 16 August 2020). The Point of Interest (POI)
data were obtained from Baidu Map (https://lbsyun.baidu.com/;accessed on 2020). The
building data were also sourced from Baidu Map data and were provided by Shuijingzhu
(http://www.rivermap.cn/ (accessed on 2021)); they included the building height in the
attribute table. The data on urban functional areas were derived from EULUC-China
data, which are refined functional area partition data completed by Gong et al. [23]. The
Sentinel-2 data belong to the S2B satellite, and the product level is L1C. This level of data
is geometrically refined, but radiometric calibration and atmospheric correction have not
been carried out. Therefore, Sen2cor and SNAP were required for data preprocessing.
Sen2cor mainly completes radiometric calibration and atmospheric correction, while SNAP
mainly completes format conversion and generates IMG data that can be directly read by
ENVI. The Landsat-8 data were resampled to 10 m resolution using ENVI. The POI and
building data were cleaned, screened, and inspected.

2.3. Research Methods

Sentinel 2 images and Landsat-8 data were selected to extract the RSEI. The Pearson
correlation coefficient and GEO-detector were combined to mine the factors influencing the
RSEI. The main procedure is illustrated in Figure 2.

Remote Sens. 2023, 15, x FOR PEER REVIEW 3 of 11 
 

 

2.2. Research Data 
The Sentinel-2 dataset used in the present study was obtained from the Copernicus 

Open Access Center (https://scihub.copernicus.eu/dhus/#/home; image time is 16 August 
2020). The Landsat-8 TIRS data were derived from the geospatial data cloud 
(https://www.gscloud.cn/; image time is 16 August 2020). The Point of Interest (POI) data 
were obtained from Baidu Map (https://lbsyun.baidu.com/;accessed on 2020). The build-
ing data were also sourced from Baidu Map data and were provided by Shuijingzhu 
(http://www.rivermap.cn/ (accessed on 2021)); they included the building height in the 
attribute table. The data on urban functional areas were derived from EULUC-China data, 
which are refined functional area partition data completed by Gong et al. [23]. The Senti-
nel-2 data belong to the S2B satellite, and the product level is L1C. This level of data is 
geometrically refined, but radiometric calibration and atmospheric correction have not 
been carried out. Therefore, Sen2cor and SNAP were required for data preprocessing. 
Sen2cor mainly completes radiometric calibration and atmospheric correction, while 
SNAP mainly completes format conversion and generates IMG data that can be directly 
read by ENVI. The Landsat-8 data were resampled to 10 m resolution using ENVI. The 
POI and building data were cleaned, screened, and inspected. 

2.3. Research Methods 
Sentinel 2 images and Landsat-8 data were selected to extract the RSEI. The Pearson 

correlation coefficient and GEO-detector were combined to mine the factors influencing 
the RSEI. The main procedure is illustrated in Figure 2. 

 
Figure 2. The roadmap of research. 

2.3.1. Remote Sensing Ecological Quality 
The RSEI was used as a remote sensing ecological quality assessment method. This 

index integrates greenness, dryness, humidity, and heat, as follows: RSEI = f(NDVI, WET, NDBSI, LST), (1)

where the RSEI is the remote sensing ecological index, the normalized difference vegeta-
tion index (NDVI) is the greenness index, WET is the wetness index, the normalized dif-
ference bare soil index (NDBSI) is the dryness index, and the land surface temperature 

Figure 2. The roadmap of research.

2.3.1. Remote Sensing Ecological Quality

The RSEI was used as a remote sensing ecological quality assessment method. This
index integrates greenness, dryness, humidity, and heat, as follows:

RSEI = f(NDVI, WET, NDBSI, LST), (1)

where the RSEI is the remote sensing ecological index, the normalized difference vegetation
index (NDVI) is the greenness index, WET is the wetness index, the normalized difference
bare soil index (NDBSI) is the dryness index, and the land surface temperature (LST) is the
heat index. The NDVI is a spectral index [24] proposed to represent regional vegetation
distribution. The greenness index selected by the RSEI was constructed using the NDVI.
The K–T transformation is fixed based on the physical characteristics of the images. Several
main components of the brightness, greenness, and wetness indices were obtained after
transformation. The humidity index was expressed by the wetness component after the

https://www.gscloud.cn/
https://lbsyun.baidu.com/;accessed
http://www.rivermap.cn/
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Tasseled Cap Transformation [25]. As bare soil and buildings can comprehensively reflect
the degree of “drying” of the ecological environment quality, the dryness index consisted
of the mean values of the bare soil index (SI) and building index (IBI) [12]. The thermal
index was the land surface temperature [26] inverted using the radiation equation method.
As Sentinel-2 has high data resolution, the calculated land surface temperature data were
resampled to a resolution of 10 m, and principal component analysis was performed.

2.3.2. Pearson Correlation Coefficient

In this study, the Pearson correlation coefficient was used to explore the degree of
correlation between the influencing factors and the RSEI. The values were between −1 and
1, where zero indicates no relationship or correlation between the two factors, >0 denotes
a positive correlation between the two variables, and <0 denotes a negative correlation
between the two variables [27,28].

R =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

, (2)

where R is the value of the correlation coefficient, whose value range is [−1, 1], xi and yi
are the values of the variables, x and y are the average values of the variables, and n is the
number of variables.

2.3.3. GEO-Detector

GEO-detector is a statistical method used to evaluate the factors influencing variables;
it is used to explore spatial differentiation. There are four types of GEO-detectors. The
factor detector detects the spatial differentiation of variable and the interpretation degree
of factors to variables [29,30]. The q value is used to measure the influence of the factors,
and the calculation formula is:

q = 1− ∑L
h=1 Nhσ2

h
Mσ2 = 1− SSW

SST
, (3)

where h = 1, . . . , L are the partitions of the variables Y and factors X; Nh and M are the
number of units in the area h and the whole area, respectively; σ2

h and σ are the variance
of the region h and the Y value of the whole region; and SSW and SST are the sum of the
intra-area variance and the total variance of the whole area, respectively. The calculations
yield a value of q ranging between 0 and 1.

The interaction detector mainly identifies the interaction between multiple indepen-
dent and dependent variables, that is, it identifies whether the interaction of X1 and X2
will have an enhanced or weakened impact on variables, but the results may show that the
independent variables are independent of the dependent variables. The detector calculates
the values of q (X1), q (X2), and q (X1∩X2) and compares the three values. The calculation
primarily combines the data processing method proposed by Wang et al. [31,32].

3. Results and Analysis
3.1. Spatial Distribution of Remote Sensing Ecological Quality

Figure 3 shows the RSEI calculation results for the Landsat-8 and Sentinel-2 data. The
RSEI calculated using the Sentinel-2 data has a similar spatial distribution as that calculated
using the Landsat-8 data, but the spatial distribution of Sentinel-2 is more detailed. Based
on the distribution pattern of the RSEI, areas with good ecological quality are scattered
and distributed in green areas (e.g., parks, scenic spots, etc.). In addition, roadside trees
and green belt areas alongside roads show good ecological quality distribution trends. The
areas with poor ecological quality are concentrated on impervious surfaces, such as dense
buildings and wide roads in urban centers. We tested the spatial autocorrelation of the
RSEI values in different functional areas and determined that the value of Moran’s I was
0.39, and the Z scores all exceeded the critical value of 1.96 at the 0.01 confidence level. This
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confirms a significant spatial positive correlation, indicating that the RSEI values are not
independent in space and have always been in a spatial agglomeration state.
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Table 1 shows the average values of the RSEI and the four indices in seven districts
in Puxi. Given the high level of development in the seven districts, buildings generally
occupy most of the space. Therefore, the regional heat feedback is roughly the same, the
heat generated by ground features is approximate, and the LST values are not significantly
different. The NDBSI values show positive and negative differences, indicating that the
dryness index in the seven districts in Puxi is influenced by the surface cover. The dryness
degree of Huangpu is the highest because of the high economic development. Based on the
actual situation in the study area, 10 m resolution data can well distinguish the green plant
distribution, and the overall NDVI value of the study area is low. Moreover, the overall
fluctuation in the WET index is low. The study area is located close to the sea, and the
combined action of high temperatures and sea winds in the summer and the water vapor
emitted by green plants influence the WET values to a certain extent.

Table 1. Mean of the four indicators in the research area.

Administrative
Division LST (◦C) NDBSI NDVI WET RSEI

Huangpu 39.327 0.036 0.210 −0.025 0.522
Xuhui 39.223 −0.010 0.309 −0.033 0.514

Changning 39.520 −0.023 0.357 −0.043 0.530
Jingan 40.623 0.018 0.273 −0.036 0.580
Putuo 39.795 −0.012 0.324 −0.039 0.535

Hongkou 40.136 0.010 0.274 −0.031 0.559
Yangpu 39.455 −0.001 0.287 −0.033 0.532

3.2. Factors Influencing Remote Sensing Ecological Quality

In recent years, research on the factors influencing the urban ecological environment,
which mainly include buildings [33,34], land use [35], and local climate zones [36,37], has
increased. The present study drew on previously identified factors and combined them
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with the unique natural and anthropogenic characteristics of the study area. A total of 12
influencing factors (Table 2), based on four aspects (terrain factors, building factors, social
perception factors, and spectral index factors), were used to explore the factors influencing
the RSEI in seven Puxi districts. The Pearson correlation coefficient and GEO-detector were
combined to analyze factor detection and interaction.

Table 2. Factors influencing remote sensing ecological quality.

Factor Type Code Factor

Terrain factors
X1 DEM
X2 Slope

Building factors

X3 Building coverage
X4 Density of building patches
X5 Average building height
X6 Space congestion

Social perception factors
X7 Dining distribution density

X8
Distribution density of public

land
X9 Shopping distribution density

Spectral index factors
X10 SAVI
X11 NDBI
X12 MNDWI

3.2.1. Factor Detection Analysis

In the present study, the Pearson correlation coefficient and factor detector part of
the GEO-detector were used to analyze the influencing factors. In combining the results
in Table 3, the explanatory force of each factor on the RSEI was X10 > X12 > X11 > X3 >
X6 > X4 > X9 > X8 > X7 > X1 > X2 > X5. In combining the Pearson correlation coefficients
(Figure 4), the digital elevation model (DEM), slope, average building height, and SAVI
were observed to be positively correlated with the RSEI (p < 0.001), while the building
cover, building patch density, space congestion, food and beverage distribution density,
public land distribution density, shopping place distribution density, NDBI, and MNDWI
were negatively correlated with the RSEI (p < 0.001).

Table 3. Factor detection analysis results. (The meanings of different indicators are shown in Table 2).

Factor X1 X2 X3 X4 X5 X6

q 0.124 0.057 0.304 0.148 0.033 0.150
p Value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Factor X7 X8 X9 X10 X11 X12

q 0.128 0.130 0.133 0.881 0.690 0.758
p Value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Overall, the spectral index factor had the strongest influence on the RSEI, followed
by building, social perception, and terrain. The entirety of Shanghai is in the plain area
of the Yangtze River Delta. Owing to the high proportion of buildings in the study area
and minimal topographic fluctuation, the gradient changes only slightly, and topographic
factors have little effect on the RSEI. These results are similar to those reported by Cui
et al. [38]. POI data, as a specific representation of each geographical element, have been
favored by many scholars in recent years. In this study, the distribution density was
considered an influencing factor of the RSEI. As the main urban area of Shanghai, the
shopping, catering, and public facilities in the seven Puxi districts are highly developed.
The distribution density has an inhibitory effect on the RSEI. There are few vegetation
and water areas where public activities are frequent, and many types of buildings have



Remote Sens. 2023, 15, 2156 7 of 11

adverse effects on the ecological quality. Few studies have examined the influence of this
social perception factor on the RSEI. Among the building factors, the building cover had
a significant negative impact on the RSEI. This interaction occurs not only in the seven
districts of Puxi but also in most areas with high building cover. The impact of other
building factors on the RSEI was relatively low, of which the impact of the average building
height was the weakest but still passed the significance test, indicating that the impact of
this factor cannot be ignored. The spectral exponential factors play a significant role in the
RSEI. As the NDVI is one of the components of the RSEI, the SAVI was selected for further
exploration. The results show that the soil-adjusted vegetation index represented by the
SAVI has an important influence on the RSEI, with a 0.97 Pearson correlation coefficient
and a positive promotion. Among the other spectral index factors, the building index
represented by the NDBI had an inhibitory effect on the RSEI. The MNDWI also exerted a
strong inhibitory effect on the RSEI. This is mainly related to the high building cover of
the study area. The water surface area inside the study area is small, and remote sensing
images have poor detection ability for small areas of water surface between buildings.
Therefore, the negative effects of the RSEI are not alleviated.
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3.2.2. Factor Interaction Analysis

Figure 5 presents the results of the two-factor interaction. The interaction between
the selected factors and the RSEI showed two-factor or nonlinear enhancement, with
no independent or weakening effects. Two-factor enhancement accounted for a large
proportion. Nonlinear enhancement mainly occurred in X2∩X5, X1∩X5, X1∩X4, X7∩X5,
X8∩X5, and X9∩X5. Except for the nonlinear enhancement between the DEM and building
patch density, the other nonlinear enhancements were related to the average building
height. This may be related to the weak impact of the average building height on the RSEI.
The factors represented as two-factor enhancements indicated that the combined action of
two factors had the most significant influence on the RSEI.
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The interaction between the SAVI and other factors had a promotional effect on the
RSEI, in which the interaction enhancement of the SAVI∩average building height and
SAVI∩space congestion was the highest, indicating that the positive effects of vegetation
and reverse effects of buildings play a key driving role in the change in the RSEI. However,
the high interaction between the SAVI and building factors was not the highest among the
factor combinations. The highest value was for SAVI∩MNDWI, followed by SAVI∩NDBI,
which shows that the spectral index has an important influence on the RSEI.

4. Discussion
4.1. Optimizing Urban RSEI

The factors influencing the RSEI identified in the present study include the terrain,
buildings, social perception, and spectral index. The factors influencing the RSEI were
explored in an extremely developed, small urban area. The building and social perception
factors considered in the present study have seldom been mentioned in previous studies.
A study of the correlation between these two types of factors and the RSEI can provide a
reference for precisely adjusting the RSEI and considering the ecological quality during the
development of modern cities.

Previous studies have reported various findings on the factors influencing the RSEI
in different regions: the influence of human factors on the RSEI is increasing gradually in
the Jing-Jin-Ji urban agglomeration [39]; the effect of the gross domestic product on the
RSEI of the Loess Plateau is increasing gradually [40]; population and economy do not
inhibit the RSEI in the Lhasa metropolitan area [41]; and the RSEI and the composition
index of urban agglomeration on the northern slope of the Tianshan Mountains exhibit a
certain relationship [42]. However, because of the small area, wide but complex vegetation
distribution, and high building cover of the central urban setting, our study area differs
significantly from those of the aforementioned studies. In particular, it is difficult to regulate
the ecological quality of urban areas. Therefore, it is critical to optimize regional ecological
quality from many aspects. Our multi-factor inquiry shows that RSEI optimization must
rationalize the allocation of vegetation, buildings, and water areas, combined with evenly
distributed social perceptive features, including but not limited to catering, shopping, and
public land. Congestion, cover, and building height should also be considered in urban
construction and planning. Moreover, the influence of topographic factors on the RSEI
cannot be ignored.
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4.2. Limitations

This study only used the method of dividing urban functional areas to explore the
factors influencing the RSEI in the seven districts of Puxi. The factors influencing the
RSEI in administrative areas or grids should be continuously investigated. In addition,
the factors influencing urban RSEI vary. Numerous factors that control changes in the
RSEI have been observed in different cities owing to the geographical location and human,
economic, and social factors. Future research will focus on these different factors.

5. Conclusions

The ecological quality of small areas is affected by numerous factors. Reasonable
adjustment of ecological quality is beneficial to human health and life quality. In the present
study, high-resolution Sentinel-2 data were combined to explore the factors influencing
the RSEI in the Puxi area based on four aspects: terrain, buildings, social perception, and
spectral index. The main conclusions are as follows:

(1) Owing to data resolution advantages, the RSEI spatial distribution data represented
by Sentinel-2 are more detailed than those from the Landsat data, which is of more
practical significance for the study of ecological quality in small areas.

(2) The four factors selected in the study influenced the RSEI in the order of spectral
index factor > building factor > social perception factor > terrain factor. The SAVI had
the greatest influence and a significant positive correlation with the RSEI (R = 0.970),
whereas the average building height had the least influence and a significant positive
correlation (R = 0.103).

(3) In the factor interaction analysis, only double factor enhancement and nonlinear
enhancement existed among the selected factors. Most of the factor combinations
exhibited two-factor enhancement; only six factor combinations exhibited nonlinear
enhancement and five were related to the average building height. The interac-
tion between the SAVI and each factor was strong, with the SAVI∩MNDWI and
SAVI∩NDBI combinations having strong interactions with the RSEI. Furthermore, the
SAVI∩average building height and SAVI∩space congestion exhibited strong interac-
tions.
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